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Macroautophagy (hereafter referred to as autophagy) is an
evolutionarily conserved self-degradative process, which
involves the regular turnover of cellular components via
sequestering damaged macromolecules and transporting
them for lysosomal degradation. In the past few years, the
scientific community has produced remarkable advances in
our understanding of the genes that are involved in auto-
phagy and of their profound effects on various diseases.
Recently, a new class of noncoding RNAs, known as microRNAs
(miRNAs), has been demonstrated to play crucial roles in
diverse biological processes including development, cell differ-
entiation and apoptosis. Here, we review the current under-
standing about miRNAs focusing on their involvement in the
autophagy process. Intriguingly, several confirmed targets of
these autophagy-miRNAs are also important regulators in the
crosstalk between autophagy and apoptosis. Furthermore,
transcripts involved in autophagy and apoptosis may indirectly
modulate each other by competing for common miRNA bind-
ing sites. Thus, miRNAs potentially work as molecular switches
between these two intimately connected processes and
contribute to the cell fate decision.

Introduction

Macroautophagy is an evolutionarily conserved cellular catabolic
process in which proteins and organelles are eliminated through
delivery to lysosomes.1 Although in a few cases autophagy may
play a role in the execution of cell death, it is usually a cyto-
protective mechanism in maintaining homeostasis and protecting
cells from nutrient stress.2 Deregulation in autophagy has been
implicated in numerous human disease, including developmental
disorders, neurodegenerative disease and cancers.1 Autophagy is

an intrinsic cellular process, which needs to be tightly controlled.
In addition, the autophagic pathway should actively exchange
information with other cellular processes such as apoptosis.
Recently, one group of endogenous noncoding RNAs, miRNAs,
have been found to be involved in the regulation of autophagy,
and their roles in modulating the crosstalk between autophagy
and apoptosis are emerging.

miRNAs are ~22-nucleotide long regulatory molecules, which
are usually phylogenetically conserved.3 The biogenesis and action
mechanism of metazoan miRNAs are summarized in Figure 1.
miRNAs reside in protein-coding, intronic or intergenic regions
throughout the genome. They can be produced from their own
promoters or transcribed together with their host genes (in the
cases of miRNAs located in introns). Mammalian miRNAs tend
to cluster along the genome, and this clustering property plays
an important role in guaranteeing the coordinate expression of
different miRNAs.4,5 Metazoan miRNAs are mainly transcribed
by RNA polymerase II, which produce hundreds or thousands
of nucleotide-long products called primary miRNAs (pri-
miRNAs).6 In the nucleus, the DROSHA nuclease complex
cleaves metazoan pri-miRNAs into 70-nucleotide hairpins,
known as precursor-miRNAs (pre-miRNAs). After being trans-
ported to the cytosol by XPO5 (exportin 5), pre-miRNAs are
further processed into mature miRNAs by another RNase III
DICER1.3 The metazoan pre-miRNAs can also be produced from
spliced introns. This “miRtron” pathway is conserved among
diverse mammals as well as in drosophilids and nematodes.7-9

It had been thought that metazoan miRNAs lead to translation
attenuation by targeting the 3'UTRs; however, novel findings
challenged this notion because miRNA-mediated metazoan
mRNA cleavage could also be observed in many cases.10,11 The
first 2–8 bases of a mature miRNA sequence usually play a pivotal
role in target recognition in metazoans and are routinely used in
most bioinformatics algorithms to search for target mRNAs.12

Therefore, different miRNAs can share common target mRNAs
if they possess similar “seed” regions.

*Correspondence to: Jianzhen Xu; Email: xujz0451@gmail.com
Submitted: 12/09/11; Revised: 02/06/12; Accepted: 02/06/12
http://dx.doi.org/10.4161/auto.19629

REVIEW

Autophagy 8:6, 873–882; June 2012; G 2012 Landes Bioscience

www.landesbioscience.com Autophagy 873

http://dx.doi.org/10.4161/auto.19629


© 2012 Landes Bioscience.

