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Introduction

DNA methylation is mitotically inheritable and, while stable, 
greater differences in DNA methylation patterns have been 
observed in older compared with younger monozygotic twins, 
suggesting that endogenous and exogenous changes across the 
life course may influence these changes.1 DNA methylation lev-
els have also been found to be associated with selected environ-
mental exposures.2 Global DNA methylation, also referred to as 
genomic DNA methylation, is the overall content of 5-methyl 
cytosine (5-mC) in the genome. Accumulating evidence suggests 
that global levels of DNA methylation are lower in tumor tissue 
when compared with adjacent tissue, indicating a significant role 
of DNA hypomethylation in cancer progression.3-6

There are two main mechanisms through which changes in 
DNA methylation relate to cancer initiation and progression.7 
One is the silencing of expression of tumor suppressor genes by 
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increased methylation of their promoter regions. The other one 
is general hypomethylation of the genome that leads to genomic 
instability by activation of transposable elements, viral sequences 
and genes. Genomic instability is an established hallmark of can-
cer progression and is characterized by increased mutation rates 
due to specific events such as the mutation of important gate-
keeper genes and genome-wide events such as large chromosomal 
rearrangements.8

Increasingly, epidemiologic studies are measuring global levels 
of DNA methylation in peripheral tissue, such as blood. The lit-
erature is constantly evolving, but the results of many early stud-
ies suggest that lower global DNA methylation in white blood 
cells (WBC) is associated with many different cancers includ-
ing colorectal, bladder, gastric, head and neck, lung and breast 
cancer.9 Most epidemiologic studies of global methylation have 
focused on measuring overall 5-mC content or DNA methylation 
levels in retrotransposable elements such as LINE-1 and Alu.10-17 
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associations of global DNA methylation and environmental 
exposures or disease outcomes.24-32 These assays differ by targeted 
genomic regions and have different methodological advantages 
and limitations. The [3H]-methyl acceptance assay is variable and 
requires much time and sample manipulation; however, it covers 
the whole genome. The LUMA assay is a surrogate measure of 
overall 5-mC content. It provides information on DNA methyla-
tion at 5'-CCGG-3' sequences throughout the genome. Although 
the coverage represents a small fraction of all possible CpG sites, 
the assay is easy to perform, which makes it amenable to be used 
in epidemiologic studies. Here, we applied both methodologies to 
investigate the association between biomarkers of DNA methyla-
tion and the risk of breast cancer using a sibling-based design in 
women participating in the New York site of the Breast Cancer 
Family Registry (BCFR). This is a study population of high-risk 
breast cancer families, a large portion of which have no known 
genetic risk mutations in BRCA1 or BRCA2.

Results

We report the overall demographic characteristics of the study 
participants in Table 1. Measurements of DNA methylation levels 
by the [3H]-methyl acceptance assay showed that affected sisters 
had a mean DPM level that was higher than unaffected sisters 
by 9,081 DPM/mg, indicating lower overall levels of DNA meth-
ylation. LUMA DNA methylation levels were similar between 
affected and unaffected sisters, 67.1% vs. 67.5% respectively.

We observed modest correlations between sisters in global 
DNA methylation levels for both assays (range -0.08–0.24) 
(Table 2). For the [3H]-methyl acceptance assay, we observed sta-
tistically significant Spearman Correlation Coefficients for WBC 
and pooled sources of DNA (0.24, p = 0.006; 0.19, p = 0.006, 
respectively), but not for granulocytes (-0.08, p = 0.51). For the 
LUMA assay, we observed statistically significant Spearman 
Correlation Coefficients for the pooled source (0.16, p = 0.01).

