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Abstract
Covert spatial attention can increase contrast sensitivity either by changes in contrast gain or by
changes in response gain, depending on the size of the attention field and the size of the stimulus
(Herrmann, Montaser-Kouhsari, Carrasco, & Heeger, 2010), as predicted by the normalization
model of attention (Reynolds & Heeger, 2009). For feature-based attention, unlike spatial
attention, the model predicts only changes in response gain, regardless of whether the featural
extent of the attention field is small or large. To test this prediction, we measured the contrast
dependence of feature-based attention. Observers performed an orientation-discrimination task on
a spatial array of grating patches. The spatial locations of the gratings were varied randomly so
that observers could not attend to specific locations. Feature-based attention was manipulated with
a 75% valid and 25% invalid pre-cue, and the featural extent of the attention field was
manipulated by introducing uncertainty about the upcoming grating orientation. Performance
accuracy was better for valid than for invalid pre-cues, consistent with a change in response gain,
when the featural extent of the attention field was small (low uncertainty) or when it was large
(high uncertainty) relative to the featural extent of the stimulus. These results for feature-based
attention clearly differ from results of analogous experiments with spatial attention, yet both
support key predictions of the normalization model of attention.

INTRODUCTION
Covert attention, the selective processing of visual information in the absence of eye
movements, improves behavioral performance. Most studies of attention have examined the
effects of selectively attending at particular locations in the visual field. However, attention
can also be selectively deployed to visual features, such as particular orientations, colors or
directions of motion, regardless of their locations in the visual field. Feature-based attention
(FBA) enhances particular features within a dimension at the expense of unattended or
behaviorally irrelevant features. Thus, it is an important component for a visual system that
needs to devote limited processing resources on the most relevant sensory inputs regardless
of where in the visual field they are located. FBA enhances the representation of image
components that share a particular feature throughout the visual field. FBA is important
because we often know a defining feature of an object without knowing its location – e.g.,
your friend is somewhere in the cafeteria and she often wears a purple shirt.
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FBA has been characterized in single-unit (e.g., Haenny, Maunsell, & Schiller, 1988;
Martinez-Trujillo & Treue, 2004; Maunsell & Treue, 2006; Motter, 1994a, 1994b; Treue &
Martinez Trujillo, 1999), psychophysical (e.g., Alais & Blake, 1999; Baldassi & Verghese,
2005; Lankheet & Verstraten, 1995; Ling, Liu, & Carrasco, 2009; Liu, Stevens, & Carrasco,
2007b; Spivey & Spirn, 2000; White & Carrasco, 2011), and neuroimaging (e.g., Liu,
Larsson, & Carrasco, 2007a; Saenz, Buracas, & Boynton, 2002, 2003; Serences & Boynton,
2007; Serences, Saproo, Scolari, Ho, & Muftuler, 2009) studies. For a review, see (Carrasco,
2011).

Activity in visual cortex increases with stimulus contrast (Boynton, Demb, Glover, &
Heeger, 1999; Carandini, Heeger, & Movshon, 1997; Desimone & Schein, 1987; Heeger,
1992) and several models of attention have proposed that attention, both spatial and feature-
based, may modulate the neural response amplitudes, producing an effect similar to changes
in stimulus contrast (Boynton, 2009; Ghose, 2009; Lee & Maunsell, 2009; Reynolds &
Heeger, 2009; Reynolds, Pasternak, & Desimone, 2000). Spatial attention has been shown to
robustly modulate responses to stimulus contrast in behavioral (Carrasco, Penpeci-Talgar, &
Eckstein, 2000; Herrmann et al., 2010; Ling & Carrasco, 2006; Lu & Dosher, 1998;
Morrone, Denti, & Spinelli, 2002, 2004; Pestilli & Carrasco, 2005; Pestilli, Ling, &
Carrasco, 2009; Pestilli, Viera, & Carrasco, 2007; Yigit-Elliott, Palmer, & Moore, 2011),
single unit (Buracas & Boynton, 2007; Li, Lu, Tjan, Dosher, & Chu, 2008; Martinez-Trujillo
& Treue, 2002; McAdams & Reid, 2005; Reynolds & Chelazzi, 2004; Reynolds et al., 2000;
Williford & Maunsell, 2006) and neuroimaging studies (Buracas & Boynton, 2007; Liu,
2005; Lu, Li, Tjan, Dosher, & Chu, 2011; Murray & He, 2006; Pestilli, 2011). Yet, neither
behavioral nor neurophysiology studies have systematically characterized the contrast
dependence of FBA. One neurophysiology study has reported that FBA varies with different
stimulus contrasts (Khayat, Niebergall, & Martinez-Trujillo, 2010), but the task that was
used does not fully exclude a spatial attention contribution (see Discussion).

The normalization model of attention was proposed to reconcile previous, seemingly
contradictory findings on the effects of visual attention, to unify alternative models on
attention, and to offer a computational framework to simulate new research questions
(Carandini & Heeger, 2011; Reynolds & Heeger, 2009). Based on the model, FBA can be
characterized with an attention field selective for a feature (such as orientation or direction
of motion), but not selective (constant) across spatial positions (Fig. 1A). The attention field
is multiplied with the stimulus drive, and then normalized, such that the extent of the
stimulus and the relative extent of the attention field can shift the balance between excitation
and suppression. Thus, the model can exhibit different effects of attentional modulation,
described in the literature, such as response gain changes that increase firing rates by a
multiplicative scale factor without changing the shape or width of neuronal tuning
(McAdams & Maunsell, 1999; Treue & Maunsell, 1999); contrast gain changes that increase
responses, multiplying the stimulus contrast by a scale factor (Martinez-Trujillo & Treue,
2002; Reynolds et al., 2000); a combination of both response gain and contrast gain changes
(Williford & Maunsell, 2006); or sharpening of neuronal tuning (Martinez-Trujillo & Treue,
2004; Spitzer, Desimone, & Moran, 1988).

The goal of the present study was to measure the contrast dependence of FBA in humans.
We used the normalization model of attention (Reynolds & Heeger, 2009; Fig 1A) to
simulate possible outcomes, before conducting any experiments. According to this model,
there are the two key parameters that determine the type of attentional gain modulation
(response gain, contrast gain or a mixture of both): the extent of the stimulus and relative
extent of the attention field. Experimental findings have supported the importance of these
two parameters for the type of gain for spatial attention (Herrmann et al., 2010). For FBA,
our simulations resulted in these two testable predictions: FBA improves performance
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accuracy consistent with a change in response gain both (1) when the featural extent of the
attention field is small relative to the featural extent of the stimulus (Fig. 1B), and also (2)
when the featural extent of the attention field is large relative to the featural extent of the
stimulus (Fig. 1C). [The specifics of the model simulations are presented below].

