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Neurogenesis has been the subject of active research in recent years and many authors have
explored the phenomenology of the process, its regulation and its purported purpose. Recent
developments in bioluminescent imaging (BLI) allow direct in vivo imaging of neurogenesis,
and in order to interpret the experimental results, mathematical models are necessary. This
study proposes such a mathematical model that describes adult mammalian neurogenesis
occurring in the subventricular zone and the subsequent migration of cells through the rostral
migratory stream to the olfactory bulb (OB). This model assumes that a single chemoattrac-
tant is responsible for cell migration, secreted both by the OB and in an endocrine fashion by
the cells involved in neurogenesis. The solutions to the system of partial differential equations
are compared with the physiological rodent process, as previously documented in the litera-
ture and quantified through the use of BLI, and a parameter space is described, the
corresponding solution to which matches that of the rodent model. A sensitivity analysis
shows that this parameter space is stable to perturbation and furthermore that the system
as a whole is sloppy. A large number of parameter sets are stochastically generated, and it
is found that parameter spaces corresponding to physiologically plausible solutions generally
obey constraints similar to the conditions reported in vivo. This further corroborates the
model and its underlying assumptions based on the current understanding of the investigated
phenomenon. Concomitantly, this leaves room for further quantitative predictions pertinent
to the design of future proposed experiments.

Keywords: neurogenesis; mathematical model; sloppiness; sensitivity analysis;
chemotaxis
1. INTRODUCTION

Neurogenesis has been the subject of active research in
recent years and many authors have explored the phe-
nomenology of the process, its regulation and its
purported purpose in both the subventricular zone
(SVZ) and the dentate gyrus of the hippocampus. In
the adult SVZ, type-B astrocytes that are present
close to endothelial cells act as slowly dividing neural
stem cells, capable of generating a progeny of type-A
neuroblast precursors [1] through a rapidly proliferating
type-C cell intermediate. Type-A neuroblasts then
migrate in a unique fashion to the olfactory bulb
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(OB) along a path known as the rostral migratory
stream (RMS), which is large (of the order of milli-
metres) in comparison with the size of each individual
cell (of the order of microns) [2]. These neuronal precur-
sors migrate in chains along the RMS, which is
ensheathed by astrocytic processes and outlined by
blood vessels [3–5]. After migrating through the RMS,
these type-A neuroblasts arrive at the centre of the
OB and then move radially outwards. They further
specify into either OB granule cells or OB periglomeru-
lar cells, and become fully developed mature neurons
that stain with NeuN but are otherwise indistinguish-
able from OB cells [1]. Thus, to a first approximation,
the stem cells differentiate linearly in a cascade
throughout their complex spatial journey.

During migration, type-A cells continue to divide
and initiate neuronal maturation [6], but their rate of
This journal is q 2012 The Royal Society
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Figure 1. (a) Illustration of the approximate physiological location of the migratory process. (b) Location of the computational
domain with inset a typical BLI. (c) The three interconnected boxes that form the computational domain; the initial concen-
trations of the chemoattractant factor fA and nB cell density are shown in grey within the olfactory bulb (OB) and
subventricular zone (SVZ), respectively. The central black box indicates the region considered to be the centre of the OB,
where in this simplifying model all type-A neuroblasts which arrive either undergo apoptosis or specify into adult neurons.
RMS, rostral migratory stream. Scale bar shows unit length in the model, corresponding to 1.4 mm if dimensionalized.
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proliferation is drastically reduced and the cell cycle
time is lengthened [7]. The migration is predominantly
towards the OB, but many parts of the individual paths
can point in other directions. In answer to the ques-
tion of what guides migration, it is often theorized
that differentially expressed migration factors might
be responsible for steering migration, and a very large
number of factors have been shown to influence the pro-
cess: brain-derived neurotrophic factor [8]; growth
factors such as endocrine growth factor [9], nerve
growth factor [10] and fibroblast growth factor-2 [11];
polysialylated neural cell adhesion molecules, [12] and
many other substances have been shown to have a
mixed effect upon the entire neurogenic process [13].
It therefore appears probable that an attractant factor
in the OB might direct migrating type-A neuroblasts
towards the bulb. However, cells migrate successfully
even when the OB is surgically separated from the rest
of the brain [14], although the magnitude of migration
is greatly reduced. Insertion of an explant culture of OB
cells subsequently ameliorates the process, but insertion
of any other piece of brain tissue does not, nor do many
known chemoattractants [15]. This implies that attrac-
tant factors are both present within the OB and
secreted from the cells in either an endocrine or paracrine
fashion, or are present within the wider environment; the
exact mechanism remains currently unknown.

