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Abstract
Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three,
leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean
fish and associated trends in human exposure as a result of such changes are less clear. Here we
review our understanding of global mass budgets for both inorganic and methylated Hg species in
ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as
internal production of monomethylmercury (CH3Hg) and dimethylmercury ((CH3)2Hg). Impacts
of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the
water column and how this influences bioaccumulation into ocean food chains are also discussed.
Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to
open ocean systems, most of the CH3Hg accumulating in ocean fish is derived from in situ
production within the upper waters (<1000 m). An analysis of the available data suggests that
concentrations in the various ocean basins are changing at different rates due to differences in
atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in
atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should
respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory
control strategies. Migratory pelagic fish such as tuna and swordfish are an important component
of CH3Hg exposure for many human populations and therefore any reduction in anthropogenic
releases of Hg and associated deposition to the ocean will result in a decline in human exposure
and risk.
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1.0 Introduction
Monomethylmercury (CH3Hg) is a neurotoxin that can cause long-term developmental
delays in children and has been linked to impaired cardiovascular health in adults (Axelrad
et al., 2007; Choi et al., 2009; Grandjean et al., 1997: Roman et al., 2010; Karagas et al.,
2012; Fitzgerald and Clarkson, 1991). For most fish eating populations, marine fish are the
major source of human exposure to CH3Hg globally. For example, in the United States over
90% of the population-wide CH3Hg intake is from marine and estuarine fish species
(Carrington and Bolger, 2002; Sunderland, 2007; USEPA, 2002). In an effort to reduce risks
associated with human and wildlife exposures, the United Nations Environment Program
(UNEP) is currently leading negotiations toward a global legally binding instrument on
reducing global anthropogenic mercury (Hg) emissions and use in products (UNEP, 2010).
One uncertainty in understanding the potential effectiveness of such agreements relates to
how emissions reductions on a global scale will affect concentrations in marine fish. Better
constraints on estimated lifetimes of different Hg forms in the ocean and biogeochemical
factors driving interspecies conversions are needed to understand factors controlling
accumulation in marine food webs. Here we review the sources of Hg and CH3Hg to open
ocean regions, their areal and vertical distributions and synthesize information on temporal
and spatial trends of the dominant species in seawater. Additionally, we review available
data on CH3Hg concentrations in biological tissues and discuss potential impacts from
anthropogenic emissions of Hg on human exposures and risks from marine fish.

The majority of Hg inputs to open ocean regions are from wet and dry atmospheric
deposition (Mason et al., 1994a; Mason and Sheu, 2002; Sunderland and Mason, 2007;
Soerensen et al., 2010). This inorganic mercury (HgII) can be transported laterally and
vertically by ocean circulation and settling of suspended particulate matter, or may be
reduced to dissolved gaseous elemental mercury (Hg0) and evaded to the atmosphere.
Physical and biological characteristics of ocean basins determine both the lifetime of
anthropogenic inorganic Hg in upper ocean waters and its relative conversion to the more
toxic and bioaccumulative CH3Hg. Generally, model simulations have suggested that
anthropogenic impacts are greatest in the surface mixed layer of the ocean (54 m annual
modeled average; Soerensen et al., 2010; Strode et al., 2011; Fig 1a). Note that throughout
this manuscript we use the terms surface waters/mixed layer to refer to the top 100 m of the
ocean while the term subsurface waters refers to those waters below the mixed layer but
above the permanent thermocline, typically < 1000 m. In the subsurface waters, penetration
of anthropogenic Hg is varied and complicated by the lateral and vertical movement of
water masses through upwelling and deep-water formation in different ocean basins, and
with differences in the intensity of vertical transport processes (Sunderland and Mason,
2007; Strode et al., 2011; Mason and Sheu, 2002). Estimates of anthropogenic Hg
enrichment vary among models that have different spatial and temporal resolution and
consider different transport processes and evaluation of these models is constrained by
limited measurements. Overall, anthropogenic Hg enrichment of deep ocean water (>1500
m) is smaller than surface and subsurface waters due to the long timescales for lateral and
vertical transport to the deep ocean (Sunderland and Mason, 2007). Understanding the
impacts of human activities on fish CH3Hg concentrations requires combining our
knowledge of the time-scales required for penetration of anthropogenic Hg in the vertical
marine water column with the dominant regions where inorganic Hg is converted to CH3Hg.

Both CH3Hg and dimethylmercury ((CH3)2Hg) are present in the ocean at detectable
concentrations (e.g., Mason and Fitzgerald, 1990). While, as discussed below, there is the
potential for different pathways for the formation and degradation of the methylated Hg
forms, there is little concrete evidence for such differences in the literature. Additionally,
analytical methods for methylated Hg species used do not always distinguish between
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CH3Hg and (CH3)2Hg (e.g. Cossa et al., 2011; Sunderland et al., 2009). Therefore, when
comparing data in the literature, we compare and contrast the total methylated concentration
to make use of all available data and denote the sum of these two species as ΣCH3Hg.

Hypothesized sources of CH3Hg for uptake into the marine food web include production in
coastal and shelf sediments (Hammerschmidt and Fitzgerald, 2004; 2006), hydrothermal
vents and deep-sea sediments (Kraepiel et al., 2003), and in situ water column methylation
processes (Mason and Fitzgerald, 1990; Heimbürger et al., 2010; Lehnherr et al., 2011;
Cossa et al., 2011; Sunderland et al., 2009). Here we review current understanding of these
processes and their magnitude to identify plausible locations for the formation of CH3Hg
that is bioaccumulated into marine food webs.

Risks associated with CH3Hg in marine fish can be managed over the short term by dietary
interventions for sensitive groups, such as women of childbearing age and young children,
by switching from high to low CH3Hg fish (Carrington et al., 2004) to effectively reduce
CH3Hg exposure (Mahaffey et al., 2011; Oken et al., 2012). However, because of the health
benefits of consuming fish (Oken et al., 2012), reducing the environmental Hg burden and
associated accumulation in fish is the preferred long term approach for managing exposure.
This review focuses on the physical and biological processes in open ocean regions that
drive the timing and magnitude of changes in fish CH3Hg levels in response to changes in
atmospheric Hg loadings. We review the best available knowledge of spatial, vertical and
temporal patterns of Hg and CH3Hg in the major oceans and discuss the major gaps in
process-level understanding and measurements, and their implications for ongoing
regulatory efforts for Hg and CH3Hg.

2.0 Global Mercury and Methylmercury Budgets for the Open Ocean
2.1 Inorganic Mercury Sources and Sinks

Sources of Hg to open ocean regions include inputs from ocean margins (rivers, estuaries),
groundwater, benthic sediments, and hydrothermal vents and direct atmospheric deposition.
Models and measurements suggest that direct atmospheric deposition is the dominant source
of Hg with global inputs to the ocean ranging from 14 to 29 Mmol over the past decade
(Dastoor and Laroque, 2004; Holmes et al., 2010, Mason and Sheu, 2002; Selin et al., 2007;
2008; Soerensen et al., 2010; Strode et al., 2007; Sunderland and Mason, 2007). The most
recent global modeling efforts, which include model evaluations based on oxidation of
atmospheric Hg0 by Br atoms (Holmes et al., 2010), suggest that total wet and dry
deposition to open oceans in 2008 was 18.5 Mmol (Soerensen et al., 2010; Figure 1a).

Mercury contributions from other sources to open ocean regions are much smaller on a
global basis. Sunderland and Mason (2007) estimated global river discharges of Hg into the
oceans using long-term mean freshwater discharges and average sediment loads of the
largest 927 rivers globally (Dai and Trenberth, 2002; Ludwig et al., 1996) and available
dissolved and particulate Hg data. This evaluation showed that the total Hg load from rivers
to estuaries is large (> 14 Mmol yr−1) but that only a small portion of this Hg is transported
to open ocean regions (∼1.9 Mmol yr−1, range 1.2-2.4). Other particle-reactive metals are
similarly deposited in coastal regions (Chester, 2003).