Table 3 reports the associations between DNA methylation 
and breast cancer (by assay and by quartile and continuous mea-
sures). As measured by the [3H]-methyl acceptance assay, women 
who had lower DNA methylation had higher odds of breast can-
cer than women who had higher levels of methylation (OR = 1.81, 
95% CI = 0.99–3.32 for the quartile with the lowest level of meth-
ylation compared with the highest for the pooled sources). We 
also found an elevated, but not statistically significant, association 
with breast cancer for lower DNA methylation in granulocytes 
(OR = 2.42, 95% CI = 0.86–6.83) and WBC (OR = 1.51, 95% 
CI = 0.68–3.38). When we examined DPM/mg as a continuous 
variable, we observed a 50% increased relative association with 
increasing DPM/mg in total WBC DNA (OR per 1 unit increase 
in the natural logarithm of DPM/mg = 1.49, 95% CI = 1.03–
2.16). When we pooled the two sources of DNA, a 1 unit increase 
in the log of DPM/mg was associated with a 34% increase in the 
relative association with breast cancer (95% CI = 1.03–1.74).

Table 3 also reports our results for the LUMA assay. As  
Table 3 summarizes, we did not find any consistent pattern with 
the levels of DNA methylation measured by LUMA in granulo-
cytes, total WBC or when both sources are pooled together.

Some of these early studies considered LINE-1 and Alu as sur-
rogate epigenetic measures of global DNA methylation levels 
because these elements are the most abundant retrotransposons 
in the human genome and their silencing is regulated by epigen-
etic mechanisms.18 However, further research has indicated that 
DNA methylation levels at these sequences are not correlated with 
global 5-mC content11,19 and that these elements may be differ-
entially associated with disease outcomes and lifestyle factors.9,20 
There are currently several different methods used to measure 
global DNA methylation in epidemiologic studies and new assays 
for large samples are under development.9,20 To be relevant for 
human population studies, the specified assay needs to yield con-
sistent results and be high-throughput in addition to providing an 
accurate measurement of genomic 5-mC content. Based on these 
criteria, it is not clear which of the available assays are most appro-
priate for population research.

For this study, we selected two different measures of global 
DNA methylation, the overall incorporation of labeled methyl 
groups by the [3H]-methyl acceptance assay and the use of meth-
ylation specific enzymes to differentiate between methylated and 
non-methylated DNA by the luminometric methylation assay 
(LUMA).21-23 Both assays have been used in studies investigating 

Table 1. Demographics, mutation status and DNA methylation levels of 
the study population, New York site of the BcFR

 
Affected sisters Unaffected sisters

N = 273 N = 335

  N 
Mean (SD) 

or % 
N 

Mean (SD) 
or %

Age        
continuous 273 49.6 (11.4) 335 48.2 (11.2)

Race‡        

White 169 62.6% 189 56.4%

hispanic 67 24.8% 102 30.4%

Other 34 12.6% 44 13.1%

Smoking status        

current 15 5.5% 41 12.2%

Former 96 35.2% 101 30.1%

Never 162 59.3% 193 57.6%

BRCA1 mutation        

positive 22 8.1% 13 3.9%

Negative 251 91.9% 322 96.1%

BRCA2 mutation        

positive 12 4.4% 9 2.7%

Negative 261 95.6% 326 97.3%

[3H]-methyl acceptance 
assay (DPM/μg)

       

continuous 233
97111 

(76348)
295

88030 
(70841)

LUMA (% DNA meth)        

continuous 263  67.1 (7.6) 321 67.5 (7.3)
‡Race information was not available for three unaffected subjects.
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cancer in a high-risk population. We found that sisters with 
breast cancer had lower levels of DNA methylation measured by 
the [3H]-methyl acceptance assay than their unaffected sisters. A 
lower level of global DNA methylation might indicate increased 
genomic instability, which in turn could lead to increased can-
cer susceptibility. Similar results have been observed in previous 
studies of WBC with lower levels of global DNA methylation and 
at repetitive sequences observed in cancer cases compared with 
controls.10-17 Similarly, in a prospective study, Zhu et al. showed 
that lower DNA methylation of the repetitive element LINE-1 
was indicative of increased overall cancer incidence and that 
lower DNA methylation levels at LINE-1 and Alu were related to 
increased cancer mortality.33 Our finding is consistent with the 
other study of breast cancer and DNA methylation levels, which 
found that unrelated cases had lower WBC DNA 5-mC content 
than controls.11

We observed some differences across DNA source for 
[3H]-methyl acceptance assay associations with breast cancer. 

