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Green [J. Acoust. Soc. Am. 87, 2662–2674 (1990)] suggested an efficient, maximum-likelihood-

based approach for adaptively estimating thresholds. Such procedures determine the signal strength

on each trial by first identifying the most likely psychometric functions among the pre-proposed

alternatives based on responses from previous trials, and then finding the signal strength at the

“sweet point” on that most likely function. The sweet point is the point on the psychometric func-

tion that is associated with the minimum expected variance. Here, that procedure is extended to

reduce poor estimates that result from lapses in attention. The sweet points for the threshold, slope,

and lapse parameters of a transformed logistic psychometric function are derived. In addition, alter-

native stimulus placement algorithms are considered. The result is a relatively fast and robust esti-

mation of a three-parameter psychometric function.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4733540]
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I. INTRODUCTION

In psychoacoustics, listeners’ performance on a task is

often quantified by the psychometric function, the proportion

of correct responses as a function of signal strength. For

example, for a pure-tone detection task evaluated using an

n-interval, m-alternative forced choice procedure, as the

sound pressure level of the signal tone increases, listeners’

percent correct will increase monotonically from chance to

100% correct. The threshold is defined at some point along

the psychometric function (e.g., the 75%-correct point). The

method of constant stimuli (e.g., Engen, 1971) is often used

to estimate the psychometric function, where stimuli with

preset signal strengths are presented repeatedly in random

orders. Percent correct values can then be calculated at these

signal strengths and used to fit models of the psychometric

function to the data (Wichmann and Hill, 2001a,b).

A common model of the psychometric function is a

transformed logistic function

pðx;/Þ ¼ cþ ð1� c� kÞ=
�

1þ e�bðx�aÞ
�
; (1)

where x is the signal strength and / is the parameter vector

{a, b, c, k}. For this psychometric function, a describes the

horizontal position of the function, b describes the slope of

the function, c defines the lower bound of the function and

the proportion correct at chance (e.g., 0.5 for a 2-alternative

forced choice task and 0.33 for a 3-alternative forced choice

task), and k is the distance between the upper asymptote of

the function and 100% correct. A non-zero lapse parameter,

k, indicates that the listener failed to attend to the task on

some proportion of trials, and so the highest performance

levels achieved are (100 – k)% correct.

Although frequently used, the method of constant stim-

uli might not be the most efficient procedure for estimating

psychometric functions in all situations (e.g., Leek, 2001).

There are several disadvantages of having inefficient estima-

tion procedures. For example, time consuming experimental

procedures can undermine the usefulness of an auditory task

to be implemented as a diagnostic tool in the hearing clinic.

Also, for subject populations such as laboratory animals or

young children, the behavioral psychometric functions can

be very shallow (e.g., Nelson and Kiester, 1978; Allen and

Wightman, 1994; Buss et al., 2009). This could mean a very

large number of trials would have to be collected to accu-

rately estimate the psychometric function, despite the fact

that these subjects often have only limited time available for

the experiment. To provide a third example, for research

focused on developmental aspects of the auditory system

and the effects of learning, the time required to obtain an

estimate of the psychometric function must be minimized to

ensure the temporal resolution of the assessment (e.g., Rosen

et al., 2010; Sarro et al., 2011).

In an effort to provide fast and accurate estimation of

the thresholds, Green and colleagues (Green, 1990, 1993,

1995; Gu and Green, 1994) described a maximum-likelihood

procedure that optimized the placement of the signal strength

adaptively based on responses collected from previous trials.

Briefly, using the signal strengths previously tested, and the

listeners’ responses, the most likely among candidate psy-

chometric functions is chosen. Then, based on that function,

the signal strength for the next trial is chosen so as to mini-

mize the expected variance in the threshold estimate (the

sweet point).1 This procedure, coupled with yes/no psycho-

physical methods, has been adopted for the study of auditory

perception in hearing-impaired listeners (e.g., He et al.,
1998; Florentine et al., 2000; Dubno and Ahlstrom, 2001) as
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well as young children (e.g., Wright et al., 1997). Grassi and

Soranzo (2009) provide an implementation of this procedure

using MATLAB (The MathWorks, Inc., Natick, MA).

While the maximum-likelihood procedure is theoreti-

cally sound, from a pragmatic perspective, concerns arise

regarding the resulting patterns of signal placement (Leek

et al., 2000) and the reliability of the estimated thresholds.

One concern is that the signal strength varies dramatically

from trial to trial at the outset of each track (the sequence of

trials at signal strengths provided by the procedure). Under

these circumstances, it may be difficult for some listeners to

comprehend the task and maintain consistent decision crite-

ria. Second, if the candidate psychometric functions are quite

different from the true psychometric functions, or if the can-

didate functions are not discernible from one another on the

basis of just the threshold signal levels, errors in the thresh-

old estimate can occur. This is particularly true if the psy-

chometric function reflects a process with frequent lapses of

attention (k> 0; Green, 1995).

Subsequent to this initial work, solutions for the

maximum-likelihood procedure in which the slope of the

psychometric function is also estimated have been devel-

oped (King-Smith and Rose, 1997; Brand and Kohlmeier,

2002). King-Smith and Rose examined the choice of signal

strengths for efficient estimation of the slope of the psycho-

metric function while Brand and Kohlmeier recommended

a “compromise” sampling strategy at two points of the psy-

chometric function to provide a balance between the esti-

mation of both the slope and the threshold parameters. In

the present study, the maximum-likelihood procedure was

further extended to estimate the midpoint (threshold, a), the

slope (b), and the lapse rate (k) for a psychometric function

of the form shown in Eq. (1); i.e., for each of these three pa-

rameters, the sweet points are estimated assuming that c is

known exactly. In Sec. II, we first provide a brief review of

the maximum-likelihood procedure and the reasons the

sweet point is important for efficient parameter estimation.