Recent developments in bioluminescent imaging
(BLI) have allowed direct in vivo imaging of neurogen-
esis within rodents over a prolonged time period and the
measurement of a number of tagged cells temporally
throughout the process and spatially throughout the
brain [8]. Properties such as cell migration speeds, pro-
liferation, specification and apoptosis rates undoubtedly
have a significant influence upon the results of such
experiments and would prove troublesome to quantify
in rodents. Furthermore, the specific mechanism and
chemical factors responsible for the regulation of the
process are at present largely unknown as outlined ear-
lier. We therefore propose a simplified mathematical
model, the results from which will, we hope, guide
further experimentation. Theoretical and computational
modelling of neurogenesis is not new. It has been used to
study processes during development [16] as well as in the
J. R. Soc. Interface (2012)
postnatal and adult brain [17,18]. Aimone et al. [16]
review a suite of neurogenesis models, classifying them
into ‘abstract’, anatomy independent models and ‘bio-
logical’ models that encompass specific details of the
anatomical location. The latter category has been used
to study processes in the hippocampus [19–23] and the
OB [17]. What these models have in common though is
their focus on the functional effect of neurogenesis.
In this study, we do not aim to consider all the details
of the functional effect of the processes we model; instead
the focus here is on providing a tool to interpret the
experimental measurements. The agreement between
the results of this model and the physiological process
lends credence to the assumptions upon which the
model relies, most notably that migratory neuronal che-
moattractants are secreted both at a constant rate by
both the environment and in an endocrine/paracrine
manner by the migrating cells.
2. MATERIAL AND METHODS

2.1. Model and assumptions

Spatially, the migration of cells through the RMS is
a complex three-dimensional process [1,13,24], but to
date quantifying BLI only has occurred in two-dimensional
axial slices. We therefore consider that modelling the
process in two dimensions at greatly increased computatio-
nal and mathematical ease is an acceptable simplification.
We assume that the computational domain can take the
form of two interconnected boxes, the larger corresponding
to the anatomically larger OB and the smaller to the much
smaller SVZ, as illustrated in figure 1. Given the fact
that we are modelling neurogenesis in the adult brain,
domain growth can be neglected, which further simplifies
the mathematical framework [25].

Figure 2 shows a schematic overview of the model
presented in this study. It is generally acknowledged
that type-B cells in the SVZ specify into type-C tran-
sit-amplifying cells, which then become the migratory
type-A neuroblasts. These type-A migratory neuro-
blasts do not change their morphology further before
either becoming adult neurons or undergoing apoptosis
[13]. Although a small proportion (1.6%) of type-A cells
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Figure 2. A schematic overview of the model and its terms, illustrating the linear differentiation cascade of the neuroblasts and
associated terms. g and e are apoptosis rates; b are proliferation rates; a and z are differentiation rates; d are diffusion constants;
f and g are chemoattractants.
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seem to be able to become type-E endothelial cells [26]
while in the SVZ itself, we do not model the density
of the structural type-E cells but rather include this
small loss of type-A cells within their apoptotic term.
Because this is constant spatially within the model,
this is tantamount to assuming that the rate of
growth of supporting endothelial cells is constant
spatially throughout the brain. Hence, we assume that
every cell specifies in a linear way (B! C! A in the
SVZ) and we denote the rate of specification by aini,
i ¼ A, B, C with ni ¼ ni(r, t); i ¼ A, B, C being the
cell density of type-A, B, C cells, r the two-dimensional
position vector and t the non-dimensionalized time. We
allow type-A, -B and -C cells to undergo mitosis and
apoptosis at different rates, and we assume that these
rates are not a function of position for each cell, apart
from the type-A migratory neuroblasts. As type-A
cells have been reported to proliferate much more
slowly outside the SVZ than within it and a large pro-
portion of the new cells arriving in the OB die [27],
we take the type-A cells to have two different rates of
mitosis with logistic growth constants bAi within the
SVZ, and bAo outside it as well as two different rates
of apoptosis, (gAþ e)nA within the central region of
the OB and gAnA elsewhere in the domain.

