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Natural selection favours phenotypes that match prevailing ecological conditions. A rapid
process of adaptation is therefore required in changing environments. Maternal effects can
facilitate such responses, but it is currently poorly understood under which circumstances
maternal effects may accelerate or slow down the rate of phenotypic evolution. Here, we
use a quantitative genetic model, including phenotypic plasticity and maternal effects, to
suggest that the relationship between fitness and phenotypic variance plays an important
role. Intuitive expectations that positive maternal effects are beneficial are supported follow-
ing an extreme environmental shift, but, if too strong, that shift can also generate oscillatory
dynamics that overshoot the optimal phenotype. In a stable environment, negative maternal
effects that slow phenotypic evolution actually minimize variance around the optimum
phenotype and thus maximize population mean fitness.
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1. INTRODUCTION

Evolutionary mechanisms that enable individuals to
adjust rapidly to novel environmental conditions are ubi-
quitously considered advantageous [1–3]. Phenotypic
plasticity and maternal effects are two of many biologi-
cal pathways that influence an individual’s phenotype
[1,4–7], change an individual’s fitness [5,6,8] and
facilitate adaptation to novel environments [5,7]. Less is
known about how they interact to shape phenotypic
evolution, however.

Maternal effects are the most commonly studied trans-
generational effects [9] and they provide a flexible way of
maximizing fitness in a changing environment [10].
Maternal effects have been defined as the effect of the
maternal phenotype on offspring phenotype [11], owing
to environmentally induced effects on maternal pheno-
type or to genetic variation in maternal phenotypes
[12]. Kirkpatrick & Lande [13] defined ‘maternal inheri-
tance’ as the particular impact of the maternal
phenotype on the offspring phenotype independent of
the inherited genes. There is much evidence that this
non-genetic path is beneficial [6,9,12,14], but empirical
studies also report results from statistical analyses that
show it can slow phenotypic evolution [12]: maternal
effects can be positive or negative. A positive maternal
effect coefficient indicates accelerated rates of micro-
evolution that can facilitate adaptation, whereas a
negative maternal effect coefficient suggests that
maternal effects slow (or even reverse) any response to
selection in the offspring generation. A positive maternal
effect coefficient means that (all other inheritance mech-
anisms being equal) larger mothers produce larger
offspring, as has been reported in Darwin’s finches and
great tits Parus major [15]. A negative maternal effect
coefficient generates fluctuating patterns of selection:
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large mothers produce small offspring, who in turn pro-
duce large offspring, and so on. A negative maternal
effect coefficient therefore can reverse phenotypic evol-
ution from one generation to the next. Empirical
examples of a negative maternal effect coefficient include
clutch size in collared flycatchers Ficedula albicollis [16],
litter size in mice [17], age at maturity in springtails
Orchesella cincta [18] or rosette size in the monocarpic
herb Campanulastrum americanum [19]. In red squirrels
Tamiasciurus hudsonicus, three estimates from different
statistical and experimental approaches were remarkably
congruent in their estimation of a negative maternal effect
coefficient [20–22]. These studies show a negative
maternal effect because inheritance via this non-genetic
mechanism acts in the opposite direction to that of
strict Mendelian inheritance. If a rapid response to
environmental change is a critical coping mechanism in
evolutionary biology, then why would these empirical
estimates appear to suggest that maternal effects often
act to slow adaptation to a changing environment?

To understand when maternal effects become more
influential in determining the phenotype, we need to
understand the consequences of the predictability of
the environment between the point at which an
environmental cue is processed and the point at which
selection acts. The developmental lag before a juvenile
reaches maturity is influenced, in part, by environ-
mental conditions, but also by other biotic factors
such as the presence and type of predators [23].
This juvenile development lag may therefore operate
on a different timescale from any environmental sto-
chasticity, and we explicitly decouple them in our
model in order to capture their contributions to
the phenotype under selection more accurately.
Environmental stochasticity in ecological scenarios is
This journal is q 2012 The Royal Society
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frequently positively autocorrelated [24–26], although
negative autocorrelation may be becoming more
common [27]. If environmental stochasticity is positively
autocorrelated, then deviations from mean conditions at
successive times are likely to be in the same direction (e.g.
hotter than average years typically follow hotter than
average years), whereas if it is negatively autocorrelated
they are likely to be in opposite directions (e.g. colder
than average years typically follow hotter than average
years). There is evidence from theoretical [28], laboratory
[29] and empirical [27] studies that the predictability of
environmental change propagates through to population
mean fitness. Non-genetic inheritance is most likely to be
beneficial when the parental phenotype contains useful
information about the environment that is likely to be
experienced by the offspring [30], i.e. if environmental
change is predictable. Our focus is on comparing the
impact of maternal effects on phenotypic evolution in
novel and in stable environments. Experiments suggest
that maternal effects affect adult traits most in benign
environments [31], but ecological stimuli such as heat
stress [32] or presence of predators [33] can provoke
large maternal effects. In a random environment,
Jablonka et al. [34] showed that transgenerational effects
delivered higher fitness than either a plastic only or gen-
etic only strategy; less is known about the benefits of
transgenerational effects when environmental change is
autocorrelated, however.