Second, the solution for the sweet points associated with

the parameters a, b, and k are derived, and their properties

are explored in Sec. III. Third, in Sec. IV, potential strat-

egies for stimulus placement among the sweet points are

considered in order to best estimate all parameters (i.e., the

psychometric function) rather than a single parameter

(e.g., a). Finally, this extended procedure is compared with

the original single-parameter procedure through simula-

tions in Sec. V.

II. MAXIMUM-LIKELIHOOD PROCEDURE

Assuming a logistic model [Eq. (1)], the single-

parameter maximum-likelihood procedure involves the

following steps: First, an array of psychometric functions

is proposed spanning a range of a values. The other pa-

rameters of the logistic function are preset by the experi-

menter and are fixed. The experiment begins with a

signal strength at some initial value. Then, the signal

strength is updated after obtaining each response from

the listener. After the nth trial, the likelihood that each

of the candidate psychometric functions (different values

of the parameter a) is the true function is evaluated based

on all previously collected responses (r1, r2,…, rn). Let

r¼ 1 indicate a correct response, and r¼ 0 an incorrect

response. Then the likelihood function L(a) is propor-

tional to

LðaÞ ¼
Yn

i¼1

½pðxi; aÞ�ri ½1� pðxi � aÞ�1�ri ; (2)

where p is the probability of a correct response.

Among the candidates values of a, the a that yields the

largest L(a) corresponds to the current maximum-likelihood

estimate of the psychometric function. The signal strength

on the (nþ 1)th trial is determined as the signal strength at a

certain fixed proportion-correct point on the current psycho-

metric function estimate. After a number of trials, the a esti-

mate begins to converge, and the track terminates either

when a fixed number of trials has been completed, or when

the estimate of a or x is known to within a predefined

tolerance.

As demonstrated by Green (1990), there is an optimal

proportion-correct point on the psychometric function, the

sweet point, which should be used with the maximum-

likelihood procedure. The sweet point is calculated as the

point on the psychometric function that is associated with

the minimum expected variance. This point is the optimal

sampling point on the function if the primary interest is to

accurately estimate thresholds. Presenting the stimulus at the

sweet point of the estimated psychometric function on each

trial minimizes the variability in the threshold estimate. If it

is assumed that the psychometric function can be treated as

locally linear for each x, the ratio between the expected var-

iances of x and p(x, /), r2
x , and r2

p, can be approximated as

(e.g., Green, 1990)

r2
p

r2
x

¼ dpðx;/Þ
dx

� �2

: (3)

Because the observed response on each trial is a binomial

variable, the expected variance of p(x, /)(r2
p) for a given x is

proportional to p(x, /)[1 � p(x, /)]. Therefore, the signal

strength x on the next trial is selected to minimize the vari-

ability in x

r2
x ¼ pðx;/Þ½1� pðx;/Þ�

. dpðx;/Þ
dx

� �2

¼
e2bðx�aÞ

�
1þ e�bðx�aÞ

�4

1� c� 1� c� k

1þ e�bðx�aÞ

� �
cþ 1� c� k

1þ e�bðx�aÞ

� �

b2ð1� c� kÞ2
: (4)
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Green (1993) provided an analytical solution of the sweet

point px, the percent correct point on the psychometric func-

tion where r2
x is minimal with k¼ 0

px ¼
2cþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8c
p

3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8c
p : (5)

For the cases where lapses of attention (k) are non-zero, nu-

merical solutions of the sweet point can be obtained from

Eq. (4).

Using the procedure described above, the signal strength

at the sweet point can be reliably estimated, but the estimate

of the psychometric function itself may not be accurate if the

slopes of the candidate psychometric functions, associated

with the parameter b, deviate from the true value. One might

expand the pool of proposed psychometric functions to

include not only a range of a’s but also a range of b’s. How-

ever, this is not helpful because the sweet point does not

depend on the slope parameter b [see Eq. (5)]. The presence

of lapses of attention (k> 0) poses a more significant chal-

lenge; when the true psychometric function has a non-zero k,

the threshold estimate can be quite biased, and estimates of

the lapse parameter can be very poor (Green, 1995).

III. SWEET POINTS FOR THE THRESHOLD, SLOPE,
AND LAPSE RATE OF THE PSYCHOMETRIC
FUNCTION

To provide reliable estimates of the shape of a

3-parameter psychometric function [e.g., Eq. (1)], one

approach is to adjust the placement of the signal strength to

minimize the variability in the estimates of the a, b, and k
parameters. The procedure is similar to that described above,

except that the variability in a, b, and k are estimated rather

than r2
x (i.e., x is treated as a parameter rather than a in the

development above). The resulting expected variances of the

a, b, and k estimates from a single trial, r2
a, r2

b, and r2
k,

respectively, are

r2
a ¼ pðx;/Þ½1� pðx;/Þ�

�
dpðx;/Þ

da

� �2

; (6)

r2
b ¼ pðx;/Þ½1� pðx;/Þ�

�
dpðx;/Þ

db

� �2

; (7)

r2
k ¼ pðx;/Þ½1� pðx;/Þ�

�
dpðx;/Þ

dk

� �2

: (8)

Note that the results for r2
b have been considered elsewhere

for the case k¼ 0 (King-Smith and Rose, 1997; Brand and

Kohlmeier, 2002). The analytical expressions for r2
a, r2

b, and

r2
k are provided in the Appendix.