Do not distribute.

Figure 1. Biogenesis and action mechanism of miRNAs. Metazoan miRNAs are transcribed into pri-miRNA by RNA polymerase II. In the nucleus,
precursor-miRNA can be produced either by processing of pri-miRNAs via the DROSHA complex or by the miRtron pathway without RNase.
Pre-miRNAs are translocated into the cytoplasm by XPO5, where another RNase, DICER1, cleaves pre-miRNAs to generate a miRNA:miRNA* duplex.
Single strands of mature miRNA enter into the miRISC complex to recognize target genes. miRNAs can silence a target gene via either repressing
protein translation or enhancing mRNA degradation.
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miRNAs play a critical role in a broad range of biological
processes such as developmental timing, differentiation and tissue
morphogenesis.3,13 Deregulation of miRNAs is also involved in a
wide spectrum of diseases. For example, more than half of miRNA
genes are located at fragile sites or cancer-associated genomic regions
and are often aberrantly expressed in human cancers.14,15

miRNAs Regulate Autophagy
and Contribute to Disease Progression

The regulatory role of miRNAs in autophagy was first uncovered
in 2009 when BECN1, an important autophagy-promoting gene,
was shown to be post-transcriptionally modulated by MIR30A.16

Soon after this report, a number of miRNAs participating in
autophagy have been associated with certain diseases including
cancers, cardiac pathologies and Crohn disease. In the following,
we will discuss these miRNAs and their relevance to autophagy
(summarized in Table 1 and Fig. 2).

MIR30A. The MIR30 subfamily contains five paralogs:
MIR30A, B, C, D and E, which map at different genomic
positions. MIR30A and other members of the MIR30 family are
abundantly expressed in the adult prefrontal cortex.17 Previous
studies have found that MIR30A can bind to a conserved site
at the 3'UTR of BDNF (brain-derived neurotrophic factor), a
key regulator during cortical development and maturation.17

Alterations in BDNF expression have been reported in a plethora
of neuropsychiatric diseases.18 A recent investigation suggested
MIR30 family members are also upregulated during cellular
senescence. The MYBL2 (B-Myb) oncogene, an important
regulator of the cell cycle, was identified as a bona fide target of
MIR30A during senescence.19 Furthermore, blocking the acti-
vity of MIR30A inhibits cellular senescence.19 All of the above
lines of evidence indicateMIR30A is a potential tumor suppressor.

Recently, Zhu et al. demonstrated that MIR30A expression
is inhibited when cells are subjected to nutrient depletion or
rapamycin treatment, respectively.16 MIR30A negatively regulates
BECN1 both at the mRNA and protein level in human breast,

lung and glioma cancer cell lines. Overexpression of MIR30A
leads to the BECN1-dependent suppression of autophagic activity
in cancer cells. BECN1 is identified as a potent inducer of
autophagy and plays a key role in tumorigenesis and neuro-
degenerative diseases.20,21 Previous studies have documented the
decreased expression of BECN1 in human breast, ovarian and
brain cancers.20,22 This finding elucidated a novel regulation
mechanism for BECN1 and further suggested that blocking of
BECN1 by MIR30A may contribute to cancer progression.

MIR206 and miR-9-3p. MIR206 is transcribed together with
MIR133B as a miRNA cluster. Expression of MIR133B and
MIR206 increase during muscle cell differentiation and human
fetus development.23,24 A master myogenic transcriptional factor,
MYOD1, induces MIR206 transcription in muscle.25MIR206
can block human rhabdomyosarcoma growth by targeting the
c-Met 3'UTR both in rhabdomyosarcoma cell lines and in
xenotransplanted mice.23,24 In addition, MIR206 is reported to
markedly decrease in estrogen receptor a-positive human breast
cancer tissues.26 In MCF-7 breast cancer cells, overexpression
of MIR206 results in reduced cell proliferation and enhanced
apoptosis via downregulating endogenous estrogen receptor a
and other estrogen receptor-associated coregulatory proteins.27,28