We empirically tested these two predictions of the normalization model of attention.
Because a visual stimulus always occupies a certain spatial location, we controlled the
spatial arrangement of the stimuli so that task performance would not benefit by attending to
different locations across conditions or trials. Any measured benefits in performance
therefore reflected specifically the impact of FBA. Stimuli contained two orientations,
intermingled over the same spatial location around fixation, and stimulus contrast covaried
for both orientations and varied unpredictably across trials.

To manipulate FBA, observers were cued to covertly attend to one of the two orientations
and perform a fine orientation-discrimination task while fixating. We manipulated the
featural extent of the attention field by introducing uncertainty about the upcoming stimulus
orientations. This design allowed us to measure the contrast dependence of FBA, while
spatial attention was distributed, i.e., not directed to any specific location. Control
experiments verified that the uncertainty manipulation was effective; performance accuracy
depended systematically and predictably on whether a single orientation was cued or a large
range of orientations was cued. We found, as predicted by the model, that FBA enhanced
performance consonant with a change in response gain, with low or high uncertainty about
the upcoming orientation.

EXPERIMENTS
METHODS

Experiments were conducted with the written consent of each observer. The University
Committee on Activities Involving Human Subjects at New York University approved the
procedures.

Observers—Six observers (25–33-year-old; 3 females) with normal or corrected vision
participated in the experiments. Four observers participated in each of the two main
experiments: the low-uncertainty experiment and the high-uncertainty experiment. Three of
them completed both experiments.

Apparatus—Visual stimuli were generated with an Apple Macintosh OS X (Intel Xeon)
computer using MATLAB (The MathWorks, Natick, MA) and MGL (http://
gru.brain.riken.jp/doku.php). Stimuli were displayed on a calibrated and linearized 40 × 30
cm CRT monitor (HP P1230) with a refresh rate of 75 Hz and gray background luminance
of 37.6 cd/m2. An infrared-video eye-tracker (EyeLink 1000, SR Research Ltd.,
Mississauga, Ontario, Canada) was used to record eye position (right eye, 500 Hz).
Observers viewed stimuli in a dark room on a chin rest at a distance of 57 cm.

Procedure—Observers participated in practice sessions to determine individual
orientation-discrimination thresholds (JND, just noticeable difference), followed by four to
six 1 h experimental sessions. This resulted in 13,838 trials (10,378 valid; 3,460 invalid) in
the low-uncertainty experiment and in 14,418 (10,815 valid; 3,603 invalid) trials in the high-
uncertainty experiment. In addition, there were two control experiments. Two observers
completed the masking control experiment that consisted of six 1 h experimental sessions:
observer 1 completed 4499 trials (3374 valid; 1125 invalid), observer 2 completed 4320
trials (3240 valid; 1080 invalid). Four observers participated in the uncertainty control
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experiment, which consisted of five 1 h experimental sessions, resulting in a total of 12,960
trials (9,720 valid; 3,240 invalid).

In all experiments, observers were instructed to maintain fixation throughout each trial. Eye
position was measured to verify that observers kept their gaze at fixation. The eye tracker
was calibrated at the beginning of each 12-minute block.

Experimental protocols
Low-uncertainty: Stimuli consisted of 32 sinusoidal grating (Gabor) patches (σ=0.16°, s.d.
of Gaussian window; spatial frequency=3.8 cycles per degree) arranged on a 9° × 9° regular
grid centered at fixation. The central four out of 36 center positions were omitted, such that
the innermost Gabors were centered 2.7° away from fixation. Positions of each Gabor were
randomly and independently jittered (uniform distribution, 0–0.6° of horizontal and vertical
center grid positions) in each interval and trial. Doing so encouraged observers to distribute
attention spatially throughout the display because the exact locations were uncertain and
could not be predicted in advance. The stimulus displays were brief (150 ms).

Observers performed a fine orientation-discrimination task (Fig. 2A). In the first 150 ms
stimulus display, a random selection of 16 (out of 32) Gabor stimuli had identical orientation
θR near 45° (right-tilted), and the other 16 had identical orientation θL near −45° (left-
tilted), resulting in two spatially interleaved orientations. In the second 150 ms stimulus
display, the 32 Gabors all shared identical orientation θtest, chosen randomly to be either
near 45° or −45° (Fig. 2B). The precise values of the orientations θtest (±42, 45 or 48°), θR
(θtest ± 1 JND) and θL (θtest ± 1 JND) were randomly and independently varied across trials
so that the first stimulus display was uninformative as to which orientation would be
queried. This small orientation jitter also allowed us to explore observers’ strategy to
perform the fine orientation discrimination task. Observers were asked to indicate whether
the orientation θtest in stimulus display 2 was slightly clockwise or counter-clockwise of the
closest orientation in stimulus display 1. Observers received auditory feedback if their
response was incorrect. Contrasts of Gabor stimuli in the first and second interval were
identical, but varied from trial to trial in a randomly shuffled order. There were nine
contrasts, equally separated on a logarithmic scale (5, 7.12, 10.15, 14.47, 20.62, 29.38,
41.86, 59.65, and 85%). The mean JND across observers was 3.7°, SEM=0.16° (O1: 3.47°
±0.25°; O2: 3.65°±0.37°; O3: 3.5°±0.29°; O4: 4.17°±0.21° (mean ± std across contrasts)).

FBA was manipulated with a pre-cue (Fig. 2B). The pre-cue was a 1.2° green line at
fixation, oriented either 45° or −45° in random order from trial to trial, presented for 250 ms.
A 500 ms cue-stimulus onset asynchrony allowed sufficient time for covert FBA to be
deployed (Liu et al., 2007b). Target orientation in stimulus display 1 was indicated by a
similar orientation θtest in stimulus display 2. A valid pre-cue was defined as a ‘match’
between pre-cue orientation and the orientation in stimulus display 2 (75% of the trials); a
‘mismatch’ yielded an invalid pre-cue (25% of the trials). The order of valid and invalid pre-
cues was randomly shuffled. The cued orientation was randomly drawn from an equal
distribution on each trial. Observers were explicitly told that the pre-cued orientation was
informative and that using the pre-cue orientation would improve their task performance.