These three expected variances [Eqs. (6)–(8)] are func-

tions of the signal strength x. The expected variance of k, r2
k,

is a monotonically decreasing function of x. Therefore, no

true minimum can be found; to maximize the accuracy in the

k estimates, a large signal strength consistent with the exper-

imental design should be used (an empirical recommenda-

tion suggested by Green, 1995, when considering yes/no

procedures and listeners with lapses of attention). The pro-

portion correct that corresponds to this large signal strength

will be referred to as the k-sweet point. For a sufficiently

large maximum signal strength, the k-sweet point will

approximate the proportion correct value of 1�k. For the r2
a

and r2
b functions, there do exist values of x that minimize

these expected variances, although for r2
b two minima

emerge near the upper and lower asymptote of the function.2

The percent correct scores associated with the minima of r2
a

and r2
b are the a-sweet point and b-sweet points. Together,

four sweet points indicate the values of percent correct that

yield the smallest expected variances of a, b, and k, and the

associated signal strengths should be tested when the goal is

to quickly and accurately estimate the parameters a, b, and

k. Although not considered here, the c-sweet point may also

be derived.3

Figure 1 plots the expected variances of the a (left) and

b (right) estimates as a function of proportion correct for

psychometric functions with b values of 0.5 (dotted curves),

1 (dashed curves), and 2 (solid curves). The a and k are both

fixed at 0, and c is fixed at 0.5. The expected variance of a
exhibits a minimum near a proportion correct of 0.8 on the

psychometric function. This means that repeatedly present-

ing the signal strength at that proportion correct on the psy-

chometric function would result in an estimate of a with

minimal variability, i.e., a-sweet point. Although the a-sweet

point does not change with changes in the slope of the psy-

chometric function, the expected variance of a grows with

decreases in the slope of the psychometric function (for a

fixed number of trials; from solid to dotted lines).

In contrast to the results for a, the expected variance of

b has two minima, and so two b-sweet points (see also

King-Smith and Rose, 1997; Brand and Kohlmeier, 2002).

At the midpoint of the psychometric function the expected

variance of b approaches infinity, indicating that placing the

signal strength at the midpoint of the psychometric function

provides no information regarding the value of b. The

b-sweet points do not depend on the slope of the psychomet-

ric function, but r2
b at the b-sweet points increase as the

function becomes steeper in slope.

Figure 2 plots the expected variances of the a (left) and

b (right) estimates as a function of proportion correct for

psychometric functions with k values of 0.2 (dotted curves),

0.1 (dashed curves), and 0 (solid curves). The values of a, b,

and c are set to 0, 1, and 0.5, respectively. The expected

FIG. 1. The expected variances of the a (left) and b (right) estimates as a

function of the proportion correct for psychometric functions with b values

of 0.5 (dotted curves), 1 (dashed curves), and 2 (solid curves). The a, c, and

k parameters are 0, 0.5, and 0, respectively.

J. Acoust. Soc. Am., Vol. 132, No. 2, August 2012 Y. Shen and V. M. Richards: An updated maximum-likelihood procedure 959



variability in the a and b estimates increase with increases in

k, and the a- and b-sweet points shift to lower percent cor-

rects as the value of k increases.

IV. MODIFICATIONS TO THE MAXIMUM-LIKELIHOOD
PROCEDURE

A. Introducing prior distributions for the
psychometric-function parameters

Here a Bayesian approach is adopted in which a prior

distribution for each of the free parameters (a, b, and k; c is

assumed to be known) is set by the experimenter (see also

King-Smith and Rose, 1997). The posterior distribution for

each parameter is updated after every trial as new likelihoods

are generated. This procedure differs from other Bayesian

approaches, which choose the signal strength so as to mini-

mize the entropy in parameter estimates (e.g., Kontsevich

and Tyler, 1999), in that the sweet points are used as target

values. The current approach is adopted because it allows

the experimenter to choose a sampling strategy depending

on, for example, whether the listener can withstand large

changes in signal strength or whether one parameter is of

particular importance and should be oversampled.

Bayes’ rule states that for data D, and alternative hy-

pothesis /i (parameters)

Pð/ijDÞ ¼
PðDj/iÞPð/iÞ

RjPðDj/jÞPð/jÞ
; (9)

where P(/ijD) is the posterior probability for hypothesis /i

and P(/i) is the prior probability for the hypothesis given

values of the parameters /i. The remaining ratio,

PðDj/iÞ=RjPðDj/jÞPð/jÞ, is the likelihood. Because the

goal is the estimate the maximum likelihood among the pop-

ulation of potential parameters, the denominator is not nec-

essary. That is, whether a normalized or unnormalized

posterior is used, the location in the parameter space with

the maximum likelihood remains the same. In practice the

likelihood is computed as in Eq. (2), except that the proba-

bilities depend on the parameter vector /, not just a.

The process is as follows. The prior distributions, which

are described in three dimensions (a, b, k), are initially set

by the experimenter. Then, on trial n, the likelihood ratio is

described in three dimensions based on candidate three-

tuples formed by potential values of a, b, and k. The poste-

rior is formed by multiplying the posterior from trial n � 1

and the likelihoods from trial n. The product is the posterior

for trial n and its maximum is used to choose the most likely

set of parameters, and so the new set of sweet points.

After the track terminates, the best fitted parameters as

well as their confidence limits can be estimated from the

final posterior distributions.

The introduction of the prior distributions of the param-

eters a, b, and k has the potential of reducing the number of

trials needed for the procedure to converge, it also reduces

the number of large changes in signal strength that might

otherwise occur for the first several trials. The choice of the

priors is considered in more detail below (in Sec. V B).

Following data collection, the resulting signal strengths,

and listeners responses may be analyzed using a variety of

algorithms (for example, the psignifit routine by Wichmann

and Hill, 2001a,b, and the Bayesian Markov-chain Monte

Carlo procedure by Kuss et al., 2005) to achieve an

improved parameter fit and estimation of confidence limits

for each parameter. However, for simplicity, in the following

discussion, we consider the means of the posterior parameter

distributions at the output of the updated maximum-

likelihood procedure as the “final” fit.