Despite relatively small fluxes from rivers on a global basis, riverine Hg inputs can be
regionally important (Fisher et al., 2011; Sunderland and Mason, 2007). For example, on a
basin-wide scale, inputs from rivers range from 25 to 41% of the magnitude of atmospheric
deposition in the South Atlantic Ocean, North Pacific Ocean, and Mediterranean Sea but
comprise a negligible fraction of inputs in the North Atlantic and South Pacific/Indian
Oceans (Sunderland and Mason, 2007). Most global models presently neglect rivers as a
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source to oceans (Lamborg et al., 2002a; Strode et al., 2007). Soerensen et al. (2010)
observed that this may be one factor explaining underestimates in dissolved Hg
concentrations and associated air-sea exchange of Hg0 in near coastal regions by the GEOS-
Chem global biogeochemical Hg model. Fisher et al. (2011) showed that seasonal trends in
atmospheric Hg levels measured at long-term monitoring stations in the Arctic could not be
explained without evoking a dominant flux of Hg from rivers to the Arctic Ocean, which is
greater in magnitude than direct atmospheric deposition. These results reinforce the need to
better characterize riverine Hg fluxes on a global basis.

Limited studies suggest that groundwater Hg inputs and benthic sediment fluxes are
relatively small sources of Hg to the global oceans (∼0.5 to 4 Mmol yr−1). Global
groundwater Hg fluxes are derived by assuming groundwater inputs make up ∼10% of
surface flow (Cossa et al, 1996; Bone et al., 2007; Black et al., 2009a; Laurier et al., 2007;
Ganguli et al., 2011). It should be noted that estimated inputs from groundwater could be
enhanced in some locations due to local sources (e.g., sewage impacts; Bone et al., 2007;
Black et al., 2009a) but generally these inputs do not rival atmospheric sources.

Inputs of Hg from hydrothermal vents are estimated to be <3 Mmol yr−1 (<20% of
atmospheric inputs) on a global basis (Lamborg et al., 2006) Data from four vent locations
representing a wide range in geologies have total Hg concentrations between ∼2 and ∼1300
pM in vent fluids (Lamborg et al., 2006). Similar variability has been observed for other
metals (Bagnato et al., 2009; Crespo-Medina et al., 2009; German and Von Damm, 2004).
Nearfield removal of Hg from vents also may occur due to precipitation of sulfides and/or
oxides, as found for Fe, Mn and other metals that complex strongly with sulfide (German
and Von Damm, 2004). Such removal is also supported by local enrichment of Hg in
hydrothermal associated deposits and sediments (e.g. Dekov, 2007). If elemental Hg (Hg0)
were released from hydrothermal vents it might be transported over longer distances due to a
slower rate of oxidation in cold, dark waters (Stoffers et al., 1999; Amyot et al., 2005).
However, the extent of such releases is thought to be small. From our evaluation of the
existing datasets and from the lack of any demonstration of elevated concentrations in the
water column in the regional vicinity of such sources (e.g., Fitzgerald et al., 1998; Fitzgerald
et al., 2007), we infer that the Hg inputs from hydrothermal vents are small. In addition to
deep ocean point source (hydrothermal) inputs, there is the potential for the release of Hg
from deep ocean sediments. This is considered negligible given the factors controlling the
flux of inorganic Hg from sediments (e.g. Hollweg et al., 2010). Additionally, a number of
studies suggest removal of inorganic Hg to the solid phase at the sediment-water interface
(Bloom et al., 1999; Mason et al., 2006) given that Hg is likely strongly retained by binding
to organic matter and other solid phases (Ravichandran, 2004), especially in oxic
environments.

Gas exchange is the major sink for ocean Hg (Mason et al., 1994a; Mason et al., 2001;
Fitzgerald et al., 2007; Sunderland and Mason, 2007; Soerensen et al., 2010). Gas exchange
both prolongs the lifetime of the Hg in the biosphere and partially mitigates the net impact
of anthropogenic Hg inputs on the ocean. Any changes in either the efficiency of net
reduction in surface waters or the rate of gas exchange will impact the relative rate of
change in surface concentration in concert with changes in atmospheric Hg concentration.
Additionally, changes in the rate of Hg removal from the surface ocean by particle
scavenging resulting from variations in productivity also could impact the extent of re-
emission to the atmosphere.

Recent improvements in analytical techniques and model development have resulted in a
better understanding of the factors involved in the air-sea exchange of Hg (Andersson et al.,
2007; 2008; 2011; Soerensen et al. 2010;). On a global basis, most (∼70%) of the Hg
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deposited in marine ecosystems is reemitted to the atmosphere in gaseous elemental form
(Hg0 predominantly, but some (CH3)2Hg; Sorensen et al., 2010; Mason and Sheu, 2002;
Corbitt et al., 2011), increasing the lifetime of Hg cycling through the reservoirs of the
surface biosphere. Net biotic and photochemical reduction of HgII (photochemical oxidation
also occurs in surface waters; Monperrus et al., 2007; Whalin et al., 2007) and subsequent
evasion of Hg0 reduces the pool of potentially bioavailable HgII that may be converted to
ΣCH3Hg and bioaccumulated into marine organisms.

2.2 Methylated Hg (ΣCH3Hg) Sources and Sinks
Atmospheric inputs constitute a small fraction of the total CH3Hg supply to the marine
environment. This is estimated to range from 0.07 and 0.15 Mmol yr−1 (average 0.1 Mmol
yr−1) assuming that CH3Hg is 0.5% of total Hg in deposition (Sunderland and Mason, 2007;
Mason et al., 1997; Fitzgerald et al., 1994; Sunderland et al., 2010) (Fig. 1b). Evasion of
(CH3)2Hg to the atmosphere is estimated at ∼0.01 Mmol yr−1 (Mason and Benoit, 2003).
There are limited measurements of methylated Hg in hydrothermal fluids (Lamborg et al.,
2006; Crespo-Medina et al., 2009) and methylated Hg ranges from <1 to 100% of the total
Hg. The fluids with greater CH3Hg appear to be associated with sedimented or back arc
environments, suggesting that fluid interaction with lithologies high in organic matter are
important for the formation of organometallic Hg. Fluids associated with mid-ocean ridge
spreading centers, where the majority of hydrothermal flow and heat dissipation occur, are
much more enriched with total Hg but have the lowest %CH3Hg. Using the East Pacific
Rise as representative for the flow-weighted average composition of hydrothermal fluids
(∼85 pM total and 1.7 pM ΣCH3Hg), we can estimate that hydrothermal fluids contribute
<0.05 Mmol of ΣCH3Hg annually to the ocean. These estimates are based on a water flux of
1 Sverdrup (106 m3 s−1) through hydrothermal systems. Thus, we predict that hydrothermal
systems are a minor source of methylated Hg to the deep ocean.

There are few measurements of Hg and CH3Hg in deep ocean sediments and porewater (e.g.
Gobeil et al., 1999; Kading and Andersson, 2011; Ogrinc et al., 2007), making estimates for
the flux of methylated Hg from these deposits difficult. Available data indicate very low
concentrations of total Hg, and percentages of CH3Hg that are equivalent to or less than
those in sediments on the continental margin. We have estimated for deposits on the margin
that less than 8% of the HgII deposited is converted to CH3Hg and remobilized to overlying
water (Fitzgerald et al., 2007). Data for shelf and slope sediments support the magnitude of
these estimates (Fitzgerald et al., 2012, Hollweg et al., 2009; Hammerschmidt and
Fitzgerald, 2006a), and it is used here to estimate deep sediment inputs. Overall, the various
observations and estimates crudely constrain the flux of ΣCH3Hg from deep sea sediments
to <0.08 Mmol yr−1.