High-uncertainty: The protocol was identical to the one in the low-uncertainty experiment
(Fig. 2A), except for the following: (1) The pre-cue was a 60°-segment, indicating the wide
range of possible upcoming orientations (Fig. 2C), rather than a line indicating upcoming
orientations of very near ±45 deg. (2) Stimulus orientations varied over a wide range: θtest
(±15°–75°, in steps of 3°, resulting in 21 possible left-tilted orientations and 21 possible
right-tilted orientations), θR (θtest ± 1 JND) and θL (θtest ± 1 JND). The precise values of the
two orientations θR and θL varied randomly (according to a uniform distribution) and
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independently over trials, with the constraint that they were at least 60° apart. The range of
possible orientations was about six times larger than in the low-uncertainty experiment. The
mean JND across observers was 5.06°, SEM=0.52° (O1: 4.51° ±0.17°; O2: 4.68°±0.21°; O3:
4.44°±0.18°; O4: 6.59°±0.67° (mean ± std across contrasts)).

Task difficulty was adjusted separately for each individual observer, and separately for the
low- and high-uncertainty experiments. Specifically, the orientation difference between the
two stimulus displays was selected based on pilot experiments. The protocol in these
experiments was identical to that in the main experiments except that the contrast was fixed
at 85% and the pre-cue was neutral. The neutral pre-cue for the low-uncertainty experiment
was composed of two overlapping lines (+45° and −45°; Fig. 2B) at fixation, and it was
composed of two overlapping segments at fixation in the high-uncertainty experiment (Fig.
2C). The orientation difference was adjusted, using a staircase procedure (Watson & Pelli,
1983) to determine individual tilt thresholds (~75% correct).

Masking control: The protocol was identical to the low-uncertainty experiment, except that
the locations of the Gabor stimuli were spatially randomized with the constraint that they
would never spatially overlap between the two stimulus displays. A 10.4°×10.4°-stimulus
grid with 128 pre-defined stimulus locations was used, omitting the central 2.4°. In stimulus
display 1, 32 of the predefined locations were randomly chosen, half of them randomly
displaying the target orientation and the other half displaying the distracter orientation. In
stimulus display 2, 32 Gabor stimuli were presented at a random selection of the 96
remaining locations. Doing so ensured that observers could not attend spatially just one or
two locations. In addition, the contrast of stimulus display 2 had a constant value of 20.62%
in all trials to determine if differential masking, as a function of contrast, between the two
stimulus displays might have confounded the interpretation of the results.

Uncertainty control: To verify that observers used the uncertainty pre-cue, the low- and
high-uncertainty experiments were repeated with the same orientation difference Δθ in the
orientation discrimination task (Δθ = |θL − θtest|, where |θL−θtest| = |θR−θtest|). The
orientation difference Δθ was fixed for each observer (O1: 3°; O2, O3, and O4: 4.5°) such
that the two uncertainty conditions could be directly compared. Low- and high-uncertainty
blocks were alternated within each experimental session; the order was counter-balanced
across observers. Stimuli were displayed at one contrast (85%) only.

Data analysis
Psychophysics: Performance, d’ = z(hit rate) − z(false alarm rate), was computed for each
observer across experimental sessions, separately for each contrast and each pre-cue (valid
and invalid) (see also Herrmann et al., 2010). A hit was (arbitrarily) defined as counter-
clockwise response to counter-clockwise stimulus tilt and a false alarm as counter-clockwise
response to clockwise stimulus. The psychometric data were fit with the Naka-Rushton
equation (e.g., Ross and Speed, 1991) to the mean performance (across observers), using a
nonlinear least-square procedure:

where d’(c) is performance as a function of contrast,  is the asymptotic performance at
high contrasts, c50 is the contrast corresponding to half the asymptotic performance and n is

an exponent that controls the slope of the psychometric function. The two parameters 
and c50 determined response gain and contrast gain, respectively. These two parameters
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were estimated for each attention condition (valid and invalid). The exponent was estimated
as a single free parameter, constrained to have the same value for both attentional
conditions.

The 68% confidence intervals for the fitted response gain ( ) and contrast gain (c50)
parameters were estimated using a bootstrap procedure (Fig. 3). This bootstrap procedure
was used to assess whether changes in response gain and/or contrast gain were statistically
significant. Specifically, individual psychophysical trials were randomly resampled with
replacement. The resampled data set was refit. This procedure of resampling and refitting
was repeated 10,000 times, which resulted in bootstrap distributions of the psychometric
data and of the fitted parameters. We assembled the bootstrap distribution of the differences
between the conditions (valid versus invalid trials) and performed statistical tests by
assessing the percentage of the values in the tail of the distribution of the differences greater

than zero for response gain changes ( ), or less than zero for contrast gain changes (c50).

Eye movements: Raw data were converted to eye position in degrees of visual angle. Eye
position during the fixation interval at the beginning of each trial served as baseline and was
subtracted from eye position during the stimulus interval, to compensate for any slow drift in
the measurements/calibration during each block. A standard EyeLink detection algorithm
(velocity threshold = 30°/s, and acceleration threshold = 8000°/s2) was used to detect
saccades, and the percentage of trials in which saccades occurred were counted. The
EyeLink software was used to detect blinks, and the time points shortly (100 ms) preceding
and following blinks were excluded from analysis. The first two trials of each block were
ignored. For statistical analysis (two-tailed t-tests), trials were sorted according to pre-cue
orientations (left- or right-tilt) and compared for horizontal and vertical deviations from the
center. Deviations from the center (horizontal and vertical) were also compared in the high-
and low-uncertainty conditions.

RESULTS
Model simulations

For simulations, we used the normalization model of attention (Reynolds & Heeger, 2009).
The matlab code is available online (http://www.snl-r.salk.edu/~reynolds/
Normalization_Model_of_Attention/ or http://www.cns.nyu.edu/heegerlab).

The relative stimuli and attention fields varied across two simulations: (1) the featural extent
of the attention field was small relative to the feature extent of the stimulus (5° versus 10°)
(Fig. 1B), (2) the featural extent of the attention field was large relative to the feature extent
of the stimulus (30° versus 10°) (Fig. 1C). The featural extent of the attention field
corresponds to the range of pre-cued orientations (relative to standard deviation of the
featural extent of the stimulus). The featural extent of the stimulus corresponds to the
standard deviation of the bandwidth at half amplitude of the Gabors. Specifially, we
computed the 2-dimensional Fourier transform of one array of Gabors (16 locations;
stimulus contrast: 85%) and computed the orientation-bandwidth at half maximum
amplitude. We repeated this procedure for a random sampling of stimulus arrays, resulting
in a distribution of full-width half-height values. Finally, we computed the median value of
the distribution.