How do non-genetic inheritance and phenotypic
plasticity interact to deliver the optimal phenotype?
Here, we extend Lande’s quantitative genetic frame-
work for the evolution of phenotypic plasticity [8] to
incorporate non-genetic inheritance via the maternal
effect coefficient. We show how the optimal level of
the maternal effect coefficient to maximize fitness
depends on the extent of environmental shift and the
lag between juvenile development and selection, but is
consistently negative or zero for background levels of
environmental change.
2. A QUANTITATIVE GENETIC MODEL OF
ADAPTATION WITH FIXED MATERNAL
EFFECTS

We start with the reaction norm approach of Lande [8]
and extend it to include m as a fixed strength maternal
effect coefficient [12,35] to represent maternal inheritance
[13,36]. Furthermore, our extensions include decoupling
environmental autocorrelation from juvenile develop-
ment, and calculating expectations for population mean
fitness and phenotypic variance. Our modified reaction
norm is

zt ¼ at þ bt1t�t þmz�t�1 þ et ;

where as in Lande [8], zt is the adult phenotype of an indi-
vidual subject to selection in generation t; 1t is the
environment at time t; t is the lag between a critical
period of juvenile development and the time when the
adult is subject to selection; at gives the additive genetic
effect in the reference environment 1 ¼ 0; bt describes
the plastic phenotypic response to the environment; z�t�1
is the phenotype of the parent after selection in generation
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t 2 1; and et is the residual component of phenotypic vari-
ation, which is assumed to be normally distributed with a
constant population mean of zero and variance se

2. We are
considering a sexual population, where mating is at
random, and where generations are discrete and
non-overlapping.

Averaging over the population distribution, for a
given environment 1t2t, gives

�z t ¼ �at þ�bt et�t þm z�t�1; ð2:1Þ

where the overbar denotes population mean.
The phenotypic variance, s2

zt
, of zt is

s2
zt
¼ Gaa þ 2Gabet�t þGbbe

2
t�t þ 2mGatz�t�1

þ 2mGbtz�t�1
et�t þm2s2

z�t�1
þ s2

e ; ð2:2Þ

where Gaa, Gbb and Gab are the variances of at and bt and
the covariance of at and bt respectively, which we assume
to be constant. Gatz�t�1

, Gbtz�t�1
ands2

z�t�1
are the covariances

and variance of z�t�1 in the obvious way. The covariances
Gatzt and Gbtzt of zt with at and bt satisfy

Gatzt ¼ Gaa þGabet�t þmGatz�t�1
; ð2:3Þ

and

Gbtzt ¼ Gab þGbbet�t þmGbtz�t�1
: ð2:4Þ

At equilibrium, in a constant reference environment
e, we have s2

z ¼ s2
z� . Because offspring share on average

half their genes with one parent, then in the case of
weak selection, we also have Gatzt ¼ 2Gatz�t�1

; Gaz and
Gbtzt ¼ 2Gbtz�t�1

; Gbz at equilibrium [13,37]. Hence, we
can deduce

s2
z ¼
ð2þmÞðGaa þ 2GabeþGbbe

2Þ
ð2�mÞð1�m2Þ þ s2

e

1�m2 : ð2:5Þ

As in Lande [8], we assume that the reference
environment, 1 ¼ 0, minimizes the phenotypic variance.
The minimum phenotypic variance is achieved at
e ¼ 2Gab/Gbb and so we must have Gab ¼ 0. Further-
more, the optimum phenotype, ut, is assumed to be a
linear function of the environment at time t, and fitness,
W, to be Gaussian:

ut ¼ Aþ Bet ;

and

W ðet ; ztÞ ¼Wmaxexp �ðzt � utÞ2

2v2

( )
;

where A, B, Wmax and v are constants. If zt is normally
distributed with variance szt

2 , then, as in Lande [8], we
can average over the phenotype distribution p(zt) to
find the mean fitness

�W ðet ;�z tÞ ¼
ð

pðztÞW ðet ; ztÞdzt ; ð2:6Þ

¼Wmax

ffiffiffiffiffiffiffiffi
gv2

p
exp � g

2
ð�z t �utÞ2

n o
; ð2:7Þ

where g ¼ 1/(v2 þ szt
2 ).

Assuming that the additive genetic component (at)
and plasticity (bt) are bivariate normally distributed,
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the per generation change in their population means, �at

and �bt , is [38]:

D
�a
�b

� �
¼ Gaa 0

0 Gbb

� �
b;

where

b ¼ @=@ �at

@=@ �bt

� �
ln �W ;

and where we have used Gab ¼ Gba ¼ 0 to ensure that
the phenotypic variance is minimized in the reference
environment e ¼ 0 [8].

Equation (2.2) indicates that szt
2 does not depend

directly on �a or �b; and in this case, we have

b¼�g ð�at�Aþ�bt et�t�Betþm�z �t�1Þð1þmÞ
ð�at�Aþ�bt et�t�Betþm�z �t�1Þðet�tþmet�t�1Þ

� �
;

ð2:8Þ

where we have used that the average phenotype after
selection in the previous generation is given by

�z �t�1 ¼ �at þ�bt et�t�1 þm �z �t�2 : ð2:9Þ

Thus, we have

D�a ¼ �gGaað�at �Aþ �bt et�t � Bet þm �z �t�1Þð1þmÞ;
ð2:10Þ

D�b ¼ �gGbbð�at �Aþ �bt et�t � Bet þm �z �t�1Þ
� ðet�t þmet�t�1Þ ð2:11Þ

and �z �t ¼ �at þD�a þ ð�bt þD�bÞet�t þm �z �t�1; ð2:12Þ

where equation (2.12) gives the mean value of the
phenotype in generation t after selection.

Note that the value of A can be set to zero by the linear
transformation fu! u 2 A, z! z 2 A, a! a 2 (1 2

m)Ag, which otherwise leaves the system unchanged,
and that the transformed system is then invariant
under the reflection fe ! 2e, z! 2z, a! 2ag.
Thus, beyond these shifts of mean and changes of sign,
there is no qualitative effect of the sign of environmental
fluctuations on the behaviour of the system. In particular,
whether a positive or negative value of the maternal effect
coefficient, m, benefits fitness in a given environment is
independent of whether that environment is shifted
positively or negatively from the reference e ¼ 0.
2.1. Adaptation following an extreme
environmental shift

Tosee the impact ofmaternal effects on themodel of pheno-
typic plasticity when there is a sudden environmental
shift, we will use the same environmental conditions as
Lande [8], namely a noisy step change et ¼ dUt þ jt ,
where Ut is the unit step function that jumps from 0 to 1
at t¼ 0, d is the size of the sudden change in average
environment and jt is a Gaussian stationary autocorrelated
random process with mean zero, variance sj