The human MIR9 subfamily contains three genes, MIR9-1,
MIR9-2 and MIR9-3, which are separately located at 1q22,
5q14.3 and 15q26.1. miR-9-3p and miR-9-5p denote mature
miRNAs originating from 3' and 5' arms of the same hairpin
structure, respectively. miR-9-3p is significantly downregulated in
the prefrontal cortex of subjects with schizophrenia compared
with healthy controls.29 Recently, it has been demonstrated that
MIR9 exerts its tumor suppressor role in various cancers includ-
ing ovarian tumor,30 gastric cancer,31 cervical cancer32 and breast
cancer.33 Expression of MIR9 is activated by MYC (v-myc
myelocytomatosis viral oncogene homolog) and MYCN (v-myc
myelocytomatosis viral related oncogene, neuroblastoma derived)
in breast cancer cells, which further contributes to metastasis.33

A recent investigation indicated increased expression of
MIR206 and reduced expression of miR-9-3p in primary

Table 1. miRNAs with relevance in autophagy

miRNAs Chromosome
location

Disease relevance Targets relevant
to autophagy

Function References

MIR30A 6q13 Targets B-Myb oncogene during
cellular senescence

BECN1 Regulation of autophagic response
to rapamycin in cancer cells

16, 19

MIR206 6p12.2 Blocks the growth of human
rhabdomyosarcoma and breast cancer cells

KAT6A (MYST3) Modulation of histone acetylation 23, 27, 28, 35

miR-9-3p 1q22, 5q14.3,
15q26.1

Downregulated in the prefrontal
cortex of schizophrenic subjects;
contributes to tumor metastasis

HDAC4 and HDAC5 Modulation of histone acetylation 29, 33, 35

MIR101 1p31.3, 9p24.1 Locus is lost in clinically localized prostate
cancers or metastatic prostate cancers

RAB5A, ATG4D
and STMN1

Sensitizes breast cancer cells
to 4-OHT-mediated cell death.

43, 45

MIR17,20,93
and 106

13q31.3, 7q22 Elevated in B-cell lymphoma and modulate
tumor formation

SQSTM1 (p62) Promote hematopoietic
cell expansion

56, 58

MIR204 9q21.12 Downregulated in the NCI60 tumor cell lines;
Involved in pulmonary arterial hypertension

MAP1LC3 Regulation of cardiomyocyte autophagy
induced by hypoxia-reoxygenation

62–64

MIR196 17q21.32, 12q13.13,
7p15.2

Potential roles in melanoma and
acute leukemia

IRGM Deregulation of IRGM-dependent
xenophagy

67, 68, 73
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waldenstrom macroglobulinemia (WM) cells.34 WM is a rare,
nonHodgkin lymphoma characterized by an arrest of B lym-
phocytes after somatic hypermutation and before isotype class
switching. The abnormal expression of these two miRNAs leads
to alteration of balances between autophagy and apoptosis via
modulating histone acetylation in WM cells.35

Histone deacetylases (HDACs) and histone acetyl transferases
(HATs) control the chromatin structure status, and the balance
of these two families of enzymes is crucial to gene transcription.36

In many malignancies including WM, this balance is disrupted,
which is characterized by significantly increased expression of
HDACs and by significantly decreased expression of HATs.34