We take type-B and type-C cells to be fixed in space
and we let type-A cells move under the influence of a
single chemoattractant factor, fA(r,t). This factor is
assumed to be diffusible, taken up by the type-A cells
at a rate kDfAnA, able to undergo some natural decay
lfA, produced by the other species of cell present at a
rate kini and produced by the OB environment at a rate

a3 exp � ðx � x0Þ2 � ðy � y0Þ2

a1

" #( )
;

where the location of the centre of the OB is (x0,y0) and
a1 and a3 are positive constants. As a significantly sim-
plifying step, we ignore the complex radial development
and migration of type-A migratory neuroblasts into gran-
ule cells or periglomerular cells [28], and we assume that
type-A cells either specify into adult neurons (with cell
density nN) or die [27], once they reach a region surround-
ing the centre of the OB. For computational ease, the
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central region is a square of side b and we define e(r)
and z(r) as two related functions that are non-zero only
within it; e is the increased rate of type-A cell apoptosis
as described earlier, and z ¼ me is the rate of mature
neuron formation within the OB, with m being a positive
constant. We further assume that the mature neurons are
diffusible, have a slow rate of apoptosis (gNnN; gN�
gi=N) and, as a model simplification, undergo taxis
against a constant environmental factor g that is present
in the form of a Gaussian to represent the radial
migration found in the physical system. If we denote dif-
fusion constants by di and taxis coefficients by hi, this
leads to the following set of equations:

@nB

@t
¼ bBnBð1� nBÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{logistic growth

� aCnB
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� gBnB
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; ð2:1Þ
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1ðrÞ :¼ d for jx � x0j � b and jy � y0j � b;
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�
ð2:7Þ
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zðrÞ/ 1ðrÞ ¼ m1ðrÞ; z , 1; ð2:8Þ

bAðrÞ :¼ bAi within the SVZ;
bAo otherwise:

�
ð2:9Þ

The system of partial differential equations (PDEs)
defined earlier was closed with appropriate boundary
(zero-flux) and initial conditions. According to the
BLI experiment, the initial concentrations of mature
neurons, type-C and type-A cells were set at zero,
with type-B cells and the factor fA having an initial
two-dimensional Gaussian distribution in the centre of
the SVZ and the OB, respectively. The model was run
for 300 days according to the experimental set-up [8].

2.2. Implementation

The variables in this system of differential equations
represent concentrations, either of cells or of chemical
factors. It is therefore vital that the numerical solutions
to such a system are never negative, in particular
because allowing negativity for any brief period of
time may introduce unphysical oscillations and greatly
affect the stability of the system. In addition, the
method of solution used must ensure the conservation
of mass and impose zero-flux conditions at the bound-
ary of the computational domain to represent the
constraints both of this model and of anatomy. The
algorithm used to solve this taxis–diffusion–reaction
system was that presented by Gerisch & Chaplain
[29]. This implementation uses the method of lines
(MOLs) to separate the spatial and temporal discre-
tization of differentials over the computational grid of
15 600 spatial points across the domain. The diffusion
and reaction terms in equations (2.1)–(2.5) were discre-
tized using the standard second-order central difference
approximation and pointwise evaluation method,
respectively, at the central point of each grid cell,
both of which were found to be sufficient in terms of
accuracy. As reported previously [29,30], the discretiza-
tion of the taxis terms required the application of
upwinding techniques with the non-linear van Leer
limiter function to guarantee accurate, positive sol-
utions for the system of ordinary differential equations
(MOL-ODEs). For the time domain, the efficient
numerical integration scheme ROWMAP was used, a
ROW-code of order 4 with Krylov techniques for large
stiff ODEs [31], which has an automated choice of
step-size to ensure that the local error caused in each
iteration remains below a user-prescribed tolerance (in
this case 1026), while keeping the computational cost
as low as possible.