2 and auto-
correlation rt over the interval t. We let each time step
equal one generation, so that the time lag t is measured
in fractions of a generation.
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We now substitute for 1t in equations (2.10)–(2.12)
and take the mean over the distribution of environ-
ments. We therefore obtain the expected changes,
EðD�aÞ and EðD�bÞ in �a and �b, respectively, and the
expected value of the phenotype after selection, Eð�z �t Þ.
We assume that the environment is uncorrelated over
timescales of a generation or longer. We also regard �at ,
�bt and �z �t�2 as fixed when we average over the distri-
bution of environments. This is equivalent to
neglecting terms of Oðg2G2

aa; g
2G2

bbÞ that arise in
EðD�aÞ and EðD�bÞ as a result of the dependence of �at ,
�bt and �z �t�1 on et�1 and earlier environmental states.
This is a good approximation when gGaa and gGbb

are small. The explicit dependence of �z �t�1 on et�t�1 in
equation (2.9) is retained. We therefore find:

EðD�aÞ � �geGaað1þmÞf�at �A

þ ðdUt�t �bt �dUtBÞ þmEð�z �t�1Þg; ð2:13Þ
EðD�bÞ � �geGbbððdUt�t þmdUt�t�1Þf�at �A

þ ðdUt�t �bt �dUtBÞ þmEð�z �t�1Þg

þ f�btð1þm2Þ � rtBgs2
jÞ

ð2:14Þ

and

Eð�z �t Þ � �at þdUt�t �bt þmEð�z �t�1Þ

� geGbbdUt�tf�btð1þm2Þ � Brtgs2
j

� geGbbðdUt�t þmdUt�t�1Þð�bt �BrtÞs2
j

� gefGaað1þmÞ þGbbðdUt�t

� ðdUt�t þmdUt�t�1Þ þ s2
jÞg

� f�at �Aþ ðdUt�t �bt �dUtBÞ þmEð�z �t�1Þg;
ð2:15Þ

where we have used the fact that third-order moments
of stationary Gaussian processes vanish. We have also
approximated g by ge ; 1=ðv2 þ Eðs2

ztÞ because g

depends on szt
2 and hence on e t2t in a nonlinear

manner. We use the expected phenotypic variance at
equilibrium to approximate E(szt

2 ) throughout the
period of evolution: we use the expression calculated
later in equation (3.1), but replace d by dUt2t.
We expect both these approximations to be good for
s2

zt ;s
2
j � v2.

Equilibrium solutions of equations (2.13)–(2.15) in a
noisy equilibrium environment et ¼ dþ jt satisfy
EðD�aÞ ¼ EðD�bÞ ¼ 0 and Eð�z �t Þ ¼ Eð�z �t�1Þ ¼ Eð�z �Þ. At
leading order in gGaa and gGbb, this gives

Eð�aÞ � Aþ fEð�bÞ � BgdþmEð�z �Þ ¼ 0;

ð1þm2ÞEð�bÞ � rtB ¼ 0

and

Eð�z �Þ ¼ Eð�aÞ þ dEð�bÞ þmEð�z �Þ:

The equilibrium state in the changed environment is
thus found to be

Eð�aÞ ¼ ð1�mÞAþ 1�m � rt
1þm2

� �
dB; ð2:16Þ
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Figure 1. Expected evolution of the average phenotype Eð�z tÞ, log mean fitness logðEð �W ÞÞ, plasticity Eð�bÞ and the additive gen-
etic component Eð�aÞ in the presence (dark grey, m ¼ 0.45; light grey, m ¼ 0.8) and absence (black, m ¼ 0) of fixed maternal
inheritance via the maternal effect coefficient m. The values of the model parameters follow Lande [8]: A ¼ 0, B ¼ 2, d ¼ 10,
rt ¼ 0:25, s2

e ¼ 0:5, sj ¼ 2:0, Gaa ¼ 0:5, Gbb ¼ 0:045, v2 ¼ 50:0 and Wmax ¼ 1:0.

2406 The benefits of maternal effects R. B. Hoyle and T. H. G. Ezard
Eð�bÞ ¼ rtB
1þm2 ð2:17Þ

and Eð�z Þ ¼ Eð�z �Þ ¼ Aþ dB: ð2:18Þ

Setting d ¼ 0 recovers the equilibrium state before
the change.

Without maternal effects (i.e. m ¼ 0), these results
agree with those of Lande [8]. It is clear from this analysis
that fixed maternal effects make no difference to the
expected equilibrium phenotype, but that they reduce
the expected equilibrium plasticity slightly and the
expected equilibrium additive genetic effect to a greater
extent, both before and after the change in environment.
Plotting trajectories using equations (2.13)–(2.15) and
equation (2.1) iteratively, starting from the equilibrium
state in the original environment, shows how maternal
effects change the dynamics (figure 1). In particular,
the peak plasticity during the transient phase is lower
with positive maternal effects than in their absence.
Here, we approximate expected mean fitness as

Eð �W ðet ;�z tÞÞ �Wmax

ffiffiffiffiffiffiffiffiffiffi
gev

2
p

exp � ge

2
Efð�z t �utÞ2g

n o
;

¼Wmax

ffiffiffiffiffiffiffiffiffiffi
gev

2
p

exp
n
� ge

2
ð�at �A

þðUt�t �bt �UtBÞdþmEð�z �t�1ÞÞ
2
o

� exp
n
�
ges

2
j

2
ð�bt

2ð1þm2Þ

þB2 � 2�bt BrtÞ
o
;
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which holds for s2
z ;s