Figure 1 shows the results stratified by time since diagnosis for 
the [3H]-methyl acceptance assay. There was no overall associa-
tion between DNA methylation level and breast cancer for those 
individuals diagnosed within two years of sample collection (OR 
= 1.29 for unit change in the log of DPM/mg, 95% CI = 0.57–
2.90 for WBC; OR = 0.92, 95% CI = 0.57–1.48 for granulocytes; 
OR = 1.03, 95% CI = 0.69–1.54 for pooled sources). There were 
positive associations with breast cancer in the subgroup of sisters 
whose blood was collected more than two years after diagnosis 
(OR = 1.58 for unit change in the log of DPM/mg, 95% CI = 
1.03–2.42 for WBC; and OR = 1.61, 95% CI = 1.13–2.30 for 
pooled sources).

Discussion

We used two different global methylation assays that do not rep-
resent specific coding genomic regions to investigate directly the 
association between global DNA methylation levels and breast 

Table 2. correlation of the global DNA methylation measures between sisters discordant for breast cancer by blood cell type, New York site of the BcFR

  Granulocytes Total white blood cells Pooled source

  N r p value N r p value N r p value

[3H]-methyl acceptance assay (DPM/μg) 64 -0.08 0.51 134 0.24 0.006 198 0.19 0.006

LUMA (% DNA methylation) 80 0.21 0.06 155 0.13 0.10 235 0.16 0.01

Table 3. conditional logistic regression analysis of global DNA methylation biomarkers and breast cancer risk (pooled and by source), New York site of 
the BcFR

DNA methylation
Odds ratios and 95% confidence intervals for overall pooled sample  

and stratified by sourcea

[3H]-methyl 
acceptance 

assayb

Pooled (N = 458) Granulocytes (N = 156) Total WBC (N = 302)

OR 95% cI OR 95% cI OR 95% cI

Quartile  
(DpM/μg DNA)

Q4 (> 115215); lower  
overall methylation

1.81 0.99–3.32 2.42 0.86–6.83 1.51 0.68–3.38

Q3 (68940–115215) 1.81 1.02–3.20 1.34 0.46–3.87 1.76 0.84–3.67

Q2 (41692–68940) 0.82 0.46–1.46 0.91 0.42–2.00 0.67 0.28–1.61

Q1 (≤ 41692); higher  
overall methylation 

1 1 1

continuous (log 
DpM/μg DNA)

1 unit change, less  
methylation

1.34 1.03–1.74 1.18 0.82–1.70 1.49 1.03–2.16

LUMAc

Pooled (N = 551) Granulocytes (N = 201) Total WBC (N = 350)

Quartile  
(DNA meth %)

OR 95% cI OR 95% cI OR 95% cI

Q1 (≤ 62.9), lower overall 
methylation

0.92 0.53–1.59 1.18 0.43–3.24 0.8 0.41–1.55

Q2 (62.9–68.0) 0.71 0.40–1.24 1.12 0.39–3.21 0.58 0.29–1.14

Q3 (68.0–73.0) 1.26 0.75–2.12 1.9 0.79–4.55 0.98 0.51–1.91

Q4 (> 73.0); higher overall 
methylation

1 1 1

continuous
1 unit change, less  

methylation
1.00 0.97–1.02 1.02 0.97–1.07 0.99 0.96–1.02

aOR, odds ratio; 95% cI = 95% confidence intervals; adjusted for age at blood draw and smoking status. bhigher values on assay mean lower DNA meth-
ylation. cLower values on assay mean lower DNA methylation.
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the bacterial methyltransferase SssI. The instability of SAM and 
the variable enzymatic activity of the SssI enzyme can affect the 
efficiency of the reaction. Additionally, this assay is very depen-
dent on good genomic DNA quantification, which is hard to 
carry out in an easy and consistent manner.35 However, despite 
these limitations, our results suggest that overall coverage of the 
genome is important in understanding associations between 
global DNA methylation levels and cancer.