The transport of riverine CH3Hg inputs offshore is estimated to be 0.1 Mmol yr−1, based on
an estimated 5% of total Hg being CH3Hg and assuming that ∼90% of the riverine Hg input
is deposited in estuaries and the coastal zone (Sunderland and Mason, 2007). Note that the
net exchange of CH3Hg across the sediment-water interface in estuaries is included this
estimate. Studies of the production and demethylation of CH3Hg in sediments of estuarine
and coastal systems (Hammerschmidt and Fitzgerald, 2004, 2006a; Hammerschmidt et al.,
2004, 2008; Heyes et al., 2004, 2006; Hollweg et al., 2009, 2010; Lambertsson and Nilsson,
2006; Liu et al., 2009; Marvin-DiPasquale et al., 2003; Rodríguez Martín-Doimeadios et al.,
2004; Sunderland et al., 2004; 2006) have also have evaluated the potential flux from the
sediments to the water column (Benoit et al., 2009; Choe et al., 2004; Covelli et al., 1999;
Gill et al., 1999; Hammerschmidt and Fitzgerald, 2008; Hollweg et al., 2009; 2010;
Sunderland et al., 2010). However, few have examined the bidirectional exchange (i.e.,
particle deposition, sediment flux and resuspension). In most studies where both Hg
methylation and CH3Hg demethylation have been measured in sediment, the ratio of the

Mason et al. Page 5

Environ Res. Author manuscript; available in PMC 2013 November 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



methylation to demethylation rate constants is of the same order as the fraction CH3Hg
(Heyes et al., 2006; Kim et al., 2006). This suggests that in situ concentrations are
established by a steady state between these processes and through additional losses of
CH3Hg to overlying waters.

While relatively high benthic fluxes of CH3Hg have been estimated for estuarine
environments such as Baltimore Harbor, Long Island Sound, Chesapeake Bay, San
Francisco Bay, and New York Harbor (Mason et al., 2006; Choe et al., 2004;
Hammerschmidt et al., 2004, 2008) and for other contaminated environments (e.g., Gulf of
Trieste; Covelli et al., 1999), the more limited data suggest fluxes are lower from shelf and
slope sediments (Hollweg et al., 2009; 2010; Hammerschmidt and Fitzgerald, 2006a).
Recent studies on the continental shelf and slope of New England (NW Atlantic) indicate
higher water column CH3Hg in proximity to the shelf/slope (<1000 m) suggesting its
production and mobilization from the sediments (Hammerschmidt et al., 2012; Fitzgerald et
al., 2012). Many of the sediment flux estimates are based on simple diffusion and porewater
concentration gradients and it is evident from studies with benthic flux chambers that these
diffusive estimates are up to an order of magnitude less than those obtained from benthic
chambers (Gill et al., 1999; Choe et al., 2004; Hammerschmidt and Fitzgerald, 2008).

On a global basis, estimates of sediment flux inputs of dissolved CH3Hg from the coastal
and shelf sediments to the ocean range from a low value of 0.01 Mmol yr−1 (diffusive flux
only; Hollweg et al., 2010; Cossa et al., 1996) to 0.15 Mmol yr−1 (Hammerschmidt and
Fitzgerald, 2006a). Alternatively, given the Fitzgerald et al. (2007) estimate that the fraction
of CH3Hg fluxing from sediments is ∼8% of the total Hg sediment depositional flux and
using the global Hg deposition flux to shelf/slope sediments of 2.9 Mmol yr−1 (Sunderland
and Mason, 2007), the CH3Hg flux is estimated at 0.21 Mmol yr−1. These two approaches
suggest that the overall CH3Hg flux from sediments is ≤0.2 Mmol yr−1 (Fig. 1b).

The deposition of CH3Hg to shelf and slope sediment (∼0.15 Mmol yr−1), estimated using
the fluxes in Sunderland and Mason (2007) and 5% CH3Hg in sedimentary material (Fig.
1b), is of the same order as the sediment inputs, suggesting little net input from coastal
sediments to the water column. Sediment resuspension is a potential source of CH3Hg in
some locations (Kim et al., 2008) and could potentially increase the magnitude of the net
sediment flux (Benoit et al. 2009; Sunderland et al., this issue). However, such data are
extremely limited for shelf environments.

We conclude that the magnitude of the CH3Hg flux to overlying waters of the shelf and
slope (∼0.2 Mmol yr−1) is similar to the overall net sedimentation that occurs in these
regions (∼0.15 Mmol yr−1) (Figure 1b). The net input from the coastal environment is likely
to vary globally depending on the extent of the shelf environment and other factors,
including, for example, organic matter and Hg loadings, and the extent of hydrologic
exchange. The modeling and data of Sunderland et al. (2010), for example, demonstrate that
while the within sediment formation and demethylation of CH3Hg in the Bay of Fundy were
large, they were essentially equivalent. These authors also concluded that the flux from
sediments to overlying waters was small relative to sedimentary deposition and that most
CH3Hg was supplied from external sources (exchange with the North Atlantic Ocean and
terrestrial inputs; Sunderland et al. 2010; this issue). Similar results can be inferred from
mass balance estimates for the inshore coastal sediments of the Gulf of Mexico (Liu et al.,
2009; Harris et al., this issue), especially close to the Mississippi River delta. Similarly,
sedimentary inputs to the water column were estimated at ∼25% of total CH3Hg loadings to
the Hudson River estuary (Balcom et al., 2010). However, a much greater fraction of the
inputs is from sediment flux in other estuaries, such as Long Island Sound and San
Francisco Bay (Hammerschmidt and Fitzgerald, 2006a; Davis et al., this issue).

Mason et al. Page 6

Environ Res. Author manuscript; available in PMC 2013 November 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



The flux estimates discussed above (Fig. 1b) suggest that external sources of ΣCH3Hg
(riverine inputs and coastal sources and atmospheric deposition) are insufficient to account
for the ΣCH3Hg sinks in the ocean, which include accumulation into biota and removal by
fisheries, photochemical and biological degradation into inorganic Hg, and net removal to
the deep ocean and deep sea sediments. This suggests that production within the ocean
system is important. The various potential in situ sources of ΣCH3Hg to the ocean water
column are discussed below. Both CH3Hg and (CH3)2Hg are broadly distributed throughout
the ocean water column and the observed concentrations are difficult to explain without in
situ production. Initial studies in the equatorial Pacific Ocean suggested sub-thermocline
maxima in both CH3Hg and (CH3)2Hg (e.g. Kim and Fitzgerald, 1988, Mason and
Fitzgerald, 1990, 1991, 1993). These results have since been confirmed in a number studies
in the North and South Atlantic in the 1990's (Mason et al., 1998; Mason and Sullivan,
1999), multiple studies in the Mediterranean Sea (Cossa et al., 2009; Heimburger et al.,
2010; Horvat et al., 2003), and more recent studies in the North Pacific, North Atlantic,
Indian Ocean and Southern Ocean (Sunderland et al., 2009 Sunderland et al., 2011; Cossa et
al., 2011; Hammerschmidt and Bowman, 2012; Lamborg et al., 2009.; Bowman et al.,
2012).

This limited dataset for ΣCH3Hg, which is illustrated with published data in Fig. 2, indicates
that concentrations are relatively low in open ocean surface waters, maximal in the
intermediate layers, especially in regions of low oxygen, and low and relatively constant in
deeper waters (>1000 m). These vertical distributions are most consistent with in situ
formation of ΣCH3Hg in association with the decomposition of organic matter (Bowman et
al., 2012; Cossa et al., 2011; Hammerschmidt and Bowman, 2012; Lamborg et al., pers.
comm.; Mason and Fitzgerald, 1993; Mason et al., 1998; Mason and Sullivan, 1999;
Sunderland et al., 2009; Kirk et al., this issue). The link to organic carbon degradations is
demonstrated, for example, by the relationship between the amount of ΣCH3Hg and the
extent of organic carbon remineralization (Sunderland et al., 2009), and correlations
between ΣCH3Hg and apparent oxygen utilization, another measure of carbon degradation
(Mason and Fitzgerald, 1990; 1993; Mason and Sullivan, 1999; Heimburger et al., 009;
Cossa et al., 2011).