2
j � v2. Again, we treat �at , �bt and

�z �t�2 as fixed. For the parameters used in fig. 1 of Lande
[8] and setting m ¼ 0.45, it is clear that constant
maternal effects speed up the adjustment to the new
environment (figure 1). For m � 0.48, however, we see
oscillations during the transition to the new equilibrium
(figure 1 and appendix C). In general, the onset of
oscillatory behaviour depends on the maternal effect
coefficient, m (appendix C); for the parameters of
figure 1 and in the absence of environmental noise
(sj ¼ 0), this is at m ¼ 0.48 (2 s.f.). Although we consider
a positive environmental shift, d . 0, the results would
be the same for an equal and opposite negative shift as
discussed at the end of the last subsection, except that
the change in the phenotype, z, and additive genetic com-
ponent, a, would be in the opposite direction: in
particular, positive m would still speed up adjustment.
While maternal effects make only a slight impact on the
expected equilibrium plasticity, they have a clear impact
on the transient dynamics: for m . 0, the peak plasticity
is lower than without maternal effects (m ¼ 0), and the
oscillations in the phenotypic dynamics are driven by
oscillations in the plastic component (figure 1). These
overshoots increase the mismatch between optimal and
observed phenotype, and therefore provide a natural
restriction on unbounded increases in the maternal
effect coefficient. It seems unlikely, however, that over-
shoots of a new optimum phenotype within the range of
environmental change typically experienced in an ances-
tral environment are sufficient to keep the maternal
effect coefficient at the modestly negative levels often
reported empirically (see §4). The question therefore
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remains: what is the optimal maternal effect coefficient in
a stochastic environment? We hypothesize that negative
maternal effect coefficients are, in fact, favoured in
relatively stable stochastic environments.
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Figure 2. Fitness is maximized for negative maternal inheri-
tance in stochastic environments: in the noisy reference
environment (top) and in a stochastic environment with d ¼

10 (bottom). The optimal value of the maternal effect coeffi-
cient m depends on the strength of environmental
autocorrelation, rt. Darker grey indicates larger rt; values are
(from light to dark) 1

10,
1
4,

1
3,

1
2, for which fitness is maximized

at m ¼20.2, 20.2, 0 and 0 (top) and m ¼20.4, 20.4, 2 0.3
and 20.3 (bottom), respectively. Parameters are as in
figure 1. Circles represent the results of numerical simulations
at intervals of 0.1 in m.
3. MATERNAL INHERITANCE IN
RELATIVELY STABLE STOCHASTIC
ENVIRONMENTS

3.1. Numerical simulations

To test whether negative values of the maternal effect
coefficient are favoured in relatively stable stochastic
environments, we generated stationary sequences of
autocorrelated environmental stochasticity for rt set to
1
10,

1
4,

1
3 and 1

2. t was fixed at 0.25 of a generation. In this
case, we considered environmental sequences with no
step change, so that et ¼ dþ jt . We examined behav-
iour both in a noisy reference environment (d ¼ 0)
and away from this (d ¼ 10).

The evolutionary response to these stochastic environ-
ments was modelled numerically using equations (2.10)–
(2.12) to update �a , �b and �z , in each generation, starting
from the expected equilibrium values. In order to calcu-
late g at each step, we first worked out the phenotypic
variance in equation (2.2) by updating equations (2.3)
and (2.4) and assuming that Gatz�t�2

� Gat�1z�t�2
=2 and

Gbtz�t�2
� Gbt�1z�t�2

=2 (appendix B); errors from this
approximation will be small when jmgj � 1.

We calculated mean fitness over 106 generations, taking
the arithmetic mean over subsequent generations of a
single realization to approximate the mean over realiz-
ations for a single generation, assuming that the system
is ergodic. We might also be interested in the mean fitness
of a population over a number of generations; this is
measured by the geometric mean across generations.
Because the trajectories show small fluctuations about
an equilibrium value, the arithmetic and geometric
means across generations of the population mean fitness
are in fact equal to leading order in the fluctuations:

YN
t¼1

ð1þ wtÞ1=N �
1
N

XN
t¼1

ð1þ wtÞ

for jwt j � 1, where wt is the fluctuation of the population
mean fitness in generation t relative to its deterministic
equilibrium value. Thus, to leading order our fitness calcu-
lations capture both the expected value of population
mean fitness for a single generation and also the geometric
mean of the population mean fitness over a number
of generations.

For all values of rt considered, fitness was maximized
for negative or zero m (figure 2). Absolute fitness
depended on the environmental autocorrelation, i.e. the
predictability of change, hence we report relative differ-
ences from the mean value. As the predictability of
environmental change increased (i.e. as rt increased),
the value of m where fitness was maximized moved
closer to zero and the relative fitness costs (i.e. curvature)
of not expressing the optimal level of maternal effects
increased (figure 2). The optimal value of the maternal
effect coefficient was more strongly negative with larger
fitness costs in the d ¼ 10 environment than in the
J. R. Soc. Interface (2012)
noisy reference environment when d ¼ 0. In the noisy
reference environment, an absence of maternal effects
(m ¼ 0) maximized fitness if the environment was suffi-
ciently predictable, namely for values of rt of 1

3 and 1
2.

There was no qualitative impact of changing the lag
between juvenile development and selection, or of consid-
ering negative environmental autocorrelation. We can
shed further light on the benefits of negative values of
the maternal effect coefficient by considering the expected
mean fitness of the population as a function of m.
3.2. Analytical refinement

First, we take expectations over the distribution of
environments in equations (2.2)–(2.4) to get

EðGatzt Þ ¼ Gaa þmEðGatz�t�1
Þ;

EðGbtzt Þ ¼ GbbdþmEðGbtz�t�1
Þ;

Eðs2
zt
Þ ¼ Gaa þ Gbbðd2 þ s2

jÞ

þ 2mEðGatz�t�1
Þ þ 2mdEðGbtz�t�1

Þ

þm2Eðs2
z�t�1
Þ þ s2

e;
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where we have set Gab ¼ 0, as before, and assumed that
the environmental stochasticity is uncorrelated over
timescales of a generation or longer, so as to neglect
any covariance between Gbtz�t�1

and et�t in equation
(2.2). Now, we look for an equilibrium solution. Under
weak selection, we have Eðs2

zt
Þ ¼ Eðs2

z�t�1
Þ ; Eðs2

zÞ,
EðGatzt Þ ¼ 2EðGatz�t�1

Þ ; EðGazÞ and EðGbtzt Þ ¼
2EðGbtz�t�1

Þ ; EðGbzÞ at leading order in g and indepen-
dent of time, and deduce that the expected equilibrium
phenotypic variance is given by