All other model parameters were identical in both simulations. In the feature domain, we set
the orientation bandwidth of the stimulation field to 17°. This value corresponds to the
bandwidth at half amplitude of 40° for V4 (De Valois, 1982; Desimone and Schein, 1987;
McAdams and Maunsell, 1999). We used a broad tuning width of the suppressive field of
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180° (or set it to be constant). Orientation tuning curves were Gaussian functions; tuning
widths were in degrees corresponding to the standard deviation of the Gaussian. In the
spatial domain, the size of the stimulation field was set to 5° in visual angles, corresponding
to the receptive field size of neurons in V4 at eccentricity of 5° (Cavanaugh, Bair, &
Movshon, 2002a, 2002b; Dumoulin & Wandell, 2008). The eccentricity of 5° corresponds to
half the stimulus length from center used in the two experiments. The size of the suppressive
field was set to 20°, which is four times the stimulation field (Reynolds & Heeger, 2009).
We simulated the spatial extent of the large stimulus as being constant. To simulate
distributed spatial attention across the visual field, the size of the spatial attention field was
set to be equal to the size of the extent of the stimulus. The qualitative results of the
simulation (response gain) were robust to the simulation parameters, even when doubling or
halving the featural attention field sizes or stimulus bandwidth values.

The simulations resulted in two testable predictions: FBA should improve performance
accuracy via a change in response gain both (1) when the featural extent of the attention
field is small relative to the featural extent of the stimulus (Fig. 1B; compare also Fig. 4D–E
of Reynolds & Heeger (2009) for direction of motion), and (2) when the attention field is
large relative to the featural extent of the stimulus (Fig. 1C). The latter simulation predicted
a change in contrast gain only when the orientation bandwidth of the stimulation field was
set to be unrealistically narrow (e.g., 3°).

High and low featural-uncertainty
Comparing performance accuracy (d’) for valid and invalid trials revealed differences in
behavioral performance. Accuracy improved with FBA, consistent with changes in response
gain. When uncertainty was minimal, attention increased asymptotic performance at high

contrasts (Fig 3A): there were robust differences in  (valid: =1.39, 68% confidence

interval = [1.35, 1.50]; invalid: =0.75, 68% confidence interval = [0.72, 0.89]; p<0.001),
but there was no evidence for a change in c50 (valid: c50=0.12, 68% confidence interval =
[0.12, 0.14]; invalid: c50=0.10, 68% confidence interval = [0.09, 0.13], p=0.79). The quality
of the fit was R2=0.95.

When uncertainty was high (Fig 3B), attention also increased asymptotic performance at

high contrasts: there were robust differences in  (valid: =0.97, 68% confidence

interval = [0.92, 1.01]; invalid: =0.47, 68% confidence interval = [0.39, 0.52]; p<0.001),
but no evidence for a change in c50 (valid: c50=0.10, 68% confidence interval = [0.10, 0.11];
invalid: c50=0.08, 68% confidence interval = [0.07, 0.10], p=0.87). The quality of the fit was
R2=0.90.

We constrained the exponent n to have the same value for all conditions in the low and high
featural-uncertainty experiments and obtained a best-fit value of n=4.39 (68% confidence
interval =[3.18,5.47]). Refitting the data, allowing the exponent to vary independently for
each experiment, also yielded the same conclusion: a change in response gain, both with low
and high featural-uncertainty. Best-fitting values for the exponents of the psychometric
functions were similar for the low-uncertainty (n=3.98, 68% confidence interval = [2.67,
5.04]) and high-uncertainty (n=4.72, 68% confidence interval = [3.78, 10.483=])
experiments.

The same results were evident in the behavioral performance of all individual observers
(Fig. 4). For the individual observer analysis, the d’ performance across experimental
sessions was computed separately for each condition and contrast. We fit psychometric

functions (see above) to estimate c50 (Fig. 4a), and  (Fig. 4b) for each observer. Small
attention fields (relative to the stimulus extent) yielded similar c50 values for valid and
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invalid pre-cues (one-tailed paired t-test, p=0.63; one-tailed Wilcoxon, p=0.38), and reliably

resulted in larger  values for valid than for invalid pre-cues (one-tailed t-test, p<0.001;
one-tailed Wilcoxon, p<0.001). Similarly, large attention fields consistently resulted in
similar c50 values for the two pre-cue conditions (one-tailed t-test, p=0.88; one-tailed

Wilcoxon, p=0.13), but resulted in larger  values for valid than invalid pre-cues (one-
tailed t-test, p<0.001; one-tailed Wilcoxon, p<0.001).

Masking control experiment
Masking did not confound the interpretation of our results. We replicated the results of the
low-uncertainty experiment in 2 observers, using a variation of the protocol in which: (1) the
stimuli were restricted to never even partially overlap between stimulus displays 1 and 2,
and (2) the stimulus contrast of display 1 varied, while display 2 had a constant stimulus
contrast of 20.62%, which was high relative to the mean c50. FBA again resulted in a change
in performance consistent with a change in response gain. While there was no evidence for a
change in c50 (O1: valid: c50=0.10, CI=[0.10; 0.11]; invalid: c50=0.10; CI=[0.10; 0.15];
p=0.50; O2: valid: c50=0.09, CI=[0.08; 0.10]; invalid: c50=0.10, CI=[0.09; 0.13]; p=0.18),

there were robust differences in  between valid and invalid pre-cues (O1: valid: 

=1.53, CI=[1.51; 1.67]; invalid: =0.59, CI=[0.48; 0.75]; p<0.001; O2: valid: =1.19,

CI=[1.11; 1.28]; invalid: =0.90, CI=[0.73; 1.01]; p=0.02).