We have also observed a significant association between a 
decrease in WBC DNA methylation of the non-tandem repeat 
Sat2 and breast cancer.43 This finding and the results of the cur-
rent study, might suggest that decreased global DNA methyla-
tion represents changes in Sat2 DNA methylation levels. Repeat 
sequence or element DNA hypomethylation might account largely 
for the contribution of the activation of these elements to overall 
genomic instability. Studies investigating surrogate markers of 
global DNA methylation, such as levels in sequences of transpo-
son-derived elements that are abundantly distributed throughout 
the genome, have also found associations between cancer and 
lower levels of DNA methylation.10,12,13,17 We found no signifi-
cant correlation between DNA methylation levels of the tandem 
repeat Sat2 and the markers measured here. The Spearman cor-
relation coefficients for Sat2 and [3H]-methyl acceptance DNA 
methylation levels, and LUMA were -0.03 and 0.00, respectively. 
These results suggest that the decrease in WBC DNA methyla-
tion observed here is the result of overall genomic levels and not 
of specific genomic sequences such as repeated elements. Our 

However, both DNA sources, granulocytes and total WBC, had 
larger estimates for the higher quartiles, indicating stronger asso-
ciations with lower overall global DNA methylation. We have 
previously reported differences in overall levels of global DNA 
methylation across cell type suggesting that association with dis-
ease may be assay- and cell type-specific.19 Epigenetic marks are 
tissue specific;34 however, granulocytes are a major fraction of 
WBC. It is not completely understood how much each blood cell 
type contributes to the epigenetic profile of WBC. Further work 
and consideration to cell type will be important in interpreting 
work from different epidemiologic studies.

We did not observe any consistent findings with the LUMA 
assay and breast cancer. The different results obtained by the 
two assays highlight the importance of considering coverage of 
the whole genome in determining relevant associations of DNA 
methylation level and breast carcinogenesis. The assays used in 
this study target different parts of the genome; we only found 
associations with the assay that has full genomic coverage, the 
[3H]-methyl acceptance assay. Previous results showed that mea-
sures from the same source of [3H]-methyl acceptance assay and 
LUMA do not significantly correlate for the same individual, 
supporting the conclusion that they are identifying different sets 
of genomic information.19

All the assays used to date to determine global DNA methyla-
tion levels have limitations when applied to epidemiologic stud-
ies. The main limitations of the [3H]-methyl acceptance assay are 
related to the reagents used, S-adenosyl methionine (SAM) and 

Figure 1. Global DNA methylation measured by [3h]-methyl acceptance assay and breast cancer risk (pooled and by source), for specimens collected 
less than two years and more than two years after breast cancer diagnosis in the New York site of the BcFR. The OR is per unit change in log DpM/μg 
DNA.
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available. For a subset of sibling sets, we isolated granulocytes 
using a Ficoll-density gradient, while for the remaining partici-
pants we collected the total white blood cells by simple centrif-
ugation. DNA was extracted from either source depending on 
which blood cell type was available for each subject using the 
salting-out method; concentration and quality was determined 
by absorbance at 260 and 280 nm using Nanodrop technology. 
We conducted all laboratory assays blinded to case status and 
epidemiological data.