Eðs2
z Þ �

ð2þmÞðGaa þ d2GbbÞ
ð2�mÞð1�m2Þ þ

s2
e þGbbs

2
j

1�m2 : ð3:1Þ

An equilibrium state can develop only if Eðs2
z Þ is

positive and finite: this restricts the range of possible
maternal effect coefficients, m, as described in
appendix A. Empirical evidence suggests that m is typi-
cally small (see §§1 and 4), so, in practice, we shall
restrict our attention to the range �1 , m , 1, where
Eðs2

z Þ is indeed always positive and finite (figure 3
and appendix A).

In the absence of environmental stochasticity, we can
set s2

j ¼ 0 and use equation (3.1) to get an expression
for the equilibrium phenotypic variance.

s2
z ¼ s2

zd ;
ð2þmÞðGaa þ d2GbbÞ
ð2�mÞð1�m2Þ þ s2

e

1�m2 : ð3:2Þ

Turning now to the population mean fitness, we can
rewrite equation (2.7) as

�W ðet ;�z tÞ ¼Wmax 1þ s2
z

v2

� ��1=2

exp � ð�z t �utÞ2

2ðv2 þ s2
z Þ

( )
:

ð3:3Þ

When there is no stochasticity in the environment,
we have �z t ¼ ut ¼ Aþ Bd, so that for a given value of
m there is no deviation from optimal fitness. However,
J. R. Soc. Interface (2012)
that optimal fitness itself varies with m according to

�W optðmÞ ; Wmax 1þ s2
zd

v2

� ��1
2

¼Wmax

�
1þ ð2þmÞðGaa þ d2GbbÞ

v2ð2�mÞð1�m2Þ

þ s2
e

v2ð1�m2Þ

��1
2

:

Because s2
z is continuous in the region 2 1 , m , 1

and tends to positive infinity as m !+1 there, we
deduce that it must take a local minimum value some-
where between m ¼21 and m ¼ 1. Taking the
derivative of equation (3.2) with respect to m and setting
it to zero shows that s2

zdðmÞ has turning points when

m3ðx � 1Þ � 2m2ð2x þ 1Þ þ 4mðx þ 1Þ þ 2 ¼ 0;

where x ¼ s2
e=ðGaa þ d2GbbÞ. In fact for all positive x,

there is a local minimum of s2
zd , and correspondingly a

local maximum of �W optðmÞ at mopt in the region
�1 , mopt , 1. As x! 0, we have mopt ! m0 ¼ �0:43
(2 s.f.) and as x ! þ1, we find mopt ! 0, with inter-
mediate values of mopt for intermediate values of x.
Thus, populations with a modest negative value of the
maternal effect coefficient are expected to be optimally
fit. For the parameters used in figure 1, we have x ¼ 1
in the reference environment (d ¼ 0) and so
mopt ¼ �0:22 (to 2 s.f.), whereas x ¼ 0.1 when d ¼ 10,
and thus the optimal m is mopt ¼ �0:39 (to 2 s.f.) after
the environment shift.

If the environment is stochastic, then the expected
phenotypic variance increases according to equation
(3.1) and we expect the mean fitness to drop. If the
noise is small enough compared with the width of the
fitness function (s2

j � v2) then from equation (3.3),
we find

�W �Wmax 1þ s2
zd

v2

� ��1=2

1� s2
z � s2

zd þ ð�z t �utÞ2

2ðv2 þ s2
zdÞ

( )
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and hence

Eð �W Þ �Wmax 1þ s2
zd

v2

� ��1=2

� 1� Eðs2
zÞ � s2

zd þ Efð�z t �utÞ2g
2ðv2 þ s2

zdÞ

( )
:

Using equation (3.1) and calculating

Efð�z t �utÞ2g ¼ Efð�at þ�bt et�t þm �z �t�1�A� BetÞ2g;

¼ s2
jB

2 1� r2
t

1þm2

� �

at equilibrium, we have

Eð �W Þ�Wmax 1þs
2
zd

v2

� ��1=2
(

1�
s2
j

2ðv2þs2
zdÞ

� B2 1� r2
t

1þm2

� �
þ Gbb

1�m2

� �)
;

¼Wmax

�
1þð2þmÞðGaaþd2GbbÞ

v2ð2�mÞð1�m2Þ

þ s2
e

v2ð1�m2Þ

��1=2

�
(

1�
s2
j

2ðv2þs2
zdÞ

B2 1� r2
t

1þm2

� �
þ Gbb

1�m2

� �)
:

ð3:4Þ

So, environmental noise does indeed reduce the
expected population mean fitness. For low enough
noise levels, this expression provides a small correction
to the optimal value of m calculated for the purely
deterministic environment, as is confirmed by the
observation that the maximum fitness occurs close to
m ¼ 20.2 in the noisy reference environment and
close to m ¼20.4 in the noisy d ¼ 10 environment
(figure 2). Analysing equation (3.4) in more detail, we
see that greater autocorrelation of the environmental
noise (rt closer to 1) and greater distance from the
reference environment (larger d) both tend to increase
the fitness costs of expressing suboptimal m. Finally,
the absence of plasticity (Gbb ¼ 0) would tend to
lessen these fitness costs. Once again, these results are
independent of the direction of the environmental shift.