Uncertainty control experiment
The uncertainty control experiment included both high- and low-uncertainty conditions
within the same experimental session. We compared performance in trials with identical
stimuli by selecting from the high-uncertainty experiment the subset of trials in which the
stimulus orientations were the same as those in the low-uncertainty experiment.
Performance (d’) was averaged across observers, separately for valid and invalid pre-cues,
and separately for the high-uncertainty and the low-uncertainty conditions (Fig. 5). We
analyzed only the common orientations: θtest of ± 42, 45 or 48°, θR: θtest ± 1 JND and θL:
θtest ± 1 JND. Thus, only the uncertainty (the shape of the pre-cue) was different between
the two conditions, either directing observer’s attention only to orientations near ±45° or to a
larger orientation range centered on ±45°. This analysis included 6,480 trials (4,860 valid;
1,620 invalid) per observer in the low-uncertainty condition and 1,100 trials (~825 valid;
~275 invalid) per observer in the high-uncertainty condition.

Mean performance with high-uncertainty was worse than with low-uncertainty. For valid
pre-cues, observers performed significantly worse in the high- compared to the low-
uncertainty condition (one-tailed paired t-test, p=0.013; one-tailed Wilcoxon, p=0.014),
indicating that observers focused their attention in the low-uncertainty condition and spread
their attention in the high-uncertainty condition. All observers showed a similar pattern of
results. Our hypothesis concerned the valid pre-cue trials, but there was a non-significant
trend in the same direction for invalid pre-cues (two-tailed paired t-test, p=0.075, two-tailed
Wilcoxon, p=0.200).

Similar results were obtained when all orientations (all trials) of the high-uncertainty
condition were included in the analysis. Observers performed better in the low-uncertainty
than in the high-uncertainty condition (valid low-uncertainty versus valid high-uncertainty:
one-tailed paired t-test, p=0.004, one-tailed Wilcoxon, p=0.014; invalid low-uncertainty
versus invalid high-uncertainty: two-tailed t-test, p=0.101; two-tailed Wilcoxon, p=0.200)).
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Spread of feature-based attention
We reanalyzed the data to evaluate whether observers spread FBA across the range of
possible orientations in the high-uncertainty experiment (Fig. 6). Specifically, performance
(averaged across 4 observers and 9 contrasts) in valid (Fig. 6A, red bars) and invalid trials
(Fig. 6A, blue bars) was analyzed for different orientation ranges in which the full
orientation range of θtest (±15°–75°) was sub-divided into five bins of 9° each.

The difference in performance between valid and invalid trials in each orientation bin did
not differ from the mean differential performance of all other bins (two-tailed paired t-tests
and Wilcoxon, all comparisons p>0.1). In addition, to test whether attention improved
performance, we subtracted performance of invalid from valid trials. The differential
performance of each orientation sub-range was significantly larger than zero (one-tailed t-
tests, all comparisons p<0.05, except for one, 15–24°).

In the low-uncertainty experiment, the pre-cue line was always +45° or −45° oriented. We
introduced a small jitter near 45° in the orientation of stimulus 1 so that the stimulus display
was uninformative by itself and observers had to wait for stimulus display 2 to perform the
discrimination task. This small orientation jitter also allowed us to explore observers’
strategy to perform the fine orientation discrimination task. In a post-hoc analysis, we
binned trials based on the orientation of stimulus 1 (Fig. 6B). The first bin included trials for
which the orientation of stimulus 1 was closest to ±45° (‘45’). This occurred for the
following 4 pairs of stimulus orientations: (θtest = 42°, θR = θtest + 1 JND), (θtest = 48°, θR
= θtest − 1 JND), (θtest = −42°, θL = θtest − 1 JND), (θtest = −48°, θL = θtest + 1 JND). The
second bin included trials for which the orientation of stimulus 1 was slightly more different
from ±45° (‘near 45°’): θtest = ±45° and θR or θL = θtest ± 1 JND. The third bin included the
remainder of the trials for which the orientation of stimulus 1 was furthest from ±45° (‘far
45°’). This occurred for the following 4 pairs of stimulus orientations: (θtest = 42°, θR = θtest
− 1 JND), (θtest = 48°, θR = θtest + 1 JND), (θtest = −42°, θL = θtest + 1 JND), (θtest = −48°,
θL = θtest − 1 JND).

Performance across the three bins was compared with two-tailed tests. Performance was best
when stimulus 1 orientations were furthest from ±45°, lower when stimulus 1 orientations
were near ±45°, and lowest when approximately equal to ±45° (±45° vs. far: t-test, p=0.001;
Wilcoxon: p=0.029; far vs. near: t-test, p=0.009; Wilcoxon: p=0.057; near vs. ±45°: t-test,
p<0.001; Wilcoxon: p=0.029). This difference in performance as a function of stimulus
orientation was evident for both valid and invalid pre-cues (Fig. 6B, red and blue bars,
respectively; Table 1). Subtracting performance of invalid from valid trials revealed no
evidence that the differential performances varied as a function or stimulus orientation (t-
tests and Wilcoxon, all comparisons p>0.1; Table 1).

Eye positions
Main experiment—Fixation was stable during stimulus presentation in the low- and high-
uncertainty experiments. Saccades were detected in 0.96% and 0.67% of the trials in the
low- and high-uncertainty experiments, respectively. The recorded gaze positions of all
observers had a standard deviation of 0.63° horizontally and 0.84° vertically in the low
uncertainty experiment, and 1.18° horizontally and 2.04° vertically in the high uncertainty
experiment. The higher standard deviation in the high uncertainty experiment stems from
one observer (low uncertainty experiment: 1.00° horizontally and 0.97° vertically; high
uncertainty experiment: 2.00° horizontally and 3.46° vertically). All other observers had
standard deviations <0.45° horizontally and <1.27° vertically in both experiments.
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For left-tilted and right-tilted pre-cues, vertical gaze position distributions were statistically
indistinguishable (two-tailed t test comparison, p=0.960). Horizontal gaze positions differed
(p<0.001; Bonferroni critical level = 0.0125), but the effect size was negligible (Cohen’s
effect size = 0.094; left-tilted pre-cues: M=0.02°, Sd=0.48° and right-tilted pre-cues:
M=0.11°, Sd=1.30°).

For the high- and low-uncertainty experiments, horizontal gaze positions were statistically
indistinguishable (p =0.364). Vertical gaze position distributions differed (p=0.009), but the
effect size was negligible (Cohen’s effect size = 0.012; low uncertainty: M=0°, Sd=0.84°
and high uncertainty: M=−0.06°, Sd=2.04°).

Masking control experiment—Fixation was stable during stimulus presentation in this
control experiment. Saccades were detected in 0.37% of the trials. The recorded gaze
positions had a standard deviation of 1.48° horizontally and 1.43° vertically. There was no
evidence that left-tilted and right-tilted pre-cues resulted in significantly different
distributions (horizontal: p=0.093. vertical: p=0.177).