B. Sweet-point/stimulus placement selection strategy

From the above analysis, we see that there are four

sweet points on the psychometric function considered here,

the lower b-sweet point, the a-sweet point, the upper b-sweet

point, and the k-sweet point, in order from low to high pro-

portion correct. Recall that the k-sweet point has no mini-

mum, and is assumed to take on a value corresponding to a

large signal strength. When estimating the psychometric

function using the proposed updated maximum-likelihood

procedure, one might place the signal strength on the next

trial at any of these sweet points. The question of interest is

how to best sample these signal strengths among the sweet

points. Next, two algorithms for the selection among sweet

points are considered. These two algorithms are not exhaus-

tive; alternative algorithms may be appropriate depending on

constraints that the experimental question and/or subject

population exerts on data collection.

1. Random sweet-point selection

One simple rule for selecting the sweet point is to draw

from the four possible sweet points at random, with equal

probability, on each trial. A sample adaptive track using this

random sweet-point selection rule is shown in Fig. 3 for a

virtual listener with a¼ 0, b¼ 1, c¼ 0.5, and k¼ 0.05. For

this example, the initial signal strength was 5, which was

also the level used in association with the k-sweet point.

There were 21 possible values of a (ranging from �5 to 5),

10 possible values of b (ranging from 0.2 to 2), and 5 possi-

ble values of k (ranging from 0 to 0.2). The potential param-

eters in this three-dimensional parameter space were equally

spaced on a linear scale. The prior distribution for each of

the three parameters had a Gaussian shape. For a the mean

was 0 and the standard deviation was 2.5; for b the mean

was 1 and the standard deviation was 0.75; and for k the

FIG. 2. The expected variances of the values of a (left) and b (right) esti-

mates as a function of proportion correct for psychometric functions with k
values of 0.2 (dotted curves), 0.1 (dashed curves), and 0 (solid curves). The

a, b, and c parameters are 0, 1, and 0.5, respectively.
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mean was 0 and the standard deviation was 0.1 (with a do-

main that ranged from 0.2 to 0, yielding minimal and maxi-

mal percent correct values allowed). A total of 100 trials

were tested. It should be noted that the virtual listener did

not “guess” on some number of trials; inattention is folded

into the form of the psychometric function as the true k.

The top three panels of Fig. 3 show the values of a, b,

and k estimated after each trial. The bottom panel on the

right shows the signal strengths tested (see ordinate labels to

the left). The panel on the left plots the true underlying psy-

chometric function (solid curve, plotted with signal strength

on the ordinate and percent correct on the abscissa), the four

sweet points (circles), and the estimated psychometric func-

tion (dashed curve). The psychometric function is fitted quite

well using only 100 trials.

2. Up-down procedure for sweet-point selection

A second sweet-point selection rule is based on an up-

down adaptive algorithm (Levitt, 1971). For example, in a

3-down, 1-up track, after three consecutive correct responses

the signal strength would be switched to that associated with

the adjacent lower sweet point for the subsequent presenta-

tion (e.g., from the upper b-sweet point to the a-sweet point,

from the a-sweet point to the lower b-sweet point, etc.), and

after an incorrect response the signal strength would be

switched to the signal strength associated with the adjacent

higher sweet point (e.g., from the lower b-sweet point to the

a-sweet point, etc.). Note that three of the four sweet points

(the signal strength associated with the k-sweet point is fixed

at a large value) are updated on a trial by trial basis, there-

fore even if the choice of sweet point were consistent across

two trials the actual signal strengths might vary. One of the

advantages of this hybrid procedure combining the

maximum-likelihood and the up-down methods is that the

change in signal strength is constrained across sequential tri-

als. For the logistic psychometric with c¼ 0.5, the step size

is maintained at about one-quarter to one-third of the total

dynamic range of the psychometric function. Second, this

method also maintains a fairly consistent percent correct per-

formance level across different conditions, which might lead

to more consistent performance by the observers across con-

ditions. Third, by this hybrid approach, the experimenter has

the option to emphasize some sweet points over others. For

example, if a 3-down, 1-up method is used, a relatively large

number of trials would be drawn from the a-sweet point.

This means the estimate of a-would converge quickly; on

the other hand, when a 4-down, 1-up method would empha-

size the upper b- and k-sweet points.

An example of a track using the hybrid procedure is

shown in Fig. 4 for the same virtual listener (a¼ 0, b¼ 1,

c¼ 0.5, and k¼ 0.05), priors, and parameter spaces

described for the simulation outlined above. A 4-down, 1-up

tracking rule was implemented for this example. As the

number of trials increased, the track stabilized in that rela-

tively fewer signal strengths were tested, indicating the sta-

bility of the parameter estimates.

FIG. 3. A sample track using a random sweet-point

selection rule. Left: the sweet points (circles) on the

psychometric function of a virtual observer with

a¼ 0, b¼ 1, c¼ 0.5, and k¼ 0.05 (solid curve),

and the estimated psychometric function (dashed

curve). Right: the maximum-likelihood estimates of

a, b, and k, as well as the signal strength (from top

to bottom), in a simulated track that consists of 100

trials.