The relative fitness of populations with negative
values of the maternal effect coefficient suggests that
in relatively stable environments, the benefit of lower
phenotypic variance from m , 0 (equation (3.4) and
figure 2) outweighs other factors. One might ask why
the variance is minimized at negative m rather than
at m ¼ 0. From equation (3.1), it is clear that this
favouring of negative m comes from the inclusion of
mðGaa þ d2GbbÞ in the numerator of the first term on
the right-hand side. This arises from the fact that z�t�1
covaries with at and bt. In other words, reacting in the
opposite way to the maternal phenotype compared
with the inherited genotype in some sense uses the
J. R. Soc. Interface (2012)
information in the mother’s phenotype to discount the
effect of her genes and remain closer, on average, to
the optimum phenotype.
4. DISCUSSION

We used quantitative genetic models to show how posi-
tive maternal effects can speed up adaptation following
an extreme environmental shift (figure 1), but, if suffi-
ciently strong, cause oscillations in the phenotypic
dynamics, and therefore increase the mismatch between
observed and optimal phenotype. In relatively stable
environments, however, the relative fitness of popu-
lations with a negative maternal effect coefficient m
suggests that the lower phenotypic variance achieved
when m is negative (equation (3.4) and figure 2) is ben-
eficial. This means that selection should favour a small
negative effect of the maternal phenotype on offspring
phenotype. Direct empirical estimates of a negative m
relate either to the case where a single trait affects
itself maternally [16–18], which is the situation we
have modelled, or to the case where a given maternal
trait affects a different offspring trait, for example,
litter size affecting juvenile growth rate in red squirrels
[22]. In the latter case, a negative maternal effect may
result from a negative direct-maternal covariance,
because the two quantities are related to one another:
statistical decompositions can be used to estimate the
strengths of interactions among phenotypic traits [39]
given a model of direct and indirect genetic effects
[40]. There is some overlap between the two categories,
in that the negative maternal effect of a single trait
upon itself may be mediated by another trait: for
example, large maternal litter size in mice leads on aver-
age to offspring of smaller body size who in turn have
smaller litters [41]. In relatively stable environments,
the expected local fitness maximum in our model
occurs at modestly negative values of the maternal
effect coefficient. Thus, however it arises, a negative
maternal effect of a single trait on itself can lead to
increased fitness in our model.

Following an extreme environmental shift, there was
a clear benefit of a positive maternal effect coefficient
m. Increasing m within the region of monotonic conver-
gence (i) lowers the peak of plasticity during the
transient phase, (ii) accelerates the approach to this
peak (figure 1), and (iii) slightly reduces the equili-
brium level of plasticity (equation (2.17)). The
equilibrium level of the additive genetic component is
reduced if m . 0 (equation (2.16) and figure 1), both
before and after the step change d. This lower contri-
bution of the additive genetic component to the
phenotype is consistent with conclusions from statisti-
cal decompositions on empirical populations that do
not calculate total heritability [42,43] and so do not
include maternal effects. For example, significantly
more variance in Collinsia verna seed weight was
explained despite a reduction in additive genetic var-
iance when models included the maternal phenotype
compared with those without it [44]. Variance in
maternal phenotype represents an additional pool of
raw variation that can amplify the response to selection,
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leading to oscillations as the mean phenotype over-
shoots its optimum level in the expected environment
(figure 1). The amplification of the phenotypic
dynamics induced by m . 0 can cause the population
to be further from its optimum than would be the
case in the absence of maternal effects (m ¼ 0). This
amplification operates via phenotypic plasticity
(figure 1), emphasizing the importance of considering
the interplay of phenotypic plasticity and maternal
effects when studying adaptation in natural popu-
lations. An experimental unification of phenotypic
plasticity and maternal effects in driving adaptation
would be difficult (and we are unaware of any to
date), but there are experiments that highlight the
importance of both: Lind & Johannson [45] incorpor-
ated maternal effects into statistical analyses of their
experiments into the role of phenotypic plasticity in
adaptation on common frogs Rana temporaria, but not
into their experimental design, whereas Plaistow &
Benton [46] manipulated the strength of maternal effects
to alter mean population fitness and transient population
dynamics on experimental populations of soil mites
Sancassania berlesei.

In relatively stable environments, a negative
maternal effect coefficient minimizes phenotypic var-
iance and hence maximizes mean fitness (equation
(3.4) and figure 2). This minimum variance occurs at
negative m, because this uses the information in the
maternal phenotype to discount the effect of the inher-
ited genes and express a phenotype that is closer to
the average. The level of maternal effects that maxi-
mizes mean fitness in our simulations increased with
increasing environmental autocorrelation (figure 2),
but remained negative or zero to reach the optimal
level of phenotypic variance (equation (3.4)). This
impact of the predictability of environmental change
is consistent with conclusions from the quantitative
genetic models of Lande & Shannon [47], which
showed how genetic variance impacts fitness negatively
when environmental change is more predictable. The
increased curvature of the trajectories in figure 2 indi-
cates that, as rt increases, so too does the negative
impact of suboptimal m. Increasing rt favours greater
m because the changes in environment become more pre-
dictable, meaning that the parental phenotype carries
more accurate information to prepare offspring to the
environmental conditions they might experience during
their lifetime [30].

Although we have not explicitly incorporated a
cost of maternal effects in our model, the oscillatory
dynamics (figure 1) are a constraint on unbounded
increases in a positive maternal effect coefficient.
Were we to do so, we expect that plasticity would
compensate for cost-reduced m during the transient
phase, whereas additive genetic variance would com-
pensate for cost-reduced m once the population
reaches its new equilibrium (or always in the stable
environment; figure 1). Because the consequences of
maternal effects depend on their demographic and
environmental contexts [46] and parents frequently
adjust their phenotype in response to changing con-
ditions [48,49], our assumption of fixed maternal
effects from one generation to the next is a strong
J. R. Soc. Interface (2012)
one. It does facilitate comparison with many statisti-
cal studies [12], however. In reality, we expect the
maternal effect coefficient, m, to be a continuous trait,
varying across the population and subject to selection
[50]. Nevertheless, we expect the results that positive
maternal effect coefficients are beneficial in rapidly chan-
ging environments, whereas negative values of m are
beneficial in stable ones, to be robust in a framework
where m can vary. Positive m will still increase the rate
of adaptation to a new environment, very likely to an
enhanced degree as m evolves towards more positive
values. In stable environments, the phenotypic variance
will still involve covariance between the maternal pheno-
type and the offspring genotype and so a discounting of
the former against the latter will still favour negative m.
However, the simplified mathematical treatment that we
have given here with m fixed makes these points much
more transparently than would otherwise be possible. It
seems logical that populations would benefit from the
dampening effect of negative values of m in a stable
environment, while retaining the possibility of evolving
positive values to facilitate rapid adaptation following
environmental upheaval. Relaxing the assumption of
fixed maternal effects is the subject of future work.
5. CONCLUSION