Uncertainty control experiment—Fixation was stable during stimulus presentation in
the low- and high-uncertainty control experiments. Saccades were detected in 0.91% and
0.50% of the trials in the low and high uncertainty blocks, respectively. The recorded gaze
positions of all observers had a standard deviation of 0.73° horizontally and 0.40° vertically
in the low-uncertainty experiment, and 0.37° horizontally and 0.46° vertically in the high-
uncertainty experiment.

For left-tilted and right-tilted pre-cues, vertical gaze position distributions were statistically
indistinguishable (p=0.183). Horizontal gaze positions differed (p<0.001), but the effect size
was negligible (Cohen’s effect size = 0.08; left-tilted pre-cues: M=0.04°, Sd=0.73° and
right-tilted pre-cues: M=0.09°, Sd=0.36°).

For the high- and low-uncertainty experiments, horizontal gaze positions were statistically
indistinguishable (p=0.292). Vertical gaze position distributions differed (p=0.001), but the
effect size was negligible (Cohen’s effect size = 0.061; low uncertainty: M=0.002°,
Sd=0.40° and high uncertainty: M=−0.025°, Sd=0.46°).

DISCUSSION
FBA improved performance accuracy via a change in response gain, and not in contrast
gain, both when the featural extent of the attention field was small (Fig 3A; Fig 4) and when
it was large (Fig 3B; Fig 4) relative to the featural extent of the stimulus. In two experiments
(Fig. 2) observers were cued to attend to one of two spatially superimposed orientations. In
the low uncertainty experiment, the stimuli were selected from a narrow range of
orientations. In the high uncertainty experiment, the two overlapping orientations were each
chosen from a broad range of possible orientations. We verified that the uncertainty
manipulation about the upcoming orientation was effective (Fig. 5) and that the spread of
attention was less selective and wider for high- than low-uncertainty (Fig. 6).

The experimental design maximized the effects of FBA, while spatial attention was
controlled and distributed. Target and distracter orientations were intermixed within the
same space around fixation to keep the distribution of spatial attention the same for valid
and invalid pre-cues. Observers were instructed to covertly attend to as many grating
patches as possible, all sharing the same orientation close to the cued orientation, while
ignoring the rest of the intermixed stimulus patches, all sharing a very different, un-cued and
behaviorally irrelevant orientation. Previous research has provided evidence that observers
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are able to perceptually group and average orientation signals to process them (Ben-Av &
Sagi, 1995; Carrasco & Chang, 1995; Gheri & Baldassi, 2008; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001). To encourage observers to distribute their spatial attention, we
introduced spatial uncertainty by randomizing the locations of the stimulus patches within
each stimulus display in each trial. Thus, attending to a single, small location in the visual
field (or to just a few locations) would have harmed observer’s performance, because either
a target or a distractor or no stimulus at all might have been displayed at the attended
location(s).

Backward masking cannot explain our findings. We minimized potential masking effects in
our main experiments. The two displays were separated by a 100 ms blank interval, which is
long enough to minimize masking given the spatial frequency and range of eccentricities of
the stimuli (Adam, Ketelaars, Kingma, & Hoek, 1993; Breitmeyer & Ogmen, 2000; Gorea,
1987; Joffe & Scialfa, 1995; Rogowitz, 1983). Moreover, the stimuli were randomly
distributed around fixation, such that they rarely spatially overlapped between display 1 and
2, and stimulus displays 1 and 2 had equal contrast in each trial. Hence, had there been any
masking, it would have been equal for all conditions (valid versus invalid, low-uncertainty
versus high-uncertainty). Nonetheless, we performed a control experiment to ensure that
stimuli never spatially overlapped and that the contrast of the second stimulus display was
constant. Psychometric fits were again consonant with a change in response gain, consistent
with the results in the main experiments.

Testing the Normalization Model of Attention
We used the normalization model of attention (Reynolds & Heeger, 2009) to simulate the
contrast dependence of FBA (Fig. 1A–C). The featural extent of the attention field is related
to the feature bias in the biased competition model and to the “feature-similarity gain
principle” (Boynton, 2005; Khayat et al., 2010; Martinez-Trujillo & Treue, 2004; Treue &
Martinez Trujillo, 1999). The attention field in the normalization model of attention,
however, does not directly alter firing rate by a scaling factor, but is instead mediated
through normalization (Heeger, 1992; Reynolds & Heeger, 2009).

The model simulated neuronal contrast-response functions; here we used it to make
predictions about the psychophysical data obtained in our experiments. How do the model
predictions for performance relate to predictions for firing rates? Discrimination can be
linked with neuronal responses, by incorporating a model of the noise or variability in
neuronal responses, and by incorporating a decision rule (see also Herrmann et al., 2010).
The noise in single-unit firing rates is Poisson-like, i.e. the variance increases with mean
firing rates (Dean, 1981; Geisler & Albrecht, 1997; Shadlen & Newsome, 1998). However,
after pooling signals across many neurons, it is likely that only the correlated noise remains
(Averbeck, Latham, & Pouget, 2006), which might behave more like additive noise. In fact,
psychophysical data suggest that perceptual performance is limited by an additive noise
component, independent and identically distributed (IID) across trials (Katkov, Tsodyks, &
Sagi, 2007). Once the IID noise model and a maximum-likelihod decision rule have been
adopted, behavioral performance can be predicted from the pooled neuronal activity
(Barlow, Kaushal, Hawken, & Parker, 1987; Geisler & Albrecht, 1997; Gold & Shadlen,
2001, 2007; Jazayeri & Movshon, 2006; Pestilli et al., 2009; Shadlen, Britten, Newsome, &
Movshon, 1996). Performance accuracy, d’, is then proportional to the signal-to-noise ratio
of the underlying neuronal responses. Hence, with additive IID noise and a maximum-
likelihood decision rule, a change in the neuronal contrast-response functions would be
accompanied by a similar change in performance accuracy. If the underlying neuronal
responses showed an increase in response gain (Fig. 1B–C), the psychometric function
would be scaled (Fig. 3A–B). If the underlying neuronal responses showed an increase in
contrast gain, the psychometric function would shift horizontally (on the log contrast axis).
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Considering an alternative model of noise, in which performance is limited by the Poisson-
like noise evident in single-cell firing rates (Carandini, 2004; Dean, 1981) together with a
maximum-likelihood decision rule (Jazayeri & Movshon, 2006) yields the same
interpretation of the psychometric functions (Pestilli et al., 2009).