2.3. Model parameters

Parameter values were inferred (in non-dimensional
form) from the BLI dataset. We stochastically gener-
ated values for each of the parameters over a range in
magnitude (1026–106) using a Mersenne twister algor-
ithm [32] for the pseudo-random number generator,
with the majority of the solutions investigated using
generated values for each parameter that lie in the
region (0,10). The reason for this choice of space was
pragmatic: as the whole system is non-dimensional,
J. R. Soc. Interface (2012)
scaling the magnitude of every parameter essentially
redefines the coordinate axes. By (manual) comparison
between solutions from different parameter sets (sto-
chastic or otherwise), a guided search for physiological
solutions was initiated, which ceased when a parameter
space could be described that did not contain un-
physical solutions [33]. Generating purely random
parameters within the interval (0,1) resulted in physio-
logical solutions twice in 180 runs (1%); guided
stochastic searches in narrower domains increased this
to 30–40%. Searches for new parameter values were
ceased when 200 random samples of a space defined
by a +10 per cent perturbation to a physiologically
appealing parameter space (described later) resulted
in entirely physiological solutions. Computational
time for parameter sets leading to physiological sol-
utions was around 1800 s on a single core of an Intel
Xeon Harpertown 5500 processor, whereas solutions
leading to steep variations, large gradients, pattern for-
mation or quantities close to zero were computationally
more expensive. Of the system of equations (2.1)–(2.5),
it is apparent that equations (2.1) and (2.2) have
algebraic steady-state solutions of the form

nBðt ! 1Þ ¼ bB � gB � aC

bB
; ð2:10Þ

nCðt ! 1Þ ¼ 1
2bC

 
�aA þ bC � gC

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaA � bC þ gCÞ2 þ

4aCbCðbB � gB � aCÞ
bB

s !
;

ð2:11Þ

where the unphysical solution corresponding to nB¼ 0 is
ignored. We therefore constrained the parameter space
by requiring equations (2.10) and (2.11) to be greater
than zero in order to avoid trivial solutions. To avoid sol-
utions where neurons randomly diffused through the
RMS rather than through undergoing taxis, we required
hi . di. Other biological taxis models [30] frequently
have the diffusion term three orders of magnitude smaller
than the taxis one; hence this constraint is not particu-
larly stringent in context. To check that these
conditions were sufficient for physical solutions, a small
number of spaces that did not satisfy the positive
steady-state conditions but with larger initial conditions
were explored, in order to allow the possibility for taxis
within a long period of non-equilibrium behaviour;
unphysical oscillations were observed as the only result.
2.4. Parameter and model sensitivity analysis

The sensitivity of the solution to small perturbations in
the parameter set was investigated in a straightforward
manner by considering the space defined by subjecting
each parameter value to a +10 per cent perturbation,
stochastically sampling this space 200 times and then
solving the resulting systems. This showed that spaces
yielding physiological solutions with plausible taxis
times (i.e. non-zero and approximately within an
order of magnitude of the experimental data) are not
unique. As is common in biological models, one has to
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consider the system as a whole and observe correlations
and correspondence with experimental data; little can
be gained by trying to accurately determine the
values of a small range of individual parameters. This
problem is well documented, and similar to Gutenkunst
et al. [34], we defined a generalized parameter-space
least-squares metric z2 that quantifies how the solutions
change throughout parameter space relative to one
particular set of parameter coordinates u* as

z2ðuÞ ¼ 1
A

X
s;c

ðTc;
ðXb;

0

ðYb�
yscðu; t; rÞ � yscðu�; t; rÞ

�2
dr dt:

ð2:12Þ

Here t represents the time ordinate, u represents
the parameter space coordinates, Xb and Yb are the
maximum extent of the computational domain in
the x- and y-directions, Tc the time up to which the
simulation was run and A ¼ 2.TcNs is a normalization
factor with Ns being the number of species within the
model and the sum extending over all species present.
The value of z2 was computed for every physical (non-
oscillatory) solution obtained via fast trapezoidal
numerical integration (trapezoidal integration performed
successively across each dimension). Because of the fact
that solving the PDE system is computationally intensive
and most traditional ways of creating a representation
of z2 would require a large number of solutions, we
elected to use a non-linear interpolation method to
find approximations of z2 straightforwardly; an interp-
olation method that does not require an evenly spaced
grid of function value points was chosen to allow the
calculation of z2 for all solutions obtained. In this way,
the stochastic generation of parameter values represents
a Monte-Carlo approach to finding z2. The ‘obtuse
angle’ interpolation method was used [35] and found
to provide an adequate approximation to the highly
non-linear z2 function. The validity of this approach
was checked by comparison with results obtained using
other methods of non-linear interpolation, such as
the use of radial basis functions, which displayed some
evidence of fitting bias. Furthermore, in order to investi-
gate the error in the approximation to z2, simulations
were run with parameters randomly perturbed by +10
per cent compared with u*, i.e. within the whole range
that the interpolation function was trained on. These
parameters were noted, and the differences between
interpolated and computed metrics evaluated. This indi-
cates an average relative error of approximately 50 per
cent (m ¼ 0.49, n ¼ 10). Close to a data point, relative
error is significantly better.

As documented by Gutenkunst et al. [34], the Hes-
sian matrix of all possible second-order derivatives of
the function z2, i.e. the matrix

H z2

ij ¼
@2z2

@ui@uj
;

has eigenvectors that are the principal axes of the such
ellipsoids and has eigenvalues that span many orders of
magnitude. We obtained this matrix from the interp-
olated approximation to z2 via standard numerical
high-order finite difference approximations (as detailed
J. R. Soc. Interface (2012)
in [36]) with the use of suitable small step sizes. The
value of having this matrix as a function of u (rather
than u*) is that it could form a basis for a collective par-
ameter fit in future studies [25].

2.5. Experiments

The experimental set-up considered in this study is the
same as that presented in the study by Reumers et al.
[8] where BLI was used to track in vivo stem cell
migration. In summary, neural progenitor cells were
transduced with lentiviral vectors encoding firefly luci-
ferase that was injected into the SVZ of mice. BLI
was used to detect and quantify the progeny of these
transduced cells in the OB over a period of 45 weeks
post-injection. On day 7 post-injection, a detectable
BLI signal was present at the site of the injection and
from week 4, a signal from the OB could also be
detected. A full report of the experimental set-up and
the results is given in [8].
3. RESULTS

Solutions to this system broadly fell into two categories:
those that were physiologically plausible and those that
were patently not. Those that we considered plausi-
ble showed signs of a steady, controlled migration, the
relatively quick equilibration of nB and nC to their
steady-state values and a steady growth of mature neur-
ons in the OB over time until a maximum value was
reached. An example of such a set of solutions in com-
parison to the mouse BLI [8] is shown in figure 3.
Taking the non-dimensional unit of time to be days,
there is a good agreement between the model predic-
tions and the experimental in vivo results, in terms of
both the qualitative behaviour of the cells and the
timing of the process.

As discussed in §2.2, a number of constraints were
placed on the parameter space from which solutions
were generated; we found that dfA� da,n, which is
indicative of molecular as opposed to cellular diffusion.
Furthermore, we found that the logistic growth con-
stants for all three types of cells within the SVZ were
usually within the same order of magnitude. Spaces
with migration-related parameter values that were
representative of those that might be expected from the
literature—bC� bA,bB—often resulted in solutions
that were not unphysical, but where the taxis of type-A
cells was small with respect to the effect of death
terms. This either resulted in no neuronal maturation
within the OB or in a quick transition to a steady-state
constant flux of neurons through the OB, and not
in the extended buildup over time that has been
observed. Solutions deemed to be exhibiting unphysical
behaviour showed either signs of exponentially growing
oscillations or spontaneous symmetry breaking with
the onset of divergent pattern formation. The electronic
supplementary material, S1 contains an overview of
all the constraints on the parameter space needed
to generate physiological solutions, along with the
parameter set used as a reference in this study.