The higher %CH3Hg in the subsurface (Fig. 2), typically below the seasonal mixed layer,
provides an indication of the relative importance of this region in CH3Hg production. This
distribution suggests that the transition regions (the base of the euphotic zone) and
subsurface waters where particulate organic matter is being degraded are locations of
enhanced net methylation of Hg. In addition to direct formation of CH3Hg from HgII, there
is also a source of CH3Hg from remineralization of sinking particles and decomposition of
(CH3)2Hg (Mason and Fitzgerald, 1993; Mason and Sullivan, 1999; Lehnherr et al., 2011;
Fig. 1b). If CH3Hg was also produced in the mixed layer (Lehnherr et al., 2011), the
observed low concentrations suggest production is balanced by demethylation
Hammerschmidt and Bowman, 2012), and to a lesser extent by bioaccumulation (Fig. 1b).
Demethylation is the major sink for CH3Hg in the upper ocean, based on rates of
decomposition in the literature (Whalin et al., 2007; Monperrus et al., 2007; Lehnherr et al.,
2011; Mason and Sullivan, 1999). Overall, the residence time of CH3Hg is relatively short
(∼10 years) for the upper ocean (mixed layer and subsurface waters above the permanent
thermocline), based on the fluxes in Fig 1b. This residence time is comparable to the
horizontal mixing times of these subsurface waters, and therefore it is unlikely that CH3Hg
formed in coastal environments can be transported sufficiently offshore to be a major source
for open ocean ecosystems. While advective transport of dissolved CH3Hg from coastal
systems is likely not an important source to open ocean fish, there is the potential for
“bioadvection” of CH3Hg due to either feeding of offshore fish in coastal environments, or
due to migration of lower food chain biota (Fitzgerald et al., 2007). Such transport could be
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bidirectional through transport of CH3Hg from the ocean to estuaries and to the upper
reaches of streams from the migration and death of fish, such as salmon (Sarica et al., 2004).

Currently, there is little information and consensus on the regions of maximum production
of ΣCH3Hg although there is a general agreement that the formation is linked to the
decomposition of organic matter. It is known that less than 15% of the organic matter
produced in the mixed layer is exported to depths greater than 100 m and <5% to depths
greater than 1000 m (Antia et al., 2001), due to grazing and organic matter decomposition
through the microbial loop. Anaerobic bacteria are the major methylating organisms in
coastal and freshwater environments but it appears that they are not important in the marine
water column as methylation appears to be most closely linked to organic carbon
decomposition that occurs throughout the upper ocean waters (Heimburger et al., 2010;
Sunderland et al., 2009; Malcolm et al., 2010).

3.0 Spatial Trends in Hg Concentrations
Concentrations of total dissolved Hg (< 0.45 μm) in ocean waters vary by location
horizontally and vertically. A compilation of information on the ranges of Hg and its various
forms in coastal (excluding estuaries) and open ocean environments is shown in Table 1. For
offshore water masses, measurements suggest that the total dissolved Hg is typically < 3
pM. Developing an understanding of spatial variation of Hg in the ocean from available data
is complicated by the wide timespan over which samples have been collected since the
development of both “clean techniques” and low level detection methods (∼ 30 years), and
the lack of studies examining seasonal variability in the upper ocean (see references in Table
1). Additionally, there is evidence for changes in the amount and distribution of atmospheric
loadings of Hg to the ocean over time as a result of emission controls in North America and
Europe and an increase in industrialization in Asia and other developing regions (e.g.
Pirrone et al., 2010; Streets et al., 2009a; 2009b; 2011; Sunderland et al., 2009). This issue is
discussed in greater detail below. However, by comparing roughly contemporaneous data
from different parts of the world, some trends are apparent. For example, the IOC cruises of
the 1990's and early 2000's documented significant gradients in total Hg in surface and
subsurface water in both the Atlantic and Pacific Oceans (Mason et al., 1998; Mason and
Sullivan, 1999; Laurier et al., 2004). Sunderland et al. (2009) evaluated the differences in
concentrations across surface waters of the North Pacific Ocean and found that higher
concentrations corresponded to a region of enhanced atmospheric HgII deposition from
Asian sources. Overall, such distributions confirm that Hg is far from uniformly distributed
in the surface ocean, which is consistent with its estimated short residence time in the mixed
layer (<1 yr; Soerensen et al., 2010).

Mercury concentrations can differ among intermediate and deep waters (Fig. 3 and 4). A
synthesis of earlier data, discussed in Laurier et al. (2004), suggested that there were higher
concentrations in the North Atlantic compared to the North Pacific deep waters. Such a
scenario would occur if there was sufficient input of Hg to the deep Atlantic through sinking
North Atlantic Deep Water (NADW), as has been shown for other contaminants and tracers.
For example, chlorofluorcarbon (CFC) and tritium data indicate penetration of these
compounds to the bottom of the North Atlantic as far south as 40oN in the late 1980's (Fine,
2010; Jenkins, 2010), and even further south for CFC's in the western boundary currents of
the Atlantic (to 24°N in 1992; Schlitzer, 2010). Deep ocean penetration, even south of the
equator, is also shown for “bomb-derived”14C (Schlitzer, 2010; Key, 2010), added to the
atmosphere by bomb testing in the early 1960's. In contrast, there is no evidence of
penetration of these tracers below 1000 m in the North Pacific. An anthropogenic signal in
the upper waters is apparent for Hg, and especially in the Atlantic, as shown in Fig. 4b (the
BATS site; 31° 40′N, 64° 10′W) and discussed below, but there is less indication of

Mason et al. Page 8

Environ Res. Author manuscript; available in PMC 2013 November 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



elevated values in the deep waters at BATS when comparing the data in Figs. 3 and 4. This
suggests that the penetration of anthropogenic Hg into the deep North Atlantic has not been
sufficient to result in a measurable change in concentration at the BATS site (31° 40′N, 64°
10′W).

Limited data from the far North Atlantic (>50°N) (Mason et al., 1998) suggests somewhat
higher concentrations in the sinking deep waters (1-2 pM) but the data is too limited to
provide definitive evidence of a anthropogenic signal. Similarly, higher concentrations are
evident in the sinking waters in the Antarctic (Antarctic Bottom Water (AABW)) which has
an average concentration around 1.4 pM (Cossa et al., 2011; Sunderland et al., 2011).
However, recently formed AABW would not have reached the SAFe site (30°N, 140°W) in
the North Pacific (Fig. 3) and so cannot account for the higher concentrations measured at
depth at this location.

The comparison of two profiles in Fig. 3, one from the Atlantic near Bermuda (the BATS
site) and another from the North Pacific (the SAFe site) (Lamborg et al., 2012) provides
further data for understanding inter-ocean deep water differences. Through the thermohaline
circulation, Hg in deep water (North Atlantic Deep Water (NADW); 2000-4000 m at BATS)
moves from the North Atlantic, and mixes AABW, before eventually being transported into
the North Pacific (the “Ocean Conveyor Belt”; Broeker and Peng, 1982). Hammerschmidt
and Bowman (2012) found similar NADW concentrations at another N. Atlantic station
(35.4 °N, 66.5 °W) suggesting that these deep Atlantic water concentrations are
representative. However, in the North Pacific most previous studies, as summarized in
Laurier et al. (004), and shown in Table 1, have found lower concentrations, closer to 1 pM,
than the values shown in Fig. 3.

Horizontal segregation (i.e., higher concentrations in the deep Pacific Ocean) is observed for
the macronutrients (nitrate, phosphate, silicate) and some metals (Cd, Zn and Ag), but not
for Fe, Al or Pb (Bruland and Lohan, 2004; Chester, 2003). For Fe, a relatively particle
reactive metal, concentrations are very similar in the deep Atlantic and deep Pacific while Al
has lower concentrations in the North Pacific deep waters as it is actively scavenged. In
contrast, Pb has a substantial deep ocean anthropogenic signal in the North Atlantic as
concentrations are 5 times higher than in the deep Pacific. The differences between basins
results from the relative importance of deep water scavenging during the overall circulation
relative to the additional inputs from the sinking and remineralization of organic matter
during the roughly 1000 year long residence time of water in the deep ocean (e.g. Broeker
and Peng, 1982; Chester, 2003). For the more particulate reactive metals, deep water
scavenging results in the continual depletion during transit, and for metals such as Pb,
anthropogenic inputs have exacerbated the amount in the Atlantic deep waters relative to the
Pacific (Bruland and Lohan, 2004; Chester, 2003).