Since HDAC4, HDAC5 and KAT6A (MYST3) were identified as
targets for miR-9-3p and MIR206, respectively, the increased
expression of MIR206 and reduced expression of miR-9-3p

deregulate histone acetylation and lead to autophagy-dependent
cell toxicity.35 It should be noted that although the modulation
of autophagy by HDAC suppression has been implicated in the
pathogenesis of human diseases,37,38 how histone acetylation
affects autophagy remains largely unknown. For example, Shao
et al. found that suberoylanilide hydroxamic acid, a potent
inhibitor of HDAC, can induce cancer cell death, which had
unambiguous morphological features of autophagosome forma-
tion.37 However, Cao et al. recently reported that suppressing
of HDAC attenuates cardiac hypertrophy via autophagy inhibi-
tion.38 How can this discrepancy be explained? An obvious
explanation is cell-type specificity. Alternatively, cells may choose
different routes to link HDAC with autophagy. Therefore, further
investigations are needed to delineate the underlying molecular
mechanism.

Figure 2. miRNAs in autophagy and their emerging roles in crosstalk with apoptosis. miRNAs can directly target autophagy-associated proteins such as
BECN1 and RAB5A. Alternatively, miRNAs may indirectly modulate autophagy regulators such as HDACs and HATs. As shown in the figure, miRNAs
can also mediate the crosstalk between autophagy and apoptosis via either targeting the common regulators for both pathways such as BECN1 and
SQSTM1, or via regulating multiple targets involved in the two pathways.
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MIR101. MIR101 is an established tumor suppressor across
many cancer types.39-44 It has two genomic loci, which are on
chromosome 1 (MIR101-1) and chromosome 9 (MIR101-2).
Based on genomic PCR, one or both of the two genomic loci
are found to be somatically lost in clinically localized prostate
cancers or metastatic prostate cancers.43EZH2 (Enhancer of zeste
homolog 2), which encodes a mammalian histone methyltransfer-
ase that epigenetically regulates cancer cell survival and metastasis,
was identified as a key target of MIR101 in prostate cancer cells
and in non-small cell lung cancers.43,44 Other confirmed targets
for MIR101 include MCL1 (myeloid cell leukemia sequence 1)
and FOS (FBJ murine osteosarcoma viral oncogene homolog)
oncogene in hepatocellular carcinoma,40,42MAGI2 (membrane-
associated guanylate kinase, WW and PDZ domain containing
2) in breast cancer cell lines41 and the MYCN gene in neuro-
blastoma cell lines.39 Therefore, MIR101 promotes apoptosis and
suppresses tumorigenesis.

Interestingly, in a functional screen for miRNAs that regulate
the autophagic flux in breast cancer cells, MIR101 was found to
be a potent inhibitor of autophagy.45 MIR101 targets the genes
encoding the autophagy-related proteins RAB5A, ATG4D and
STMN1. RAB5A is a member of the RAS oncogene family,
which is conserved from yeast to humans. The RAB5A protein
can exhibit GTPase activities and is identified as a key regulator
of endocytosis.46 However, a recent investigation suggested RAB5
is involved in autophagosome formation and regulates ATG5–
ATG12 conjugation.47 In addition, siRNA inhibition of RAB5A
blocks basal and rapamycin-induced autophagy.45

ATG4D belongs to the ATG4 family of cysteine-type endo-
peptidases, which is a homolog of yeast Atg4.48 In mammals,
ATG4 cleaves the C terminus of LC3 (yeast Atg8) to form
cytosolic LC3-I, which is covalently conjugated to the lipid
phosphatidylethanolamine (PE) on autophagosomal membranes.
Atg4-Atg8 conjunction is a crucial step in the autophagosome
biogenesis pathway. Currently, four mammalian ATG4 paralogs
[ATG4A-ATG4D] and six ATG8 paralogs with varied substrate
specificity have been cloned. Previous studies suggested that
although ATG4B is the main regulator of LC3 in mammalian
cells, other members of the ATG4 family may be specific for
other individual Atg8 orthologs.48,49

STMN1 is a gene coding for a ubiquitous cytosolic phospho-
protein. Previous studies suggested STMN1 modulates depoly-
merization of interphase and mitotic microtubules based on the
transition of unphosphorylated and phosphorylated forms.50