[3H]-methyl acceptance assay. We used the [3H]-methyl 
acceptance assay as described by Balaghi and Wagner21 and Pilsner 
et al.28 In this assay, the DNA is incubated with [3H] S-adenosyl 
methionine in the presence of the SssI prokaryotic methylase 
enzyme, which indiscriminately methylates all unmethylated 
CpG sequences. Therefore, in this assay the ability to incorpo-
rate [3H] methyl groups in vitro is inversely related to endog-
enous DNA methylation. Briefly, 200 ng of DNA were incubated 
with 3 U of SssI methylase (New England Biolabs); 3.8 μmol/L  
(1.1 μCi) [3H]-labeled S-adenosyl methionine (Perklin-Elmer); 
and EDTA, DTT and Tris-HCL (pH 8.2) in a 30 μL mixture 
for 1 h at 37°C. The reaction was terminated on ice and 15 μL of 
the reaction mixture were applied onto a Whatman DE81 filter 
paper. The filter was washed on a vacuum filtration apparatus 
three times with 5 mL of 0.5 mol/L sodium phosphate buffer  
(pH 8.0), followed by 2 mL each of 70% and 100% ethanol. 
Dried filters were each placed in a vial with 5 mL of scintillation 
fluid (Scintisafe, Fisher), analyzed by a Packard scintillation coun-
ter and a measurement of disintegrations per minute (DPM) was 
obtained for each sample. Samples were processed in duplicate. 
Universal methylated and unmethylated DNA was used as nega-
tive and positive controls. DNA was quantified using PicoGreen 
double-strand DNA quantification reagent (Molecular Probes). 
Results of this assay are expressed as DPM per μg of DNA. A 
pooled sample of DNA from five controls was used as a quality 
control and analyzed with each plate of test samples to control 
for batch effects. Intra- and inter-assay CVs were 2.5% and 5.9%, 
respectively.

Luminometric methylation assay (LUMA). The luminomet-
ric methylation assay was initially developed by Karimi et al.22,23 
The assay is based on the ability of two isoschizomers to digest 
sequences differentially depending on the methylation status 
of the CpG site contained within the sequence. Isoschizomers 
MspI and HpaII target the same sequence, 5'-CCGG-3'; how-
ever, MspI will digest all CCGG sites and HpaII digestions will 
be blocked by the presence of a 5-mC in the second position. 
Samples are digested with one isoschizomer and EcoRI. EcoRI 
provides the reference for the DNA amount. Pyrosequencing is 
used to sequence the overhangs left by both enzymes. We ran 
a modified version of the original assay as reported in reference 
29. In brief, 200 ng of genomic DNA were cleaved at 37°C over-
night with HpaII/EcoRI or MspI/EcoRI in two separate 10 μl 
reactions containing 33 mM TRIS-acetate, 10 mM Mg-acetate,  
66 mM K-acetate pH 7.9, 0.1 mg/ml BSA and 5 units of each 
restriction enzyme. Ten μl of annealing buffer (20 mM TRIS-
acetate, 2 mM Mg-acetate pH 7.6) were mixed with the digested 
samples and placed in a PyroMark Q24 system. The dispensation 

findings indicate that in breast carcinogenesis overall genomic 
demethylation might increase disease susceptibility by alternative 
mechanisms that do not only include Sat2 tandem repeat activa-
tion. We did not assess genomic instability directly; therefore, 
future studies should characterize the separate contributions of 
Sat2 and global DNA methylation to breast cancer.

Our study specifically focuses on differences within families 
using sister sets from a registry of high-risk breast cancer families, 
a small percentage of which carry known genetic mutations in 
BRCA1 or BRCA2. Previous studies on global DNA methylation 
have focused on unrelated individuals. An additional strength is 
the sibling design, which allows us to examine these biomarkers 
within families and, through the design, control for fixed family-
level effects that may confound the association between the mark-
ers and breast cancer. We were also able to use the same source 
of DNA within sisters so the source of DNA cannot explain our 
within-family findings.

The main limitation of our study is that the bloods were col-
lected after diagnosis. Most epidemiologic studies of cancer and 
DNA methylation have also used this retrospective approach. 
Although our findings need to be replicated in prospective studies, 
we did observe similar elevated associations for the [3H]-methyl 
acceptance assay in WBC regardless of years since diagnosis. The 
results were stronger, and statistically significant, for those indi-
viduals at least two years post diagnosis, which suggests that the 
effect observed in our study is present after treatment has ended. 
Nevertheless, our study cannot address the effect current disease 
might have on DNA methylation levels in peripheral tissue.

Although the detailed mechanisms through which decreases 
in peripheral tissue global DNA methylation leads to increased 
cancer risk are not completely understood, possible mechanisms 
might include an increase in genomic instability resulting from 
lower global DNA methylation levels. Our study adds to the 
growing evidence that DNA methylation measured in peripheral 
blood may be an important biomarker even in high-risk families. 
Prospective studies will have to be performed to assess the tem-
porality of this association and to better understand the role of 
epigenetic markers in blood and breast cancer risk.