Overall, it appears from consideration of the datasets collected over the last 30 years that Hg
behaves similarly to Fe and does not exhibit a strong enough anthropogenic signal in the
deep North Atlantic that we can detect that North Atlantic deep water concentrations are
greater than those of the North Pacific. Model simulations tend to support the notion of
higher concentrations in the deep Atlantic (Strode et al., 2007; Sunderland and Mason, 2007;
Soerensen et al., 2010). There has been a substantial collection of data recently through the
GEOTRACERS and CLIVAR programs and with other recent cruises and it is likely that the
compilation of these data will lead to a more refined understanding of Hg changes during
deep ocean water circulation.

Concentrations of dissolved Hg in surface water can be modestly depleted relative to deeper
depths, which is indicative of surface scavenging by plankton and other particulate material
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(Fig. 3). This mechanism is supported by the frequently observed peak in concentration
within or just above the thermocline region in the water column, in the location of major
particle remineralization, and often concomitant with oxygen depletion (utilization)
associated with strong net respiration driven primarily by microorganisms degrading sinking
particulate matter (Volk and Hoffert, 1985). This “nutrient-type” behavior in the upper water
column should be expected as Hg is known to be bioactive (as indicated by its
bioaccumulation and association with soft tissue remineralization in deep waters). Below
this depth, Hg concentrations often decrease to a uniform value in deep water (>1000 m).

However, there are multiple alternatives to this “typical” profile, including surface water
enrichments (Fig. 5) and relatively uniform, “conservative-type” distributions (Fig. 4).
Surface water enrichments should be expected because the principal route of Hg inputs to
the ocean is atmospheric deposition. Concentrations of dissolved Hg in the mixed layer are
typically <1 pM, while ocean precipitation often contains 50 pM or more. It should therefore
be expected that Hg concentrations in surface waters range widely because 1) inputs of Hg
to the ocean from the atmosphere can be sporadic, 2) the subsequent mixing of this enriched
water into the surface ocean depends on local physics and can be variable, and 3) the depth
of enrichment obtained from rain/ocean mixing can be anywhere from a few centimeters
from the surface to many meters deep. Mixed layer samples, taken below the depth of
immediate atmospheric input and as indicated by local hydrography, tend to be much less
variable and are generally depleted of Hg with respect to deep waters (Cossa et al. 1997;
Lamborg et al., 2012; Mason and Gill, 2005). Vertical profiles that are fairly uniform with
depth tend to be observed in locations that are highly oligotrophic, such as the Sargasso Sea
(Lamborg et al., 2012; Fig. 3), where scavenging rates tend to be lower.

Additionally, in some locations such the tropics of the Northern Hemisphere, there is
potentially an anthropogenic signal in waters that show a mid-depth maximum because these
waters were derived from the sinking of water masses from the surface in the temperate
regions decades earlier (e.g. Cossa et al., 2004; Gill and Fitzgerald, 1988; Mason and
Fitzgerald, 1993; Fig. 4b). Thus, differences in Hg concentrations between surface and
deeper upper ocean waters may be related to historical enrichment of Hg in this sinking
surface water, and the additional increases in concentration due to particle remineralization
in subsurface waters as they are transported laterally. Such a scenario was observed in North
Pacific Intermediate Water (Hammerschmidt and Bowman, 2012) and is supported by
modeling studies of the equatorial and North Pacific by Mason et al. (1994b). This model
suggested that the enhanced mid-depth water concentration in equatorial waters (Mason and
Fitzgerald, 1993) was both a result of lateral transport and particle input. Additionally,
equatorial upwelling of these waters supported the high concentrations and evasion of Hg0

observed in this region (Mason and Fitzgerald, 1993; Mason et al., 1994b). Similarly, the
mid-depth maxima in profiles from the North Atlantic (Cossa et al., 2004; Gill and
Fitzgerald, 1988) reflect the transport of water masses with elevated concentrations laterally
(Fig. 4b). Similar profiles have been observed for Pb, another metal that has a strong
atmospheric signal and whose global biogeochemical cycle has also been substantially
altered due to anthropogenic inputs (e.g., Wu and Boyle, 1997).

4. Temporal Trends in Hg Inputs and Concentrations
4.1 Temporal Trends in Mercury Inputs

Anthropogenic Hg emissions have increased atmospheric concentrations by at least a factor
of three over the last century (e.g., Fitzgerald et al., 2005; Schuster et al., 2005;Lamborg et
al., 2002b; Fain et al., 009). Additionally, there is evidence of inputs of Hg into the
atmosphere prior to the rapid industrialization in the last century due to the use of Hg in
precious metal mining (Cooke et al., 2009; Schuster et al., 2005; Streets et al., 2011) and
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these sources should have further enlarged the inputs of Hg to the ocean (Hudson et al.,
1985; Streets et al., 2011). Given such inputs, a concomitant increase in ocean Hg
concentrations is likely, especially in surface waters that are actively exchanging Hg with
the atmosphere (Fig. 1a). The percentage increases shown in Fig. 1a reflect only those of the
last century and therefore underestimate of the total change, especially for the sub-surface
waters, due to all human-related inputs of Hg into the atmosphere, which have mostly
occurred during the last 400 years (see Streets et al., 2011).

4.2 Temporal Trends in Seawater
Seawater Hg concentrations are regionally variable depending on proximity to
anthropogenic sources and major deposition pathways. For example, within the last few
decades, there has been a decrease in Hg emissions from Europe and North America due to
regulatory control and an increase in emissions from Asia as a result of rapid
industrialization in this region (Pirrone et al., 2010; Streets et al., 2011). These variations
appear to be reflected in the decreasing Hg concentrations in upper ocean waters of some
oceans while, for others, concentrations are increasing (Fig. 4), as projected by the model of
Sunderland and Mason (2007). These changes track those of other pollutants added to the
ocean from the atmosphere (e.g., Pb, CFCs, anthropogenic carbon and bomb-derived 14C;
Wu and Boyle, 1997; Doney and Bullister, 1992; Druffel, 1996; Sabine et al., 2004;
Schlitzer, 2010; Fine, 2010).

Modeling of the impact of anthropogenic emissions on oceanic Hg concentrations uniformly
predicts that surface ocean concentrations of Hg should have changed by a larger degree
than those deeper, due primarily to the affect of dilution and the mode of addition (i.e.
mostly from the atmosphere) (Streets et al., 2011; Strode et al., 2011). To date, it has been
difficult to verify this increase with field data because of concerns about the validity of some
early Hg measurements. Although deep ocean sediments accrue at rates too low to be useful
records of recent deposition changes, there are some marine sediments that document
increased loadings of Hg in an analogous way to that of lake sediments. These samples are
from unusual locations and analysis of sediments from one such location, the Santa Barbara
Basin (Young et al.,1973), shows a historical profile that matches lake reconstructions,
suggesting that lake sediments can act as good proxies for marine loadings (Figure 5a).
Many of these lake sediment records show that atmospheric Hg deposition has increased by
a factor of three or more during the last 100 years (Fitzgerald et al., 1998, 2005; Yang et al.,
2010). There is also evidence for decreases in the last few decades for locations in the
Northern Hemisphere, especially in Europe and North America, which is consistent with
predicted emission trends (e.g., Engstrom and Swain, 1997; Kamman and Engstrom, 2002).
Many of the sedimentary records are restricted to the last 100 years or so due to the
limitations of 210Pb dating and, therefore, do not provide any clear information about
changes in deposition that may have occurred prior to this period (Cooke et al., 2010), which
is recorded in other archives such as ice cores (e.g., Schuster et al., 2005).