STMN1 is ectopically expressed in a variety of cancer types.51

Silencing of STMN1 inhibits tumor growth in breast cancer cells,
primary melanomas and osteosarcomas.52,53 Excessive expression
of STMN1 causes a partial block of MIR101-mediated inhibition
of autophagy, indicating its importance as a MIR101 target.45

MIR17, 20, 93 and 106. The MIR17, 20, 93 and 106 genes,
are highly conserved between species and share the same
AAGUGC ‘seed’ region and target specificity. MIR17 and
MIR20 belong to the MIR17-92 cluster. The human MIR17-92
cluster is mapped to 13q31.3, a region amplified in diffuse B-cell
lymphomas (DLBCLs), follicular lymphomas, Burkitt’s lympho-
mas and lung carcinoma.54 The MIR17-92 cluster is markedly

elevated in B-cell lymphoma and lung cancers.55,56 MIR106B,
MIR205 and MIR93 consist of a paralog of theMIR17-92 cluster.
This miRNA cluster locates at chromosome 7q22, a region also
amplified in several cancers. In recent years, the oncogenic
properties of the MIR17-92 and MIR106-25 clusters have been
extensively investigated.55,56 These two clusters are induced via
MYC and E2F1 signals. Subsequent overexpression of these
miRNAs downregulates p21 which is required for cell cycle
arrest.57 MIR106A, located in the MIR106A-92 cluster, is the
second paralog of MIR17-92. Although the function of this
cluster remains obscure, it may also be associated with oncogenic
development at least in cancer cells.

Recently, these AAAGUGC seed-containing miRNAs were
found highly expressed in myeloid progenitors and blocked in
mature neutrophils.58 SQSTM1 (sequestosome 1/p62), a multiple
domain protein that acts as a signaling hub, was identified as
a key target for these miRNAs. SQSTM1 can interfere with
autophagy via binding to the autophagic regulator Atg8/LC3.59

SQSTM1 has also been implicated in a variety of cellular events
such as the NFkB and proteasome pathways.60 During ligand-
induced neutrophil differentiation, SQSTM1 regulates colony-
stimulating factor 3 receptor stability and mitogen-activated
protein kinase signaling. Therefore, these AAAGUGC seed-
containing miRNAs enhance the expansion of myeloid 32D cells
and primary hematopoietic progenitors by modulating SQSTM1-
regulated cellular events.58 Notably, in autophagy-defective and
apoptosis-incompetent tumor cells, metabolic stress results in
SQSTM1 aggregation, which further triggers a positive feedback
loop for the generation of reactive oxygen species, enhanced
genomic instability and tumorigenesis.61 Thus, elimination of
SQSTM1 through upregulation of AAAGUGC seed-containing
miRNAs may potentially inhibit the proliferation of these
tumor cells.

MIR204. MIR204 is located within the intron of the TRPM3
gene at 9q21.12. Its expression is downregulated in pulmonary
artery smooth muscle cells and in clinical samples, suggesting
that MIR204 plays a critical role in the etiology of human
pulmonary arterial hypertension.62 In addition, compared with
normal tissues,MIR204 is significantly lower in the NCI60 tumor
cell line panel.63 In a recent study, Xiao et al. found that hypoxia-
reoxygenation induces cellular autophagy in cardiomyocytes of
neonatal rats.64 Concurrently, MIR204 is significantly decreased
and the ratio of LC3-II/LC3-I is increased. However, it remains to
be determined whether MIR204 inhibits autophagy by directly
targeting MAP1LC3.