The sensitivity to small perturbations in the solution
illustrated in figure 3 and of others that were similarly
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Figure 3. (a,b) The emergence of mature neurons in the system and the time evolution of the chemotactic factor fA for the set of
parameter values bB ¼ 7.567, bC ¼ 9.441, bAi ¼ 1.735, bAo ¼ 0.785, aC ¼ 2.182, aA ¼ 1.700, gB ¼ 0.701, gC ¼ 0.774, gA ¼ 0.737,
gN ¼ 0.079, dA ¼ 0.037, dN ¼ 0.053, dfA ¼ 1.955, hA ¼ 0.134, hN ¼ 9.136, kA ¼ 6.045, kB ¼ 1.276, kC ¼ 2.292, kD ¼ 9.284, l ¼
0.422, a1 ¼ 1.000, a2 ¼ 0.500, a4 ¼ 1.000, a5 ¼ 0.461, b ¼ 0.500, d ¼ 1.921, m ¼ 0.213. Initial conditions were nC, nA, nN¼ 0;
nB and fA initially obeyed a Gaussian distribution: fA in the OB with a maximum magnitude of unity and a standard deviation
of half of the OB’s side; nN in the SVZ with a maximum magnitude of 100 and standard deviation of 5/6 � half of the side of the
SVZ. (c)(i) A comparison between the OB cell density of the model (nAþ nN) and (ii) recorded in vivo bioluminescent photon
fluxes of the OB reported in [8]. (p s21); photons per second.
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close to the observed behaviour in vivo was investiga-
ted straightforwardly by subjecting every parameter
value to a random +10 per cent perturbation and
solving the resulting system. For the solution illustra-
ted in figure 3, 200 such perturbed systems were
generated and solved, and we observed no unphysical
behaviour in any of these results. While the equilibrium
densities of cells predictably changed, the overall quali-
tative properties of the solutions remained the same
and even solutions with radically different equilibrium
densities displayed similar behaviour, as illustrated
in figure 4.

In the sloppy parameter analysis, we observed multi-
dimensional ellipsoids for the z2 function, as shown in
figure 5a. This quantifies how the results of the model
change as a function of its parameters, and therefore
allows one to understand which parameters have the
greatest effect upon the model outcome. Directions in
parameter space, where a small change in parameter
values results in a large change in z2, are referred to
as ‘stiff axes’; those, where z2 deviates little, are
known as ‘sloppy’. As illustrated in figure 5b, the mag-
nitude of the eigenvalues of the Hessian matrix showed
a substantial variation by decades. The eigenvalues
span some 10 orders of magnitude when normalized
by the value of the largest, indicating that the sloppiest
axes of the ellipsoids illustrated are more than 105 times
J. R. Soc. Interface (2012)
as long as the stiffest. Furthermore, the values are
spread out within this interval, thus indicating that
there is no sharp distinction between ‘important’ and
‘unimportant’ parameter combinations and confirming
the sloppy nature of the model under investigation
[34]. This sloppiness is manifest in our failure to
change the qualitative behaviour of the solutions by
adjusting individual terms (e.g. decreasing migration
time by increasing the magnitude of taxis terms h).
4. DISCUSSION

In this study, we propose a mathematical model describ-
ing adult mammalian neurogenesis occurring in the SVZ
and the subsequent migration of cells through the RMS
to the OB. This model assumes that a single chemoattrac-
tant is responsible for cell migration, secreted both by the
OB and in an endocrine fashion by the cells involved in
neurogenesis. The solutions to the system of PDEs were
compared with the physiological rodent process as
observed by BLI [8] and a parameter space was described
for which the corresponding solution matched that of the
rodent model. A sensitivity analysis was carried out
showing that the described parameter space is stable
under perturbation and furthermore that the system as
a whole is sloppy. A large number of parameter sets
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Figure 4. A direct comparison between the most and least neurogenic (a and b, respectively) solutions obtained through a +10%
perturbation to the parameter space illustrated in figure 3. While the cell density in the OB varies greatly in magnitude between
the two spaces (upper and lower bounds on the shaded region in (c); unperturbed solution in black), the overall behaviour
changes very little.