What is more difficult to gauge is the change in concentration of Hg in seawater. It is
possible to compare profile information collected at the same location and separated by
significant time, keeping in mind the caveats about variability noted above. For example, as
pointed out in Laurier et al (2004) based on the data from Gill and colleagues from the
VERTEX program (Figure 6), there can be large seasonal changes in Hg water column
concentrations that could be the result of deposition/mixing or perhaps more likely from
changes in currents and ocean physics. With such large intra-annual variation at one site, the
prospect of trying to discern relatively small changes in the mixed layer over a few decades
is challenging.
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With that caveat, two datasets have been compiled and compared that show changes in the
Atlantic and Pacific Oceans (Fig. 4; Mason and Gill 2005; Sunderland et al. 2009). Results
suggest that Hg levels in have increased in the North Pacific Ocean between 200 and 1000
m (below the mixed layer) during the last few decades (Fig. 4a). Global scale models
suggest that most change to the ocean as a result of anthropogenic emissions in the last 100
years should be confined to the upper ocean and the permanent thermocline in the North
Pacific. These data are consistent with known circulation and ages of water masses. Results
from Bermuda (Fig. 4b) suggest that there has been a substantial decrease in both Hg
concentration and profile shape. Other historic data from the North Atlantic are similar
(Cossa et al., 1992). The extent of changes for Hg and the changes in profile “shape” are
consistent with data for Pb at the same location (Wu and Boyle, 1997), indicating that these
changes may represent a valid trend. It could be argued that the reason for the rapid decrease
of Pb is its removal from gasoline and that Hg has not similarly decreased. However,
controls on emissions in North America and Europe have resulted in large declines in
emissions over the past several decades (Streets et al., 2011) and concurrent decreases in Hg
deposition have been observed in lakes in the mid-continental USA (e.g., Engstrom and
Swain, 1997). A similar reduction in Hg deposition to the North Atlantic is also possible
given that the dominant path of air masses in winter is from the continental USA. While
there are little data on decreases in deposition at Bermuda for Hg, this has been documented
for other metals (Cd has decreased by 80%, Zn by ∼55%, Cu and Ni by ∼60%; Kim et al.,
1999).

Data from the Mediterranean Sea also indicate a decrease in water concentration between
1990 and 2004 (Cossa et al., 1997; Cossa and Coquery, 2005). The trends in the available
data are therefore consistent with the notion that the Atlantic and Mediterranean were
significantly perturbed during the last 30-50 years but are now recovering as industries in
North America and Europe have gradually improved emissions control technologies (e.g.
Pirrone et al., 2010). Sunderland and Mason (2007) estimated that about 130 Mmol of
anthropogenic Hg resides in the upper 1500 m of the ocean as a result of integrated inputs
since industrialization. This amount translates into an approximate increase of about 0.24
pM if evenly distributed over depth, but given emission scenarios, concentrations in the
North Atlantic are likely much more highly impacted by anthropogenic pollution than the
Pacific Ocean (Sunderland and Mason, 2007). To the extent that anthropogenic Hg can be
compared to anthropogenic C (e.g., Sabine et al. 2004), we would expect that about half the
perturbation is confined to the upper 400 m in the Atlantic. The residence time of Hg is
probably shorter than that of carbon in the mixed layer, so its distribution is likely biased
slightly deeper than that for anthropogenic C. Overall, given the dominance of atmospheric
inputs, we conclude that the secular changes in Hg portrayed in Figure 4 are consistent with
our understanding of Hg inputs and ocean cycling.

We also expect increases in ΣCH3Hg in the ocean as a result of this anthropogenic
enrichment because there is likely a first order relationship between the pools of available
inorganic Hg and ΣCH3Hg formed in the upper ocean. The CH3Hg concentration in
historical archives, such as marine bird feathers, increases over time, supporting this
assertion. These archives show an increase of a factor of 4 for the North Atlantic during the
last century (Monteiro and Furness, 1997; Monteiro et al., 1998) and a factor of 2-3 for the
North Pacific (Vo et al., 2011). Evidence obtained from analysis of eggshells provides
similar results (Fig. 5b; Xu et al., 2011). These increases are somewhat greater than the
estimated increases for total Hg inputs, likely reflecting other biological changes such as
shifts in trophic structure and diet that may have exacerbated CH3Hg bioaccumulation.

Overall, an increase in the relative rate of formation of ΣCH3Hg could be linked to factors
such as: 1) the increasing eutrophication of the ocean, which would result in more organic
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matter degradation and more methylation (Sunderland et al., 2009); 2) increases in the extent
of low oxygen regions in the open ocean (Stramma et al., 2008); or 3) changes in microbial
structure in the ocean water column. Because the organisms that produce ΣCH3Hg in the
ocean are not known, besides being part of the microbial loop (Heimburger et al., 2010), the
importance of changes in community structure on the extent of Hg methylation cannot be
evaluated. Alternatively, other factors besides changes in input may lead to a disconnect
between the magnitude of Hg inputs and CH3Hg bioaccumulation. Potential scenarios are
increasing eutrophication of the ocean (a biodilution effect); changes in plankton community
structure and/or changes in fish stocks due to fishing pressure (Driscoll et al., this issue).

In summary, the following hypotheses are evident from examination of all the available
information: 1) surface ocean concentrations and distributions are variable and changing at
different rates in response to fluctuations in atmospheric inputs; and 2) there have been
greater historical inputs into some ocean basins such as the North Atlantic and
Mediterranean Sea. Although the relationship between fish CH3Hg concentration and total
dissolved Hg is not the same for all waters, it is likely that fish CH3Hg levels have changed
in concert with changes in atmospheric inputs. As noted above, most modeling assessments
of estimated changes in the upper ocean are based on anthropogenic emissions within the
last century. Earlier releases to the atmosphere as a result of Hg extraction and use in mining
and other activities (Hudson et al., 1995; Cooke et al., 2009; Schuster et al. 2002; Streets et
al., 2011) will have further impacted ocean concentrations given the long residence time of
Hg in deep ocean waters and its overall mixing dynamics.

5. Bioaccumulation and Concentrations in Marine Biota
Individuals in North America are exposed to CH3Hg primarily from the consumption of
marine seafood (Mahaffey et al., 2004; U.S. EPA, 2002; Sunderland, 2007). Despite the
toxicological significance of CH3Hg in oceanic biota, there is limited understanding of
factors controlling accumulation in marine food webs, especially into primary producers and
consumers. Available data are collated in Table 2. Because CH3Hg is biomagnified at every
level of the food web (Mason et al., 1996; Wiener et al., 2003), levels in piscivorous wildlife
are the greatest (Wiener et al., 2003). While CH3Hg is also bioconcentrated from water by
marine phytoplankton (Mason et al., 1996; Hammerschmidt and Bowman, 2012),
comparatively little is known about the concentrations, dynamics, and controls on CH3Hg
bioavailability and uptake in marine environments.

Most research on Hg in marine systems has focused on quantifying levels in fish,
particularly those consumed by humans (e.g., U.S. FDA, 2011; Fig. 4). As found in
freshwater environments, CH3Hg levels in marine fish appear to vary as a function of
location (Rivers et al., 1972; Colaco et al., 2006), diet or trophic position and life history
(Hammerschmidt and Fitzgerald, 2006b; Szczebak and Taylor, 2011), feeding depth (Choy
et al., 2009; Montiero et al., 1996), and age/size within a given species (Barber et al., 1972;
Boush and Thieleke, 1983). As a result, fish with the greatest concentrations of CH3Hg are
either apex predators, old, or those that frequently feed in environs that have increased
CH3Hg levels in prey, such as king mackerel (Scomberomorus cavalla), shark, and
swordfish (Xiphias gladius) and the long-lived demersal tilefish (Lopholatilus
chamaeleonticeps) (Figure 4).