FIG. 4. Same as Fig. 3, except this example is

based on a hybrid, 4-down, 1-up sweet-point selec-

tion rule.
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V. SIMULATIONS

A series of Monte Carlo simulations were conducted to

test the updated maximum-likelihood methods and compare

the procedure with the original one-parameter maximum-

likelihood procedure (e.g., Green, 1990). Virtual listeners

were implemented, each of whom generated responses

according to a psychometric function described by a parame-

ter vector /0¼ {a0, b0, c0, k0}. Four different procedures

were used to estimate the psychometric function parameters,

they were (i) the original maximum-likelihood procedure

with proposed psychometric functions in a two-dimensional

(a, k) space (Green, 1990, 1995), (ii) the original maximum-

likelihood procedure in three-dimensional [using Eqs. (6)–(8)]

(a, b, k) space, (iii) the updated maximum-likelihood proce-

dure with 4-down, 1-up sweet-point selection rule, and (iv)

the updated maximum-likelihood procedure with a random

sweet-point selection rule. For the original maximum-

likelihood procedure [(i) and (ii), above), the signal strength

was set at the level corresponding to the a-sweet point, and

the a-sweet point was updated using equations with just a and

k, or equations with a, b, and k. For the updated maximum-

likelihood procedure [(iii) and (iv), above] four sweet points

were used, and the sweet point selection rule differed. For

both the original and updated procedures a Bayesian approach

was adopted, i.e., sweet points were chosen on the basis of the

maximal posterior. This approach was not emphasized in the

original work by Green and colleagues, but provides stimulus

placement that will typically converge more quickly than the

original.

Two virtual listeners were tested with a total of 100

Monte Carlo adaptive tracks, each based on 200 trials, for

each of the four procedures indicated above. All algorithms

and simulations were developed in MATLAB (The Math-

Works, Inc., Natick, MA). For these simulations the values

of a ranged from �5 to 5 with a spacing of 0.5 (21 values);

the proposed values of b ranged from 0.2 to 2 with a spacing

of 0.2 (10 values), except for the first procedure where b was

fixed at 1; the proposed k ranged from 0 to 0.2 with a spacing

of 0.05 (5 values). The c parameter was fixed at c0¼ 0.5,

assuming a task design with a chance performance level of

50% correct. The prior distribution for a was a normal distri-

bution with a mean of 0 and standard deviation of 2.5; the

prior distribution for b [except in procedure (i)] was a nor-

mal distribution with a mean of 1 and a standard deviation of

0.75; the prior distribution for k was a normal distribution

with a mean of 0 and a standard deviation of 0.1 and con-

strained to remain between 0.2 and 0. The maximum signal

strength, 12, was also the signal level associated with the k-

sweet point. This ensured that for all /0 included in the sim-

ulations, the k-sweet point was always higher than the upper

b-sweet point.

A. Comparison of different
maximum-likelihood-based approaches

Figures 5 and 6 plot histograms of the parameter esti-

mates (a, b, and k, arranged in three rows from top to bot-

tom) for the four procedures (in columns). The results for

two virtual listeners with /0¼ {2, 0.4, 0.5, 0.1} and {2, 1.4,

FIG. 5. Histograms of the a (top), b (middle), and k (bottom) estimates

from 100 Monte Carlo simulated procedures using the original maximum-

likelihood procedure in which signal strengths are chosen based on just the

a-sweet point (first two columns) or based on the updated method that sam-

ples four sweet points (last two columns). For the former, the candidate psy-

chometric functions either did (2nd column) or did not (1st column) include

the parameter b. For the updated procedures, the four sweet points were ei-

ther sampled using a 4-down, 1-up algorithm or at random. The number

inside each panel indicates the rms error of the estimates relative to the true

value. The true psychometric function had parameters a¼ 2, b¼ 0.4,

c¼ 0.5, and k¼ 0.1.

FIG. 6. As Fig. 5 but the true psychometric function had values of a¼ 2,

b¼ 1.4, c¼ 0.5, and k¼ 0.1.
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0.5, 0.1} for {a, b, c, k} are shown in Figs. 5 and 6, respec-

tively. The numerical value in each panel indicates the root-

mean-square (rms) deviation between the estimated parame-

ter and the true parameter. Smaller rms deviation values sug-

gest a more accurate estimation of the parameter.

For all four procedures and for both listeners, estimates

of a were very good (top row) with rms deviations ranging

from 1.2 to 1.4 for the virtual listener with the shallower psy-

chometric function (b0¼ 0.4; Fig. 5) and from 0.46 to 0.61

for the steeper-sloped listener (b0¼ 0.4; Fig. 5). These devia-

tions were less than one-tenth of the dynamic ranges of the

psychometric functions. A detailed inspection suggested that

the original maximum-likelihood procedures gave slightly

higher a estimates than the true value. This could be due to

the misestimation of the k parameter as suggested by Green

(1995), and this bias was more evident when the true slope of

the psychometric function was shallow (Fig. 5).

Next consider the estimated values of k (bottom row).

Results from the first and second procedures (first and second

columns of Figs. 5 and 6) failed to estimate k. The estimated

values of k show little information beyond the properties of

the original prior distribution. Had the prior distribution not

constrained the choice of k, it seems likely that the estimates

of k would have been essentially random, potentially interfer-

ing with estimates of a. For the two updated procedures, there

was little advantage of one over the other with regard to the

quality of fit to k. Presumably this reflects the fact that both

procedures visited the k-sweet point fairly frequently.

Finally, consider the estimation of b (middle row). For

the original maximum-likelihood procedure (second col-

umn), the estimate of b was poor when the slope was shal-

low (Fig. 5) and quite accurate when the slope was steep

(Fig. 6). For the former the estimate appeared to rely only

on the prior distribution. With regard to the relatively good

fit of b when the function was steep, this result may reflect

the fact that changes in the a-sweet point covered a larger

proportion of the dynamic range of the psychometric func-

tion when the slope was steep than when the slope was

shallow; and so there was more opportunity to estimate the

true value of the slope. For the updated procedures, the esti-

mates of b were also quite good, and possibly superior

when the sweet points were sampled at random than when

they were sampled using a 4-down, 1-up procedure. This

might reflect the relatively few samples at the lower

b-sweet point when the 4-down, 1-up procedure was tested.

Nonetheless, both of the updated procedures provided rea-

sonably good estimates of the slope parameter b relatively

independent of the value of b.