Materials and Methods

Study participants and specimens. The New York site of the 
BCFR recruited high-risk breast and/or ovarian cancer families 
from clinical and community settings within the metropolitan 
New York area (for details see refs. 36–41). All family members 
who participated in the Registry completed an epidemiologic 
questionnaire to provide information on demographics, eth-
nicity, smoking, alcohol consumption, reproductive history, 
hormone use, weight, height and physical activity and a self-
administered food frequency questionnaire. We collected blood 
from participants at the time of recruitment to permit the isola-
tion of plasma and WBC fractions. The study was approved by 
Columbia University’s Institutional Review Board.

For this study, we selected female-only sibling sets including 
at least one sister affected with breast cancer (n = 273) and her 
unaffected sister(s) (n = 335) from whom blood specimens were 
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kg/m2) and smoking status. We also evaluated the impact of 
further adjustment by other breast cancer risk factors includ-
ing age at menarche, age at first pregnancy, oral contraceptive 
use, hormone replacement therapy use, alcohol intake, BRCA1/2 
mutation status and menopausal status. We assessed confound-
ing based on whether inclusion of the variable was associated 
with at least a 10% change in the association between DNA 
methylation and breast cancer compared with the age-adjusted 
model, or whether inclusion of the variable changed the statisti-
cal significance of the association between DNA methylation and 
breast cancer risk. Only age and smoking status empirically con-
founded our estimates so these were the only variables we kept in 
the final models. Because blood samples were taken after breast 
cancer diagnosis, we stratified our final models by whether the 
blood sample was drawn within 2 y of diagnosis or more than  
2 y after diagnosis. We performed all analyses using SAS soft-
ware 9.2 (SAS Institute). All statistical tests were based on 95% 
confidence limits.
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order used for sequencing was: GTG TCA CAG TGT. For calcu-
lations, the peak heights of dispensations 9 through 12 were used. 
Samples with peaks lower than 3, the cut-off value for DNA qual-
ity, were discarded. Samples with values higher than 3 in the first 
two dispensations were indicative of low DNA quality, possibly 
DNA degradation, and were also discarded. Percentage of DNA 
methylation was expressed as [1 - (HpaII/EcoRIΣG/ΣT)/(MspI/
EcoRIΣG/ΣT)] × 100. DNA extracted from a lymphoblastoid 
cell line established in our laboratory was run in every plate to 
assess batch and plate effects. The inter- and intra-assay CVs were 
1.5% and 4.6%, respectively.

Statistical analysis. We used two measures of global DNA 
methylation, the [3H]-methyl acceptance assay, for which results 
are given in DPM/mg, and the LUMA assay, for which results are 
reported as percent DNA methylation; higher values from the 
[3H]-methyl acceptance assay in DPM/mg indicate lower global 
DNA methylation levels. We categorized each DNA methylation 
marker by quartiles based on the distribution of the marker in 
the unaffected sisters. We also modeled DNA methylation as a 
continuous variable. We have previously reported differences in 
DNA methylation levels by source of WBC DNA,19 so we per-
formed all statistical analyses stratified by source of DNA (granu-
locytes vs. total WBC) as well as pooled.

We examined the correlation of each marker between sisters 
discordant on breast cancer status using Spearman’s correlation 
coefficient. We used conditional logistic regression to estimate 
associations between DNA methylation and breast cancer within 
sister sets; by design, all fixed-level family effects are eliminated 
by conditioning on family set number. In addition, we used gen-
eralized estimating equations (GEE) to estimate the overall aver-
age association between the markers and breast cancer.42 Both 
conditional logistic and GEE approaches led to similar infer-
ences, so we present only the former.

We modeled the association adjusted for age, and then assessed 
confounding of the association for both markers. Potential con-
founders included age at blood draw, BMI (< 25 kg/m2 vs. ≥ 25 
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