Using the normalization model of attention as a framework, the fact that there is a shift from
response gain to contrast gain for spatial attention with smaller stimuli and broader attention
fields (Herrmann et al., 2010), and not for FBA seems surprising at first, given that the
spatial and feature domain are interchangeable in the model. However, to predict changes in
contrast gain, it is crucial for the model simulations that the attention field be larger than
both the excitatory stimulus drive and the suppressive drive. In the space domain, the
attention field can be easily enlarged to such an extent. In the feature domain, however, the
range of possible orientations is limited to 180°. The orientation-tuning bandwidths of
neurons in visual cortex are ~40° (median full-width at half-max) (De Valois, Yund, &
Hepler, 1982; Desimone & Schein, 1987; McAdams & Maunsell, 1999), and the suppressive
fields (the range of orientations that contribute to suppression via normalization) are
considerably broader (with all orientations contributing to the suppression), so the attention
field cannot be much broader than the suppressive field. The model can simulate a change in
contrast gain with FBA, but only for very narrow (biologically implausible) orientation
bandwidths. For biologically plausible orientation-bandwidth values, the model predicts
only a change in response gain for FBA to orientations. The model predicts that FBA to
directions of motion should also yield changes in response gain, because neurons in area MT
have even broader tuning bandwidths with a modal value of ~60–90° (Albright, 1984;
Lagae, Raiguel, & Orban, 1993; Maunsell & Van Essen, 1983; Snowden, Treue, &
Andersen, 1992), but this hypothesis will need to be experimentally tested in future studies.

Neurophysiological correlates
We infer that performance in the present experiments, which involved directing FBA to
spatially-distributed arrays of oriented gratings, may have relied on the responses of
orientation-selective visual neurons in higher visual cortical areas in the ventral visual
pathway, such as visual cortical area V4 (Desimone & Schein, 1987). Best-fitting values for
the exponents of the psychometric functions were ~4, for both the low-uncertainty and high-
uncertainty experiments. This range of exponents is similar to the range of values reported
for contrast-response functions of neurons in V4 (Cheng, Hasegawa, Saleem, & Tanaka,
1994; Sclar, Maunsell, & Lennie, 1990). Lower exponents (~2) were derived from previous
psychophysical experiments on spatial attention with a parallel cueing and uncertainty
protocol (Herrmann et al., 2010); those exponents were in the range of values report for
contrast-response functions of neurons in V1 (Sclar et al., 1990).

A recent neurophysiological study has reported that FBA results in larger modulations at
medium and high contrasts than at low contrasts (Khayat et al., 2010), in agreement with the
present results. Unlike the tasks we used, however, the task used in the neurophysiology
study did not fully exclude a spatial attention contribution. Responses in area MT were
recorded while a pair of random-dot stimuli moved in the receptive field of an MT neuron in
one hemifield and another pair outside the receptive field, in the other hemifield. Each pair
consisted of a highcontrast random-dot pattern moving in the neuron’s anti-preferred
direction and a second random-dot test pattern moving in the neuron’s preferred direction,
with different contrasts on different trials. The responses of MT neurons were measured
when monkeys attended to fixation to detect luminance changes, and when attention was
spatially directed to the stimulus pair outside the receptive field to detect a direction change
in one of the two random dot patterns. Hence, the monkeys were cued to shift both spatial
and FBA; differences in the distribution of spatial attention may have elevated sensory
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responses in the attend-fixation condition, thus exaggerating the degree of relative
suppression when the more distant moving stimulus pair was attended.

Featural attention field size
We found that the featural extent of the attention field can be manipulated by introducing
uncertainty about the upcoming feature dimension. Thus, the featural extent of the attention
field is flexible and observers are able to adjust it to the needs of the current task.
Manipulating featural uncertainty affected performance accuracy and task difficulty. We
ensured, however, that task difficulty did not confound the interpretation of our results by
adjusting the degree of stimulus tilt separately for each observer and for the high and low
uncertainty conditions, so that performance was approximately 75% correct at full contrast
with a neutral cue. Moreover, we compared only the differences in performance accuracy for
valid and invalid cues within each condition (low uncertainty, high uncertainty).

The spatial extent of the attention field has been reported to be flexible in size and has been
experimentally manipulated by introducing uncertainty about the location of the upcoming
target (Castiello & Umilta, 1990; Datta & DeYoe, 2009; Eriksen & St James, 1986;
Herrmann et al., 2010; Muller, Bartelt, Donner, Villringer, & Brandt, 2003; Yigit-Elliott et
al., 2011). This flexibility, however, had previously not been demonstrated for featural
attention. Previous experiments have used uncertainty to show feature selectivity with
regard to spatial frequency (Cormack & Blake, 1980; Davis & Graham, 1981; Davis,
Kramer, & Graham, 1983; Graham, Robson, & Nachmias, 1978), but have not adjusted its
size.

The control experiments verified that the uncertainty manipulation was effective. All
observers performed consistently worse at near ±45° orientations in the valid condition
when there was high- than when there was low-uncertainty about the upcoming orientation
(Fig. 5), indicating that observers used the pre-cue. With high uncertainty, observers spread
attention across the larger pre-cued orientation range; they performed equally well at several
orientation ranges across the full pre-cued range, and the attentional gain was evident at all
pre-cued orientations, indicating a large featural extent of attention (Fig. 6A). With low
uncertainty, performance was better for orientations that differed slightly from the pre-cued
orientation than at the pre-cued orientation (Fig. 6B), indicating that the featural extent of
attention was narrow. This finding is consistent with previous reports that for fine
discriminations, performance is best when monitoring the responses of neurons that are
tuned for a feature that differs slightly from the stimulus (Jazayeri & Movshon, 2006, 2007;
Navalpakkam & Itti, 2007; Scolari & Serences, 2009). In our low-uncertainty experiment,
we infer that attentional gain was largest for neurons tuned to ±45°, because neurons that
prefer ±45° have tuning curves that are steepest at nearby orientations, thereby maximizing
performance for those nearby orientations.