B. Choice of prior distributions

The same priors were used for the simulation results

shown in Figs. 5 and 6. This was done to allow “fair” com-

parisons across various procedures. Previous studies have

suggested that the choice of priors can affect the estimation

of posteriors (e.g., Kuss et al., 2005), especially when small

numbers of trials are tested. Therefore, it is of interest to

investigate the effect of the prior distributions on the psycho-

metric function estimates.

Prior distributions describe an experimenter’s belief

regarding the likelihood across all the candidate psychomet-

ric functions in the parameter space. When the experimenter

does not wish to make assumptions regarding the distribu-

tions of the parameters, uninformative priors could be used.

Two common choices of uninformative priors include the

Jeffrey’s prior and the conjugate prior (Gelman et al., 2004).

However, it is often the case that the experimenter does have

some knowledge on the most likely range of parameters

(e.g., based on the published data and previous experiences

with similar experiments). In such situations, informative

priors, typically narrower than uninformative priors, might

be used, which would accelerate the convergence of the pos-

terior distributions. A proper choice of priors would also pre-

vent the maximum-likelihood-based algorithms from

scanning through the extremes of the parameter space and

varying the signal strength widely during the first few trials.

That is, informative priors lead to relative stable psychomet-

ric function estimates during the first few trials, independent

of whether subjects make early errors. This, however, does

not mean that the narrower priors are always better; using

priors that are too narrow (or have too-small standard devia-

tions) increases the risk of misestimating the parameters

when relatively few trials are tested.

In order to evaluate the effects of priors on the estima-

tion of the psychometric function, a virtual listener with

/0¼ {2, 0.4, 0.5, 0.1} was used and the accuracy in parame-

ter estimation was estimated across systematic variations in

the standard deviation of the prior distribution for each param-

eter. The same virtual listener was used for the simulations

shown in Fig. 5. As in the previous simulations, the means of

the prior distributions for a, b, and k were 0, 1, and 0, which

are misaligned relative to the true values. One hundred Monte

Carlo adaptive tracks, each based on 200 trials, were tested.

Table I lists the rms of the deviations between the esti-

mated and the true parameters across variations in the stand-

ard deviations of the a, b, and k priors. In general,

decreasing the standard deviation of the a prior had similar

effects on the accuracy of the a estimates across the three

procedures tested [the original maximum-likelihood proce-

dure with a, b, and k (MLP 3D), the updated procedure with

an up-down sweet-point switching rule, and the updated pro-

cedure with a random switching rule]: the rms deviation first

decreased then increased, forming a minimum for a moder-

ate value of standard deviation. The decreasing portion

reflects the improvement associated with a more informative

prior, while the increasing portion reflects a bias in the esti-

mates caused by the mismatch between the means of the

prior and the true parameter values. It is interesting that

increasing the standard deviations of the b and k priors had

similar effect on the a estimates, suggesting that using in-

formative priors on b and k could improve the estimation of

a, but not when too narrow priors were used.

The changes in the accuracy of the b and k estimates were

less systematic than for a. For the original maximum-

likelihood procedure, the rms deviation of the b estimates

increased as the standard deviation of all three prior became

too large or small, while the k estimates were fairly poor inde-

pendent of the changes in the prior distributions. For the two
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updated maximum-likelihood procedures, the b and k estimates

were not strongly influenced by the changes in priors. The rms

deviations for these two procedures were generally smaller

than the corresponding conditions for the original procedure.

Summarizing these observations, a rule of thumb is that

the priors with standard deviations that are between one-half

and one-quarter of the range of the parameter space produce

the most satisfactory results. Moreover, the estimation of the

b and k parameters is more resistant to the alterations in the

prior distributions for the updated maximum-likelihood pro-

cedures. Therefore, if the experimenter’s goal is to estimate

the complete psychometric function, including the slope and

lapse parameters, the updated procedures provide superior

results. On the other hand, the estimates of a are not greatly

affected by the misestimation of the b and k parameters.

Thus, if the experimenter’s research interest is in the thresh-

old estimates, the original maximum-likelihood procedure

might be used with appropriate priors, since it sometimes

provides slightly better estimates of a.

C. Rates of convergence

Figure 7 plots the rms deviation of the parameter estimates

from the true parameter values as a function of trial number.

To provide a robust generalization, the values of the parame-

ters used by the virtual listener’s true psychometric function,

/0, were chosen at random for each Monte Carlo simulated

procedure. The values of a0 were drawn from a uniform distri-

bution with a range of �4 to 4, b0 was drawn from a uniform

distribution with a range of 0.4 to 1.4, and k0 was drawn from

a uniform distribution with a range of 0 to 0.2. Using the same

four procedures described in Sec. V A, each “track” included

400 sequential trials, and the rms error was based on the devia-

tions across K¼ 100 replicates. In other respects the simulation

methods were as described earlier. Let /0,k denote the parame-

ters drawn for the kth replicate and let /k,n denote the parame-

ter estimate obtained from the kth replicate after the nth trial.

The average rms deviation was given by

rms deviation on the nth trail ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

ð/k;n � /0;kÞ2

K

vuut
:

(10)

First consider the results for the estimates of a (left panel

of Fig. 7). All four procedures initially fell quickly, and as the

number of trials exceeded 100 or so, the rms values for the

original maximum-likelihood procedures tended to asymptote

while those from the updated maximum-likelihood procedures

continued to fall. By 400 trials all four of the functions

appeared to have reached an asymptote. Presumably, estimates

of a continued to improve with more trials for the updated pro-

cedures because the values of b and k were also being better

estimated. It should be noted that at 100 trials, the updated

maximum-likelihood procedure with the random sweet point

selection rule outperformed the other three procedures, a result

not apparent in Figs. 5 and 6. This indicates that the conver-

gence rates for a depends on the properties of the true psycho-

metric function.