2420 Modelling neurogenesis J. M. A. Ashbourn et al.
were stochastically generated, and it was found that par-
ameter spaces corresponding to physiologically plausible
solutions generally obey constraints similar to conditions
reported in vivo in the literature.

We note that a steady decay from the maximum OB
photon flux (which is proportional to the cell density) is
observed in the BLIs, but not in our model; we propose
that this is owing to cells within the rodent being
tagged within the SVZ initially at one point in time,
which will then eventually die [37]. This model tracks
all neurons generated within the SVZ and therefore
we expect to see no decline with time once a steady
state has been reached. In addition, this model does
not suffer from experimental problems such as stereo-
tactic surgery scars, which have been seen around the
site of the SVZ injection in the rodent images in
figure 3a.
J. R. Soc. Interface (2012)
A number of simplifications have been made in the
course of this study. A two-dimensional domain was
used to model subventricular neurogenesis, which is a
frequently performed simplification in many mathe-
matical models of biological processes. Furthermore,
given that the RMS is a predominantly planar system,
we do no expect the results to fundamentally change
when incorporating the third dimension. Another
simplification lies in the numerical method used to cal-
culate the parameter-space least-squares metric z2, i.e.
through the use of a non-linear interpolation method.
The highly non-linear nature of the metric could lead
to larger errors away from the interpolation points
which might influence the exact value of the derived
Hessian. The representation of the migration used
in this study is also a simplification. It is difficult to
find or derive appropriate constraints for migration
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parameters from the literature. The majority of stu-
dies investigate the regulatory effect of a plethora of
factors upon neurogenesis. The subsequently available
constraints have either been derived from in vitro exper-
iments, which can only study migratory behaviour on
artificial surfaces, or from slices of the brain [38–40].
While the former might be far from the physiological
environment, the latter could be incomplete when, for
example, sources of chemoattraction are not present in
the studied section of the brain. BLI now allows us to
investigate this migratory behaviour in vivo for the
first time.

Owing to the complexity of the underlying biology
(involving not only migration with chemoattractants
either binding or not to the extracellular matrix, but
also cell differentiation, proliferation and death) it is
not straightforward to derive quantitative information
without the help of mathematical modelling. This study
is a first step in this direction as it tries to incorporate
the underlying biological mechanisms that influence
the experimental output. Future research will focus on
the incorporation of different migratory mechanisms.
The model proposed in this study contains many ‘free’
parameters for which no values were available in the
literature. Directly measuring them would be difficult
for some parameters and impossible for others, especially
in an in vivo environment. Collectively fitting the
parameters to experimental data often yields large par-
ameter uncertainties, as is the case for our study.
However, it has been shown extensively in the literature
that collective fitting in biological models could yield
well-constrained predictions even when it left individual
parameters very poorly constrained [34,41,42]. The
J. R. Soc. Interface (2012)
results presented in [34] suggest that sloppy sensitivity
spectra, as observed by the substantial variation in eigen-
value magnitudes in the model presented here, are
universal in systems biology models. This prevalence of
sloppiness highlights the power of collective fits and
suggests that the focus of modelling efforts should be on
predictions rather than on parameters.
5. CONCLUSION

We have shown how a relatively simple system of differ-
ential equations can accurately model the biological
process of subventricular neurogenesis and that the
individual parameter values of this system are of
equal importance in determining the properties of its
solutions. We have found a particular parameter space
(which is probably not to be unique) that is stable to
perturbation and that yields results that match others
in the literature. We believe that this model could be
extended and reapplied, once more accurate infor-
mation on the various parameters is available, in
order to make quantitative predictions of neurogenic
behaviour. Furthermore, the agreement between this
model and the BLI data implies that at least one che-
moattractant factor is secreted in an endocrine/
paracrine manner and is responsible for directing
migration, as it is produced by all types of neural
stem cells present. Whether this is physiologically the
case remains to be confirmed experimentally.
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