Future studies might explore whether and how the featural extent of the attention field
influences the tuning width of visual neurons. FBA has been reported to not only scale
neuronal responses (Treue & Martinez Trujillo, 1999), but also sharpen the tuning
(Martinez-Trujillo & Treue, 2004). This finding has been supported by psychophysical
studies for orientation (Baldassi & Verghese, 2005) and for directions of motion (Ling et al.,
2009). The normalization model of attention can also exhibit sharpened tuning. In the
model, the degree of sharpening depends on the featural extent of the attention field; a small
featural attention field sharpens the tuning more than a broad featural attention field
(Reynolds & Heeger, 2009).
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Conclusion
In this study we show that FBA modulates activity in visual cortex to stimulus contrast in a
manner that resembles a change in response gain, both with a small and large featural extent
of the attention field. This study also provides the first experimental evidence that the
featural attention field can be manipulated. The present findings support key predictions of
the normalization model of attention (Reynolds & Heeger, 2009), thereby furthering our
understanding of the processing in visual cortex and the neural computations underlying
visual attention.
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Highlights

The featural extent of the attention field is flexible and can be adjusted according to task
demands

Accuracy was better for valid than invalid pre-cues, consistent with a change in response
gain

Response gain whether featural extent of attention field was small or large relative to the
stimulus featural extent

These results support key predictions of the normalization model of attention
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Figure 1. Model and predictions
(A) Using the normalization model of attention (Reynolds & Heeger, 2009) to simulate
FBA. Stimuli, presented as input to the model, were two spatially overlapping orientations
identical in contrast, one of which was attended. The upper left panel depicts the stimulus
drive for a population of neurons with various receptive field centers (horizontal) and
orientation preferences (vertical). Brightness at each location in the image corresponds to the
stimulus drive to a single neuron. Lower left panel shows the attention field when attending
to the right-tilted orientation. Gray indicates a value of 1 and white indicates an attentional
gain factor greater than 1. The attention field is multiplied point-by-point with the stimulus
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drive. Bottom right panel, the normalization factors are computed by the product of the
stimulus drive and the attention field, and then pooled over space and orientation through
convolution with the suppressive field. Right panel, neural image depicting the output firing
rates of the population of simulated neurons, computed by dividing the stimulus drive by the
normalization factors. The stimulus drive, attention field, and normalization factor all had
Gaussian profiles in space and orientation. (B) Simulation results for small attention field,
i.e., featural extent of the attention field small relative to featural extent of the stimulus. Red
curve, contrast-response function for a simulated neuron when attending the neuron’s
preferred orientation. Blue curve, contrast-response function when attending the non-
preferred orientation. (C) Simulation results for large attention field. Only the featural extent
of the attention field was changed in the simulations; all other model parameters were
identical in both panels. The model predicts a change in response gain (largest effects at
higher contrasts, upward scaling of the contrast-response function) for both small and large
attention fields.
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Figure 2. Experimental protocol
(A, B) Feature-based attention (FBA) task. Observers performed an orientation
discrimination task and reported whether the orientation in stimulus display 2 was slightly
clockwise or counter-clockwise of the closest orientation in stimulus display 1. Stimulus 1
and 2 had the same contrast, which varied from trial to trial. ISI, interstimulus interval; ITI,
intertrial interval. The white lines in both stimulus intervals indicate stimulus locations that
were randomly jittered. (B) Stimulus displays in the low-uncertainty experiment. Top
(inset), low-uncertainty cue, left or right tilted line. Left panel, stimulus 1 consisted of two
spatially interleaved orientations around fixation. Right panel, stimulus 2 consisted of thirty-
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two grating patches with identical orientation, which was slightly clockwise or counter-
clockwise of one of the orientations in stimulus 1. (C) High uncertainty experiment. High-
uncertainty cue, left or right tilted segments. Stimulus displays, in the high-uncertainty
experiment. Same format as panel B. Stimulus 1, the right-tilted orientation could be one of
21 possible orientations between 15° and 75°; the left-tilted orientation could also be one of
21 possible orientations between −15° and −75°. The two orientations varied randomly and
independently, with the constraint that they were at least 60° apart. Stimulus 2 was slightly
clockwise or counter-clockwise of one of the orientations in stimulus 1.
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Figure 3. Psychometric functions
(A) Small attention field, (low-uncertainty). (B) Large attention field (high-uncertainty).
Each panel plots performance accuracy (d’) as a function of contrast, for valid (red) and
invalid (blue) pre-cues. Each data point represents the mean across observers. Error bars on
data points are ±1 s.e.m. (n=4 observers). Curves, best-fit of the Naka-Rushton equation

yielding parameter estimates c50 (contrast yielding half-maximum performance) and 
(asymptotic performance at high contrast). Error bars on parameter estimates are 68%-
confidence intervals, obtained by bootstrapping.
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Figure 4. Parameter estimates for individual observers
(A) Contrast yielding half-maximum performance c50. Circles, small attention field (low
uncertainty). Squares, large attention field (high uncertainty). Open symbols, individual
observers. Filled symbols, mean across observers. (B) Asymptotic performance at high

contrasts . Same format as panel A.
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Figure 5. Uncertainty control experiment
Performance as a function of uncertainty for valid pre-cues. Each bar represents the mean
across observers, for trials with the same orientations in high- and low-uncertainty blocks.
Error bars, ±1 s.e.m. (n=4 observers). * p<0.05, one-tailed t-test, Wilcoxon test.
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Figure 6. Performance as a function of stimulus orientation
(A) Large attention field (High uncertainty). Each bar represents performance for a different
range of stimulus orientations. Red, valid pre-cues. Blue, invalid pre-cues. Error bars, ±1
s.e.m. (n=4 observers). Similar performance for all orientations indicated that observers
spread their attention across orientations. (B) Small attention field (Low-uncertainty).
Performance corresponding to each of 3 orientation ranges, combining right- and left-tilted
orientations. Red, valid pre-cues. Blue, invalid pre-cues. Error bars, ±1 s.e.m (n=4
observers). * p<0.05, t-tests, Wilcoxon test.
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Table 1

Feature-based attention in the low-uncertainty experiment (n=4 observers). P-values of two-tailed paired t-
tests, and p-values of Wilcoxon tests in parenthesis.

Comparison
of
orientation
ranges

Performance for ±45° <
performance for

near ±45°

Performance for near
±45° < performance for

far ±45°

Performance for ±45° <
performance for

far ±45°

Valid pre-cues 0.010 (0.057) 0.013 (0.057) 0.003 (0.029)

Invalid pre-cues 0.089 (0.057) 0.017 (0.029) 0.009 (0.029)

Valid minus invalid 0.804 (0.486) 0.500 (0.886) 0.467 (0.486)
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