As uptake of CH3Hg into invertebrates from water is small, nearly all of the CH3Hg
accumulated by zooplankton (Tsui and Wang, 2004; Mason et al., 1996) and fish (Hall et al.,
1997) is from diet. In contrast, HgII accumulated into phytoplankton is not readily
assimilated by grazers (Mason et al., 1996; Lawson and Mason, 1998), as found for other
cations (for Hg, Ag and Cd, assimilation efficiency (AE) is <30%; for CH3Hg, AE is
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60-80%) (Mason et al., 1996; Reinfelder and Fisher, 1991). Similar low AE's are found for
plantivorous fish, and these differences result in the increase in the %total Hg as CH3Hg
with trophic level. While the factors influencing CH3Hg bioconcentration by primary
producers in marine ecosystems are not well known, the speciation of CH3Hg, which can
vary between complexes with chloride and organic ligands in seawater, is important (Mason
et al., 1996; Lawson and Mason, 1998). Passive uptake of uncharged chloride complexes is
hypothesized to be an important route of both CH3Hg and HgII accumulation in autotrophs
(Mason et al., 1996). Recent studies suggest that Hg and CH3Hg bound to thiols and other
small organic complexes can be taken up into microbes by processes other than passive
diffusion (Schaefer et al., 2009, Ndu et al., 2012).

Table 2 compiles the existing information on CH3Hg in marine plankton, most of which is
focused on biologically productive, near-shore ecosystems. It also shows data for
zooplankton and illustrates the need for additional research while providing initial insight
into the accumulation of CH3Hg in marine food webs. From those investigations that
measured CH3Hg in both phytoplankton and filtered water, it is evident that
bioaccumulation factors (BAFs, L kg−1) of CH3Hg by phytoplankton are relatively
consistent among multiple near-shore ecosystems (Table 2). BAF is the wet weight
concentration in organisms (mole kg−1) divided by that in associated filtered water (mole
L−1). Investigations in freshwater and laboratory systems suggest that planktonic growth and
cell size, both of which are often reduced in oligotrophic water, are related inversely to
phytoplankton CH3Hg concentrations (Mason et al., 1996; Pickhardt et al., 2002; Chen and
Folt, 2005; Driscoll et al., this issue). Thus, a greater BAF for CH3Hg in phytoplankton
might be expected in oligotrophic waters. Similarly, BAF values for open water zooplankton
(Table 2) are greater than those of coastal systems (Kim et al., 2006; 2008). Marine fish
having CH3Hg levels on the order of about 1 μmol kg−1 wet weight, such as swordfish and
king mackerel (U.S. FDA, 2011), have BAFs of about 107 given that CH3Hg in surface
waters often range from about 20 to 200 fM (Fitzgerald et al., 2007). This confirms the
notion that CH3Hg is biomagnified at all trophic levels (presumably 2−4 trophic levels), but
that the initial bioconcentration of CH3Hg by phytoplankton represents the greatest single
contribution to bioaccumulation in marine food webs.

6.0 Future Directions and Research Needs
Trace metal clean measurements of Hg species in the ocean span about 30 years and there is
substantial variability in seawater Hg concentrations due to changes related to anthropogenic
input variations over time and space during this period, as noted above. This applies to other
trace metals (e.g., Pb, Ag; Wu and Boyle, 1997; Bruland and Lohan, 2004). The temporal
and distributional data regarding concentration and speciation of Hg in the ocean is
somewhat spotty (Mason et al., 1998; Mason and Sullivan, 1999; Mason and Fitzgerald,
1993; Cossa et al., 1992). However, this condition is rapidly changing as a result of a few
recent initiatives, such as the Hg collections during the CLIVAR studies and the on-going
GEOTRACES program (Sunderland et al., 2009 2011; Hammerschmidt and Bowman, 2012;
Lamborg et al., 2011; Bowman et al., 2012; Cossa et al., 2011). Figure 8 illustrates some of
the major efforts to describe horizontal and vertical distributions of Hg in the ocean. In
addition to multi-station transects, the figure includes cruises where a few single stations
(noted by triangles) were sampled for Hg species. The figure shows that the level of
coverage of the ocean with Hg data is slowly increasing and, with some exceptions,
locations of oceanographic importance have been targeted. Importantly, no recent studies
have focused on locations of deep water formation, where the impact of anthropogenic
inputs to the surface ocean over time may be recorded. Regions with poorer coverage
include the Southern, Indian, and South Pacific Oceans, much of the Arctic Ocean and some
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important marginal seas such as the Gulf of Mexico, Caribbean Sea, Arabian Sea, Bay of
Bengal, Sea of Okhotsk, and Sea of Japan, as discussed in other papers in this special issue.

Based on the research and modeling discussed above, the following key experimental
developments, research plans and strategies are evident for the continued advancement of
understanding of the behavior and fate of Hg species in the oceans. More oceanographic
studies are warranted as much information and understanding can be gained from high-
resolution water column sampling of dissolved and particulate phases and plankton in all the
major ocean basins. The scientific community should actively seek opportunities to carry out
further studies. While these studies should focus on collecting information throughout the
water column, there should be a focus on regions of particular interest, such as the mixed
layer, regions of low oxygen, especially those below productive surface waters such as the
eastern tropical Pacific Ocean. While much of this work will be completed within the
GEOTRACES program, and have been collected through other studies, such as in
association with the CLIVAR program, there is a need for studies that include specific
process-orientated investigations.

In addition to the open ocean, there is also a need for high-resolution water column profiles
for Hg speciation on continental margins and associated upper slope stations (∼500 – 2000
m) to examine the processes linking the biogeochemical cycling of Hg in coastal regions to
the open ocean. It has been recognized that these regions are important for the exchange of
many substances, including dissolved organic carbon, carbonate species, and other metals
such as Fe. More studies in these regions will allow for a better estimation of the importance
of coastal/ocean exchange in the global ocean Hg cycle. Finally, there are regions of special
significance that require focused studies, such as the Arctic Ocean and Southern Ocean, and
regions of high biological productivity, such as the upwelling zones off South America and
Africa.

In concert with a call for the increased study of the ocean, there is a concomitant and much
needed continued examination of the methods for the measurement of Hg and its species in
ocean waters. Much progress in the comparison of sampling and analytical methods has
been achieved through the GEOTRACES Intercalibration Study (Lamborg et al., 2012) but
there is a continued need to further intercalibrate, especially for the methods of determining
methylated Hg species. Overall, (CH3)2Hg has only been determined on board in some
studies but in all cases using similar approaches (Mason and Fitzgerald, 1990; 1993; Mason
et al., 1998; Mason and Sullivan, 1999; Hammerschmidt and Bowman, 2012; Lamborg et
al., 2011.; Bowman et al., 2012). There are currently three main approaches for the
measurement of CH3Hg in ocean waters, which either rely on determination at sea, or back
at the laboratory. The on-board methods are either direct ethylation after acid digestion of a
large volume sample (Bowman and Hammerschmidt, 2011) or liquid-liquid extraction using
methylene chloride, re-extraction into water and ethylation (Mason and Fitzgerald, 1993).
Alternatively, samples have been frozen after stripping of (CH3)2Hg for later analysis by the
distillation/ethylation approach; or have been acidified and then analyzed by similar
methods (Sunderland et al., 2009) or by hydride generation/CVAFS (Cossa et al., 2011;
Heimburger et al., 2010). Because (CH3)2Hg is not stable in acidified water (Black et al.,
2009b; Mason, 1991), later analysis of acidified samples provides a value for ΣCH3Hg if the
samples have not been pre-stripped of volatile Hg species. While further studies are
required, it has been shown that the conversion of (CH3)2Hg to CH3Hg is quantitative upon
acidification (Black et al., 2009b). Overall, as there has been minimal intercomparison of the
methods for ΣCH3Hg (Lamborg et al., 2012), and because continual intecalibration is
always a goal, there is a need to further compare and contrast the results obtained by the
various methods, either separate analysis of CH3Hg and (CH3)2Hg or the determination of
ΣCH3Hg of an acidified sample.
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Development of new technologies has advanced understanding by allowing the collection of
semi-continuous data. For example, continuous measurement of Hg0 at the air-seawater
interface is now possible based on new techniques (Andersson et al., 2008; 2011) and these
methods are amenable to on-board measurement with limited supervision and therefore
should be an component to all on-going international oceanographic activities, in
conjunction with the measurement of atmospheric concentrations with a Tekran analyzer,
with or without the speciation unit. The speciation unit is a specialized instrument that
requires much higher levels of expertise. Because of the importance of atmospheric
deposition as a source of Hg to the ocean, it is also necessary to collect samples for the
determination of wet and dry deposition (both gaseous and particulate) of ionic Hg
whenever possible. Such studies should be coordinated and integrated with developing
international programs such as the Global Mercury Observation Network (GMOS).