Using quantitative genetic models of reaction norm
evolution, we have shown that maternal effects can
both facilitate rapid adaptation to environmental
change and, in more stable environments, keep pheno-
types close to the average and so maximize fitness.
We suggest that one reason that the average level of
maternal effects in stable environments is negative is
because this minimizes the effect of genetic variance
on fitness when the environment is predictable.
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APPENDIX A. PROPERTIES OF THE
PHENOTYPIC VARIANCE

The expected phenotypic variance at equilibrium is
given in equation (3.1) as

Eðs2
z Þ ¼ ðGaa þ d2GbbÞ

2þm
ð2�mÞð1�m2Þ þ

~x
1�m2

� �
;

where ~x ¼ ðs2
e þGbbs

2
jÞ=ðGaa þ d2GbbÞ. Note that ~x and

ðGaa þ d2GbbÞ are both positive by definition.
Clearly, an equilibrium can occur only if the

expected phenotypic variance would be positive and
bounded. For 0 , ~x , 1, this restricts m to the ranges
m , �2ð1þ ~xÞ=ð1� ~xÞ, �1 , m , 1 and m . 2,
whereas for ~x . 1, m must lie in the ranges 21 ,m ,

1 or 2 , m , 2ð1þ ~xÞ=ð~x � 1Þ (figure 3). If ~x ¼ 1 then
�1 , m , 1 and m . 2 are permitted. For values of m
outside these permitted ranges, the system cannot reach
an equilibrium.
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In the absence of environmental stochasticity
ðs2

j ¼ 0), the parameter values in figure 1 give ~x ¼ 0:1
and thus m , �2:4 _4, 21 , m , 1 and m . 2 for d ¼

10, and ~x ¼ 1 and so 21, m, 1 and m . 2 for the
reference environment d ¼ 0. When there is environ-
mental noise as in Lande [8] with s2

j ¼ 4, the ranges
of valid equilibria are m , 22.63 (3 s.f.), 21 , m , 1
and m . 2 for d ¼ 10 (~x ¼ 0:136 3 s.f.), and 21 ,

m , 1 and 2 , m , 13:1 _1 for the reference environment
d ¼ 0 (~x ¼ 1:36 3 s.f.).
APPENDIX B. UPDATING COVARIANCES

The evolutionary response to stochastic environments
was modelled numerically using equations from (2.10)
to (2.12) to update the population mean additive gen-
etic effect, �a , plasticity, �b and phenotype, �z , in each
generation, starting from the expected equilibrium
values. In order to calculate g at each step, we first
worked out the phenotypic variance

s2
zt ¼ Gaa þGbbe

2
t�t þ 2mGatz�t�1

þ 2met�tGbtz�t�1

þm2s2
z�t�1
þ s2

e;

and to do this we updated Gatz�t�1
, Gatz�t�1

and s2
t�1�

according to

Gatz�t�1
¼ Gata�t�1

þmGatz�t�2
� 1

2
Gaa þ

1
2

mGat�1z�t�2
;

Gbtz�t�1
¼ Gbtb�t�1

et�t�1 þmGbtz�t�2
� 1

2
Gbbet�t�1

þ 1
2

mGbt�1z�t�2
;

s2
z�t�1
¼ Gaa þGbbe

2
t�t�1 þ 2mGa�t�1z

�
t�2

þ 2met�t�1Gb�t�1z
�
t�2
þm2s2

z�t�2
þ s2

e ;

� Gaa þGbbe
2
t�t�1 þ 2mGat�1z�t�2

þ 2met�t�1Gbt�1z�t�2
þm2s2

z�t�2
þ s2

e ;

where the subscripts a�t�1 and b�t�1 refer to the values after
selection in generation t � 1. We expect the errors in the
value of szt

2 from approximating Gata�t�1
� 1

2Gaa,
Gbtb�t�1

� 1
2Gbb, Ga�t�1z

�
t�2
� Gat�1z�t�2

and Gbt�1z�t�2
� Gbt�1z�t�2

to be small when jmgj � 1.
APPENDIX C. STABILITY CALCULATIONS

For m � 0.48 with parameter values from Lande [8],
we see oscillations during the transition to the new
equilibrium (figure 1). This can be understood by ana-
lysing the stability of the equilibrium state. Note
throughout that when jmj is close to 1, we violate the
assumption that s2

z � v2 (see equation (2.5)) and so
our results are not strictly valid in those regions. How-
ever, in practice, this is not significant, as we show that
only equilibria towards the middle of the region
�1 , m , 1 are of interest.

Consider an environment e that is constant over time
in the absence of environmental noise. If we set e ¼ d,
then the corresponding equilibrium steady state is
J. R. Soc. Interface (2012)
given in equations (2.16)–(2.18) and is a fixed point
of the map

�atþ1 ¼ �at �gGaað1þmÞð�at �Aþ �bt d� BdþmZtÞ;
�btþ1 ¼ �bt �gGbbð1þmÞð�at �Aþ �bt d� BdþmZtÞd;
Ztþ1 ¼ �at �gGaað1þmÞð�at �Aþ �bt d� BdþmZtÞ

þmZt þ f�bt �gGbbð1þmÞð�at �Aþ �bt d� Bd

þmZtÞdgd;

which is derived from equations (2.10)–(2.12) with
Zt ¼ �z �t�1.