MIR196. MIR196 is an evolutionarily conserved miRNA
in vertebrate species. This family consists of three members
including twoMIR196A genes (MIR196A1 andMIR196A2) and
one MIR196B gene. These miRNAs appear to be expressed
from intergenic regions in HOX gene clusters and mediate the
posttranscriptional restriction of HOX gene expression during
development.65,66 Recent studies have extended the function of
MIR196 to tumorgenesis. For example, MIR196 can repress
several transcription factors and play a regulatory role in
melanoma and acute leukemia.67,68 Indeed, a number of genetic
polymorphisms in the precursor or mature MIR196 have been
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associated with susceptibility and risk in different cancer
types.69-71

Crohn disease is a complex inflammatory bowel disease, which
can affect any area of the gastrointestinal tract, from the mouth
to the anus.72 MIR196 is overexpressed in the inflammatory
intestinal epithelia of individuals with Crohn disease.73 Bioinfor-
matics analysis revealed the potential recognition sequence of
MIR196 on the coding region of the IRGM (immunity-related
GTPase family, M gene). Interestingly, a synonymous variant
polymorphism of IRGM is located within the ‘seed’ region.
Subsequent functional analysis indicated that MIR196 down-
regulates the IRGM protective variant (c.313B) but not the
risk-associated allele (c.313T).73 The involvement of IRGM in
the innate immune response is mediated via regulating auto-
phagy in response to intracellular pathogens, or xenophagy
through mitochondria.74 Therefore this is the first example
suggesting a miRNA-associated synonymous polymorphism
influencing autophagy and disease risk.

Roles of miRNAs in Crosstalk
between Autophagy and Apoptosis

Apoptosis is a controlled process of cell death occurring when cells
face irreversible stress. By apoptosis, cells eliminate the damaged
cells that may be harmful to the organism and maintain normal
cell homeostasis. Apoptosis can be induced either by various
cellular insults mediated through the mitochondria (intrinsic
pathway) or cell surface death receptors (extrinsic pathway).
Members of the BCL2 family play crucial roles in regulating
apoptosis.75 Upon induction, upstream BH3-only proteins (such
as BCL2L11/BIM, BAD and BBC3/PUMA) inactive anti-
apoptosis BCL2 family members (BCL2, MCL1, BCL2L1).
Then these anti-apoptotic family members relieve pro-apoptotic
BAX and BAK1, which are translocated to the mitochondrial
membrane and result in cytochrome c release and mitochondrial
fission. In the extrinsic apoptosis pathway, components of the
death-inducing signaling complex (DISC) including surface
receptors of the death receptor, adaptor proteins (FADD and
TRADD) and CASP8 and CASP10 are activated upon stimuli.
Both intrinsic and extrinsic apoptotic pathways converge on the
level of CASP3 activation, which in turn cleaves various intra-
cellular substrates and cause the morphological changes observed
in apoptotic cells.75

Both autophagy and apoptosis play important roles in the
development, cellular homeostasis and oncogenesis of mammals.
They may be triggered by common upstream signals, resulting in
combined autophagy and apoptosis, or be mutually exclusive.76,77

Intriguingly, several confirmed targets of autophagy-miRNAs are
also important mediators in the crossregulation between auto-
phagy and apoptosis (Fig. 2).

miRNAs can inhibit the common regulators of these two
pathways. For example, previous investigations have suggested
the physical interaction between BECN1 and proteins in the
anti-apoptotic family (BCL2, MCL1, BCL2L1) is pivotal for
the conversation between the two pathways.78-80 Under normal
conditions, BECN1 and anti-apoptotic BCL2 family members

can bind to each other to maintain cellular homeostasis. When
cells face stress conditions, BECN1 and BCL2 family members
disassociate, thereby promoting autophagy and inhibiting apop-
tosis, respectively.78-80 In addition to MIR30A, which can reduce
the cytoplasmic level of BECN1, several other miRNAs have been
demonstrated to reduce the expression level of the anti-apoptotic
family members such as BCL2 and MCL1.81,82 Thus, miRNAs
may be actively involved in the regulation of both autophagy and
apoptosis signals based on modulation of the protein-protein
interactions. SQSTM1 is another common mediator under the
control of miRNAs. Recent data suggest SQSTM1 can modulate
the polyubiquitination and aggregation of CASP8, which is
essential for the extrinsic apoptotic pathway.83 On the other
hand, SQSTM1 can negatively regulate the degradation of the
autophagic protein LC3 by the 20S proteasome.84 Therefore,
collective evidence implicates a potential mechanism of SQSTM1
underlying the interplay between the apoptosis and autophagic
pathways.