TABLE I. The rms deviations from the estimated to the true parameters listed as functions of the standard deviations for the a (top), b (middle), and k (bot-

tom) prior distributions. In each of the three simulations, the prior distributions for the non-varying a, b, and k parameters had fixed standard deviations of 2.5,

0.75, and 0.1, respectively. The true psychometric function was defined by /0¼ {2, 0.4, 0.5, 0.1}. Results are shown for three procedures: the original

maximum-likelihood procedure (left), the updated procedure with an up-down sweet-point switching rule (center), and the updated procedure with a random

sweet-point switching rule.

Original MLP 3D Updated MLP up-down Updated MLP random

a b k a b k a b k

Standard deviation

of a prior

15 2.1 0.75 0.091 1.5 0.49 0.046 1.6 0.37 0.049

6.25 1.9 0.67 0.091 1.7 0.47 0.045 1.4 0.44 0.04

2.5 0.54 0.34 0.086 0.61 0.43 0.036 0.55 0.39 0.033

1 1.1 0.56 0.048 1.5 0.28 0.036 1.4 0.27 0.04

0.4 1.7 0.5 0.068 2 0.22 0.035 1.9 0.21 0.042

Standard deviation

of b prior

3 1.3 0.95 0.069 1.3 0.6 0.049 1.1 0.53 0.038

1.5 1.4 0.79 0.077 1.1 0.53 0.04 1.3 0.44 0.042

0.75 0.54 0.34 0.086 0.61 0.43 0.036 0.55 0.39 0.033

0.375 1.5 0.58 0.076 1.4 0.46 0.034 1 0.42 0.036

0.2 1.4 0.6 0.075 1.4 0.56 0.031 0.96 0.54 0.039

Standard deviation

of k prior

0.4 1 0.75 0.082 1.4 0.46 0.039 1.2 0.45 0.046

0.2 1.2 0.69 0.067 1.3 0.5 0.037 1.3 0.43 0.042

0.1 0.54 0.34 0.085 0.61 0.43 0.036 0.55 0.39 0.033

0.05 1.7 0.64 0.095 1.3 0.33 0.049 1.2 0.31 0.052

0.025 1.7 0.63 0.1 1.4 0.31 0.074 1.3 0.28 0.078
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The middle panel of Fig. 7 plots the rms deviations for b
(recall, b is not estimated for the curve indicated as “MLP

2D”). For all procedures, the rms value increased sharply

across the first 50 trials, indicating the dispersion of the prior

distributions for b. Beyond 50 trials, the deviation for the orig-

inal maximum-likelihood procedure continued to grow slowly

whereas the updated procedures converged toward a solution.

It may be somewhat surprising that the two updated proce-

dures had approximately equal convergence rates; the

4-down, 1-up procedure under-represents the lower b-sweet

point. Potentially this procedure was somewhat more efficient

than one might expect because there was less expected var-

iance associated with the upper b-sweet point than the lower

b-sweet point (at least for the example shown in Fig. 2).

The right panel of Fig. 7 plots the rms deviations for k.

This function converged more rapidly for the updated than the

original maximum-likelihood procedures. For the updated

procedures, the estimates converged within 200 trials.

Considering only the sweet-point selection rules for the

updated maximum-likelihood procedures, the random selec-

tion rule seemed to provide better threshold (a) estimates

and the 4-down, 1-up procedure provided slightly better esti-

mates of k. This result was not surprising because the

4-down, 1-up procedure maintains a relatively high overall

proportion correct, emphasizing visits to high signal

strengths at the cost of presenting relatively few mid- and

low-level signal strengths. What was surprising was that the

estimates of b appear to be approximately the same for the

two updated procedures, even though the lower b-sweet

point would be expected to be visited less often by the

4-down, 1-up procedure stimulus selection method than for

the random selection procedure. Potentially this result

reflected differences in the asymptotic amount of expected

variance associated with the upper vs lower b-sweet points,

but that explanation was not further explored.

VI. SUMMARY AND CONCLUSIONS/
RECOMMENDATIONS

The sweet-points for logistic psychometric functions

with four parameters: mean (a), slope (b), lower asymptote

(c), and lapse (k) were derived. For the current work, the

value of c was assumed to be known (e.g., n-alternative

procedures assumed). This yielded a total of four sweet

points, the percent correct values on the points on the

psychometric function which, when sampled, minimize

the expected variance in the parameter estimation. For a the

sweet point is near the mean. For b (and the logistic as

psychometric function model), there are two sweet points,

one above and one below the a-sweet point. For k a minimal

expected variance cannot strictly be achieved; it is reasona-

ble to use a high signal strength as a proxy to the signal

strength at the sweet point.

Several simulations indicated that the proposed updated

maximum-likelihood procedure using four sweet points can

be as efficient in estimating the mean as the single-parameter

(a) estimation method proposed studied by Green (e.g., 1990;

referred to as the “original” maximum likelihood-procedure

in the current description), and additionally provided informa-

tion regarding the slope and lapse of the true psychometric

function. In addition to the introduction of additional sweet

points, the proposed updated maximum-likelihood procedure

differs from the original in that it minimizes the estimated

posterior probability, rather than the likelihood through the

use of a prior distribution on each of the parameters. This

approach can be adopted for the original single-parameter

maximum-likelihood procedure, and has the potential virtues

of both increasing the convergence rate and reducing the large

variations in signal strength that occur across the first few tri-

als of a track (e.g., Leek et al., 2000).

An important motivation for deriving the four sweet points

described above was to provide the experimenter with the free-

dom to introduce a stimulus sampling procedure appropriate to

their research interest. Once the sweet points are known, the ex-

perimenter has the opportunity to fashion a sampling strategy

appropriate for the population under study, expectations regard-

ing the lapse rate, etc. Two example strategies were considered,

one which randomly chose among the four sweet points, and

one that sampled the sweet points using an adaptive procedure.