We now make a linear change of variables

ct ¼ ðdGbb �at �Gaa
�btÞ;

dt ¼ �at þd�bt ;

and rt ¼ Zt � �at �d�bt :

This step reduces the map to a simpler form, from
which it is clear that ct is fixed:

ctþ1 ¼ ct ;

dtþ1 ¼ dt � gxðdt � A� Bdþmðrt þ dtÞÞ
and rtþ1 ¼ mðrt þ dtÞ;

where x ¼ ð1þmÞðGaa þ d2GbbÞ. The Jacobian of the
map ðdtþ1; rtþ1Þ ¼ f ðdt ; rtÞ is given by

Df ¼
1� gxð1þmÞ �gxm

m m

� �
;

and has eigenvalues z that satisfy the characteristic
equation

z2 � zð1þmÞcþmc ¼ 0;

where c ¼ 1� gx. Note that because x and g depend
on m (see above and equation (2.5)), c will also
depend on m.

If jzj � 1 for both eigenvalues z, then the equilibrium
state is stable, if jzj ¼ 1 for one or both eigenvalues then
the state is neutrally stable and it is unstable otherwise.
In the absence of maternal inheritance (m ¼ 0), we have
z ¼ 0 and z ¼ c. For the values of the parameters given
in figure 1, c ¼ 0:99 (2 s.f.) before the change in
environment and c ¼ 0:91 (2 s.f.) afterwards, so both
these equilibrium states are stable. To see whether
maternal effects can destabilize the equilibria, we will
now let m = 0. Setting z ¼ lþ ih, where l and h are
real, and separating the real and imaginary parts of
the characteristic equation gives

l2 � h2 � lð1þmÞcþmc ¼ 0; ðC 1Þ

and

2lh� hð1þmÞc ¼ 0: ðC 2Þ

The equilibrium is unstable when jzj . 1, so
l2 þ h2 . 1 and (neutrally) stable when l2 þ h2 � 1.

From equation (C 2), we see that either h ¼ 0 or
l ¼ ð1þmÞc=2. Considering the case h ¼ 0 first, the
stability boundary jzj ¼ 1 is given by l ¼+1. For l ¼ 1
and h ¼ 0, equation (C 1) gives c ¼ 1 and so there is a
stability boundary at gð1þmÞðGaa þGbbd

2Þ ¼ 0, which
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is equivalent to m ¼ �1. If l ¼ �1 and h ¼ 0, equation
(C 1) gives a stability boundary at ð1þ 2mÞcðmÞ þ 1 ¼ 0.

If on the other hand we have l ¼ ð1þmÞc=2, then if
h2 . 0, we have complex eigenvalues and hence oscil-
latory dynamics. From equation (C 1) we get

h2 ¼ mcðmÞ � 1
4
ð1þmÞ2cðmÞ2:

In the range �1 , m , 1, we have h2 . 0 for
m . mosc ¼ 0:48 (2 s.f.) after the environmental shift.
Therefore, once m � 0.48 the step change in the environ-
ment d triggers oscillations in the convergence to the new
phenotypic optimum. However, in this region
l2 þ h2 ¼ mc , 1 and so the new equilibrium state
remains stable and the oscillations dampen and even-
tually die away. If we fix Gaa and require, as in Lande
[8], that the relationship of the genetic variances to d

remains constant at Gbbd
2=ðGaa þGbbd

2Þ ¼ 0:9, there is
no dependence of mosc on d. Even when environmental
noise is included, as below, mosc varies very little with d.

In the oscillatory case, the stability boundary is at
l2 þ h2 ¼ mc ¼ 1. Calculating the locations of the
J. R. Soc. Interface (2012)
stability boundaries for both real and complex eigen-
values reveals that in both the perturbed (d ¼ 10) and
unperturbed (d ¼ 0) environments, the equilibria in
the range �1 , m , 1 are all stable. When d ¼ 0, the
remaining equilibria lie in the range m . 2, and these
are unstable except in the region 98:0 , m , 99:5 (3
s.f.). When d ¼ 10, the other regions where equilibria
exist are (i) m , �2:4 _4, where they are unstable and (ii)
m . 2; where they are also unstable except in the region
7:73 , m , 9:52 (3 s.f.). Thus, in both cases, stable
equilibria are found only in the range �1 , m , 1
and a region at significantly larger positive m that we
consider to be implausible on biological grounds. This
provides us additional rationale for restricting our
attention to values of m in the range �1 , m , 1.

The analysis above assumes a fixed environment
both before and after the step change; we can repeat
it for expected mean quantities in the presence of
environmental noise. In this case, the Jacobian matrix
of the map ðctþ1; dtþ1; rtþ1Þ ¼ f ðct ; dt ; rtÞ is
Df ¼
1� geGaaf gedGaaf 0

gedf 1� gexð1þmÞ � ged
2Gbbf �gexm

gedð1þmÞf m � geGbbð1þmÞðs2
j þ d2fÞ mð1� geGbbs

2
jÞ

0
@

1
A;
where f ¼ Gbbð1þm2Þs2
j=ðGaa þGbbd

2Þ.
Analytical expressions for the stability boundaries

are harder to obtain, but the eigenvalues can be deter-
mined numerically. For the parameter values used in
figure 1, and at m ¼ 0:45, the eigenvalues for the equi-
librium after the change are z ¼ 0:9997; 0:7433 and
0:5290, compared with 1:0, 0:7438 and 0:5325 in the
absence of noise, showing that the noise has a slight sta-
bilizing effect. At m ¼ 0:5, the eigenvalues are
z ¼ 0:9997 and 0:6569 + 0:0677i (cf. 1.0 and 0.6589+
0.0713i) showing that oscillations will, as before, be trig-
gered by the environmental shock.
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