In fact, autophagy and apoptosis share many essential genes,
ranging from common players such as TP53 (p53) and ATG5 to
signal transduction mediators such as DAPK1 (death-associated
protein kinase 1) and EEF2 (eukaryotic translation elongation
factor 2).76,85,86 It would be interesting to identify whether or
not other miRNAs could coordinately regulate both apoptosis
and autophagy signals based on modulating these proteins.
Alternatively, as we summarized in Figure 2, some miRNAs can
simultaneously modulate multiple targets, which function either
in autophagy or in apoptosis. For example, MIR101 potently
targets the genes encoding the autophagy-associated proteins
RAB5A, ATG4D and STMN1; and also the anti-apoptotic
protein MCL1.42,45 During hypoxia-reoxygenation, MIR204
blocks autophagy by modulating the LC3-II protein whereas in
cholangiocarcinoma cells the exogenous expression of MIR204
negatively regulates BCL2 and facilitate chemotherapeutic drug-
triggered apoptosis.87

Working Models for the Mechanisms of miRNAs
in Autophagy and the Crosstalk with Apoptosis

Previous proteolysis analyses have suggested most miRNAs only
downregulate their individual target moderately.88,89 However,
some miRNAs can function as molecular on-off switches to
completely shut down a cellular process. The trick perhaps lies
in the multitarget characteristics of miRNAs. Since one single
miRNA can concurrently target multiple genes, the multiple
autophagy-related proteins that control different steps of auto-
phagy may be regulated by the same miRNAs (Fig. 3A). Indeed,
in the above MIR101 example, this miRNA represses three
important autophagy-associated genes. Importantly, overexpres-
sion of STMN1 can only partially rescue MIR101-mediated
autophagic inhibition.45 This result indicates that other MIR101
targets including RAB5A and ATG4D still act in autophagy, and
further strengthens the point that a single miRNA can take
many routes to modulate autophagy.

Alternatively, several coregulated miRNAs can modulate the
same or different autophagic steps in a cooperative manner,
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although each miRNA regulates its specific target (Fig. 3A). This
situation is illustrated in the MIR17 seed family example. MIR17,
20, 93 and 106, which all contain an AAAGUGC seed region, are
expressed in hematopoietic cells at different stages of myeloid
development.58 Experiments demonstrate that they all regulate
the same target, SQSTM1.58 In fact, this cooperation may not be
restricted to a set of miRNAs with a similar seed. For example,
previously we and others independently found a functional link
between members within the same miRNA cluster.4,90 Since
mammalian miRNAs with a proximal locus tend to share the
same transcriptional unit, upon stimulation, different members
of the same miRNA cluster can be concurrently induced or
repressed, thus controlling a biological process in a cooperative
manner.

Since autophagy and apoptosis share some essential mediators,
the direct targeting of the common proteins by miRNAs will
ultimately affect signal transduction in both pathways (Fig. 2). In
addition, we speculate that transcripts involved in autophagy and
apoptosis can indirectly modulate each other by competing for
common miRNA binding sites. As indicated in the schema shown
in Figure 3B, when autophagy-related proteins are repressed,

more miRNA molecules are liberated into the free miRNA pool
and further enter into the apoptotic pathway to target apoptosis-
related proteins. By contrast, the accumulation of genes encoding
autophagy-related proteins will result in the binding of more
miRNA molecules, thereby leading to fewer miRNAs being free
to bind apoptosis-related transcripts with similar binding sites.
Thus, the miRNAs maintain regular and intensive crosstalk
between autophagy and apoptosis.