As noted, comprehensive and systematic investigations of CH3Hg bioaccumulation and
biomagnification in lower food chain organisms (phytoplankton and size-fractionated
zooplankton) should be pursued in both near-shore and open-ocean marine systems in
conjunction with the analysis of CH3Hg and total Hg in filtered water. Where possible,
analysis of multiple fish species that are both consumed by humans and occupy multiple
trophic levels (i.e., planktivores to apex piscivores) should be included. To further
understand trophic dynamics and sources of CH3Hg, it would be advantageous to measure
the stable isotopic composition of Hg (e.g., Senn et al., 2010; Gehrke et al., 2011), and if
possible CH3Hg, of biota at all levels of the trophic cascade. Unlike studies of freshwater
lakes, there have been few systematic investigations of CH3Hg bioaccumulation and
biomagnification in either nearshore or open ocean marine systems. Ideally, prey items
(small fish) should be analyzed as “whole-body” instead of fillet to better understand trophic
transfer and estimate BAF (Gray, 2002), whereas muscle-only determinations can suffice for
risk assessment for human consumption. In coastal ecosystems, there is an additional need to
differentiate CH3Hg accumulation through pelagic and benthic food webs. Stable isotopes of
carbon and nitrogen, and if possible in conjunction with stable Hg isotope analysis (Atwell
et al., 1998; Senn et al., 2010) can provide substantial information on the factors related to
sources and bioaccumulation across trophic levels.

7.0 Summary and Policy Implications
Anthropogenic Hg emissions have impacted ocean ecosystems at varying levels globally.
Estimates of human impacts on total Hg levels range from negligible changes in
concentrations in the deep ocean waters (>1500 m) of the Pacific to an expected doubling of
concentrations in the North Pacific surface and subsurface waters over the next few decades
due to the growth of Asian emissions (Sunderland et al., 2009). Changes of this magnitude
have been seen in the last 30 years for the upper North Atlantic Ocean (Fig. 4). Impacts of
anthropogenic Hg inputs on the ocean are spatially variable due to differences in inputs
globally and from ocean circulation. The anthropogenic component of these Hg inputs is
also changing temporally and therefore there is a need to understand and model these trends
and their impact on inputs to the ocean from the atmosphere.

While less important on a global scale, there is also a need to track and determine the degree
to which Hg inputs to coastal waters are changing due to changes in watershed deposition
and also through changes in point source inputs to these waters. Changes in other
management practices that impact watershed runoff, and especially sediment and nutrient
loadings to coastal waters (Driscoll et al., this issue) also need to be evaluated. Studies in
freshwater systems and modeling suggest that CH3Hg concentrations in higher trophic level
fish of the open ocean will respond slowly to changes in anthropogenic inputs, given the
global nature of Hg transport in the atmosphere and the potential importance of inputs from
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deeper waters, where CH3Hg levels are higher, to the surface due to upwelling and
meridional circulation. At current loading rates, it is likely that fish CH3Hg concentrations
will increase into the future for many ocean basins given the model predictions of increasing
Hg levels in the future (e.g., Sunderland and Mason, 2007; Selin et al., 2010). Additionally,
for many important commercial species (e.g., bluefin tuna), migration can result in fish
being exposed to Hg from multiple different marine environments.

While the exact processes of conversion of inorganic Hg into methylated Hg forms are not
known, it can be concluded that the sources of CH3Hg to ocean waters are different from
terrestrial water bodies and the coastal zone where methylation is thought to be tied to the
microbial activity of sulfate-reducing and iron-reducing bacteria, and perhaps other
microbes, dominantly in sediments (e.g., Gilmour et al., 1992; Hammerschmidt et al., 2006;
Hamelin et al., 2011). The presence and high proportion of (CH3)2Hg in the open-ocean
water column provides further evidence that the main organisms or processes responsible
are different. Furthermore, methylation in the open-ocean water column is more important
than production in deep-sea sediments in terms of the CH3Hg that is accumulating in ocean
fish.

There is a need to convey a message that while elevated levels of CH3Hg in marine fish are
a concern there are many health benefits associated with consuming marine fish (Mahaffey
et al., 2011; Oken et al., 2012). There is a need to develop outreach and information for the
public that incorporates a balanced risk and benefit analysis and provides clear guidance on
the best fish for consumption by different population groups. Additionally, there should be
additional efforts made to inform the population on other concerns related to fish
consumption, such as the potential for overfishing of certain species, especially apex
predatory fish, and the impacts of marine aquiculture on the environment. Overall, the
outreach needs to convey the message that it is possible to consume marine fish and other
seafood to receive the maximum benefits without being adversely impacted by the elevated
levels of CH3Hg in top predator fish.
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Figure 1.
a) A recent estimate of the fluxes of mercury at the Earth's surface based on simulations
using the GEOS-Chem global mercury model, and building on previous studies (Soerensen
et al., 2010; Selin et al., 2008 x; Sunderlansd and Mason, 2007; Holmes et al, 2010; Smith-
Downey et al, 2010). The percentage values in brackets are the estimated increases in
concentration and fluxes in the last century due to anthropogenic activities. (unpublished
data); b) Overall budget for the sources of methylated mercury to the upper ocean (defined
as waters above the permanent thermocline) using data and information discussed
throughout the paper. In both figures fluxes are in Mmol yr-1 and reservoirs are given in
Mmol.
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Figure 2.
Distributions of methylated mercury (methylmercury and dimethylmercury (Me2Hg)) in
various ocean basins. Data compiled from the literature: equatorial Pacific (Mason and
Fitzgerald, 1993); North Pacific (Sunderland et al., 2009); Southern Ocean (Cossa et al.,
2011); North Atlantic (Mason et al,. 1998); South and equatorial Atlantic (Mason and
Sullivan, 1999). In the plot for the Equatorial Pacific surface water concentrations were set
to DL (50 fM) when measurements were below DL. Note that the scale for the bottom plots
of dimethylmercury is different. All figures created using the data in the referenced
manuscripts.
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Figure 3.
Consensus Value full depth profiles for BATS in the North Atlantic (31° 40′ N, 64° 10′W)
(open triangles; UConn and WHOI data) and the SAFe site (30° N 140° W) in the North
Pacific (WSU and WHOI data). Taken from Lamborg et al. (in press).
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Figure 4.
Comparison of concentrations of total mercury in waters of the North Atlantic and the North
Pacific. a) data for a number of sites in the North Pacific Ocean. Figure taken from
Sunderland et al. (2009); b) data for a site near Bermuda (BATS) in the North Atlantic
Ocean. Figure taken from Mason and Gill (2005).
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Figure 5.
a) A compilation of data from a number of sources by Lamborg showing the historical
trends in concentration for New Zealand sediment cores (Lamborg et al., 2002b; Alaskan
lake sediments (Engstrom, pers. comm.; Santa Barbara basin marine sediments (Young et
al.,1973; North Pacific tuna (Kraepiel et al., 003); and elemental mercury trapped in firn
(Fain et al., 2009); b) historical trend in mercury concentration as recorded in bird eggs from
the South China Sea Figure taken from Xu et al. (2011).
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Figure 6.
Seasonal distributions of total mercury in the upper ocean of the North Pacific collected
during the VERTEX Program (33oN, 139oW). Taken from Laurier et al. (2004).

Mason et al. Page 32

Environ Res. Author manuscript; available in PMC 2013 November 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 7.
Reported mercury concentrations (μg/g wet weight) in fish sold in the U.S. commercial
market as available on the US FDA website, accessed in 2012. Figure drawn using the data
(averages and standard deviation) from the website. N/A indicates that no standard deviation
was listed.
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Figure 8.
Map showing tracks of the various cruises in the ocean where detailed Hg analysis (water
column profiles speciation measurements) has been made. Triangles indicate cruises where
measurements were restricted to only one or a few profiles.
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