The latter was introduced as a method that would maintain a

relatively constant percent correct performance level and also

avoid large changes in signal strength. Both sampling strategies

performed well in simulations, although the random sampling

procedure converged more rapidly in the estimation of a. If

there is no interest in controlling the stimulus sampling strategy,

alternative Bayesian procedures that minimize entropy (e.g.,

FIG. 7. The rms deviations between the parameter estimates and the true parameters of the underlying psychometric function as a function of the number of

trials. Changes in the functions indicate the rate at which the parameters converge for three parameters: a, b, and k (left to right panels). Four procedures were

tested: (i) MLP 2D: the original MLP procedure with two parameters, (a, k); (ii) MLP 3D: the original MLP procedure with two parameters, (a, b, k); (iii)

MLP up-down: the updated MPL procedure a 4-down, 1-up sweet-point selection rules; (iv) MLP random: the updated MLP procedure with random sweet-

point selection rule. These are as described for Fig. 5.
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Kontsevich and Tyler, 1999) appear to be a good choice of pro-

cedures because such procedures are easily extended to include

several free parameters.

Finally, it should be appreciated that when one uses a

maximum-likelihood procedure, what constitutes a “most

efficient” stimulus placement is not clear cut; it depends on the

experimental goals. If one or another parameter is of utmost

importance, one might increase the number of trials at that pa-

rameter’s sweet point(s). If the goal is to estimate the three pa-

rameters (mean, slope, and lapse) with equal certainty, the

sweet points might be sampled with a number of visits inver-

sely related to the expected standard deviation at the sweet

point (e.g., see Fig. 2). The crucial advantage of knowing the

values of the sweet points is that sampling strategies can be

fashioned to fit with the requirements of the experiment.
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APPENDIX: EXPECTED VARIANCES FOR THE
PARAMETERS OF THE PSYCHOMETRIC FUNCTION

For a psychometric function that takes the form of a logis-

tic function, as given in Eq. (1), the expected variances for its

parameters a, b, and k (r2
a, r2

b, and r2
k) can be written as

r2
a ¼

e�2bðx�aÞ
�

1þ ebðx�aÞ
�2

½cþ ð1� kÞebðx�aÞ�
�

1� cþ kebðx�aÞ
�

b2ð1� c� kÞ2
; (A1)

r2
b ¼

e�2bðx�aÞ
�

1þ ebðx�aÞ
�2

½cþ ð1� kÞebðx�aÞ�
�

1� cþ kebðx�aÞ
�

ðx� aÞ2ð1� c� kÞ2
; (A2)

and

r2
k ¼ ½kþ ð1� cÞe�bðx�aÞ�

�
1þ ce�bðx�aÞ � k

�
: (A3)

From these expressions, the signal strength x that mini-

mizes each of these expected variances can be determined.

The resulting signal strengths are the sweep points for the

logistic psychometric function.

Although all the simulations in the current study were

based on the logistic psychometric function, for some

experiments the signal strength is known to be a positive

number. In such situations, the Weibull function is com-

monly used for the psychometric function. A form of the

Weibull function convenient for the derivation of sweet

points is

pðx;/Þ ¼ cþ ð1� c� kÞð1� kxbÞ; (A4)

where the parameter vector / consists of four parameters k,

b, c, and k. The c and k parameters are defined as in the

logistic formulation. The k parameter is related to the percent

correct at x¼ 1, because p(1, /)¼ cþ (1�c�k)(1�k). The b
parameter describes the slope of the function. For the Wei-

bull psychometric function, the expected variances of the k,

b, and k parameters are

r2
k ¼ �

k2�2xb
x�2b½�kþ kxbð�1þ cþ kÞ�½1� kþ kxbð�1þ cþ kÞ�

ð1� c� kÞ2
; (A5)

r2
b ¼ �

k2xb
x�2b½�kþ kxbð�1þ cþ kÞ�½1� kþ kxbð�1þ cþ kÞ�

ð1� c� kÞ2ðln kÞ2ðln xÞ2
; (A6)

r2
k ¼ �

½�kþ kxbð�1þ cþ kÞ�½1� kþ kxbð�1þ cþ kÞ�
ð1� kxbÞ2

: (A7)

Plotting these expected variances as functions of the sig-

nal strength x, a single minimum, hence a sweet point, for

r2
k , and r2

b occurs for the Weibull psychometric function; r2
k

does not have a minimum, and so a large signal strength then

can be taken as a proxy for the k-sweet point. Therefore,

there are a total of three sweet points. They correspond to
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the k, b, and k parameters, in the order of low to high signal

strengths. These sweet points can then be used in the updated

maximum-likelihood procedure, in which the signal strength

is chosen among the three sweet points associated with the

3-tuple with the minimum.

1It should be noted that this approach can be contrasted with alternative

Bayesian sampling strategies in which the goal is to find, on each trial,

the level that will minimize the total entropy. Kontsevich and Tyler

(1999) provide an excellent overview of such procedures for the estima-

tion of psychometric functions.
2Note that the number of b sweet points depends on the formulation of the

psychometric function. In the Appendix, it is shown that for a Weibull

psychometric function there exists only a single b sweet point.
3The c-sweet point parallels the k-sweet point except that the expected var-

iance r2
c is minimal for the percent correct associated with the weakest

signal strength rather than the strongest. This possibility was considered

by Gu and Green (1994), who added “catch trials” to their yes-no proce-

dure. For the present development, the value of c is assumed to be fixed

because (a) n-interval, m-alternative forced choice procedures are preva-

lent, and (b) fixing c substantially reduces the time needed to search the

candidate parameter space.
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