This miRNA-mediated mutual regulation between transcripts
with similar binding sites has great implications in cancer biology.
Poliseno et al. found that PTENP1, the pseudogene of PTEN,
possesses well-conserved miRNA binding sites and is biologically
active since it can compete with PTEN for miRNA binding.
Therefore PTENP1 modulates the cellular levels of PTEN and
exerts a tumor suppressor role.91 Since this mechanism depends
only on the competition between the 3'UTRs, it can be expected
that it is not limited to this gene and its pseudogene. Indeed, the
same group of researchers discovered that there are a network of
competing endogenous mRNAs that in a mutually reciprocal
manner center on PTEN.92,93 Recently, a set of investigations
has extend this concept to long-coding RNAs and to all

Figure 3. Proposed models that miRNAs regulate the autophagy and the balance between autophagy and apoptosis. (A) An illustration of miRNA
regulation of autophagy. A single miRNA can modulate multiple targets in different steps of autophagy. Alternatively, several co-regulated miRNAs
can modulate the different steps in a cooperative manner although each miRNA regulates its specific target. (B) A working model for miRNA-mediated
crosstalk between autophagy and apoptosis. Transcripts involved in different cellular processes but with common miRNA binding sites can modulate
each other by competing for miRNA binding. For example, overexpression of autophagy-related genes will result in binding of more miRNA molecules,
thereby leading to fewer miRNA molecules free to bind to apoptosis-related transcripts, which share similar miRNA binding sites. Thus, the miRNA-
medicated conversation between autophagy and apoptosis is regular and intensive.
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protein-coding mRNAs.94,95 Based on the shared miRNA binding
sites, protein-coding genes within the autophagic and apoptotic
pathways can maintain cellular homeostasis and collectively
decide cell fate. Deregulation of this miRNA-based “housekeep-
ing” mechanism may contribute to disease progression.

Conclusions and Perspectives

Over the past few decades, tremendous interest has focused on
understanding the regulatory role of miRNAs under various
physiological and disease conditions. In this review, we
summarized the recent findings concerning miRNAs involved
in autophagy. Ever since the first autophagy-associated miRNA,
MIR30A, was discovered in 2009, our knowledge of miRNAs
in autophagy has accumulated rapidly. However, the under-
standing of this field is still in its infancy. For example, direct
targeting of autophagy-related genes has only been experimentally
shown in a few cases at present.16,45,58,73 Since the identification
of gene products that participate in autophagy is continually
expanding,96 it is likely that other autophagy-associated miRNAs
will be found in the near future. Besides, it is important to
develop efficient research tools for manipulating autophagy.
We propose that miRNAs may be used to block autophagy-
associated genes at both the mRNA and protein levels. As seen
in the MIR101 example, one single miRNA is enough to block
both basal and rapamycin-induced autophagy via targeting
multiple autophagy-associated genes.

miRNAs also represent an additional layer in the intricate
interconnection between autophagy and apoptosis. As we dis-
cussed above, miRNAs may target the common regulators for
both processes or simultaneously modulate multiple targets

essential to each pathway. Recent developments have further
indicated that miRNAs may work as a general mediator between
protein-coding genes based on shared binding sites.97 Therefore,
multiple miRNAs together with their multiple downstream
genes form a complicated regulation network. Use of systems
level analysis, such as the efforts made in analyzing transcrip-
tional and miRNA-based post-transcriptional regulation in the
autophagy-lysosomal pathway, will help to elucidate the under-
lying connection across cellular processes.98 In addition, a
detailed deciphering of the crucial role of miRNAs in the
interplay between autophagy and apoptosis have profound
clinical implications since the evasion of cell death underlies
tumorigenesis and represents a major obstacle to successful
therapies.99 Therefore, such efforts are imperative to improve
our understanding of miRNAs in tumorigenesis and facilitate
the design of appropriate therapies targeting this novel group of
molecules.
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