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Optimal homeostasis necessitates
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Bistability is a fundamental phenomenon in nature. In biology, a number of fine properties of
bistability have been identified. However, these properties are only consequences of bistability
at the physiological level, which do not explain why it had to emerge during evolution. Using
optimal homeostasis as the first principle, I find that bistability emerges as an indispensable
control mechanism. It is the only solution to a dilemma in glucose homeostasis: high insulin effi-
ciency is required to confer rapidness in plasma glucose clearance, whereas an insulin sparing
state is required to guarantee the brain’s safety during fasting. The optimality consideration
renders a clear correspondence between the molecular and physiological levels. This new per-
spective can illuminate studies on the twin epidemics of obesity and diabetes and the
corresponding intervening strategies. For example, overnutrition and sedentary lifestyle may
represent sudden environmental changes that cause the lose of optimality, which may contrib-
ute to the marked rise of obesity and diabetes in our generation. Because this bistability result is
independent of the parameters of the mathematical model (for which the result is quite general),
some other biological systems may also use bistability to control homeostasis.
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1. INTRODUCTION

Systems theory becomes increasingly important in the
post-genomic era in which the object of study is a
complex network of interactions among many kinds
of biomolecules. A central theme in systems biology is
to reveal the intricate relationship among network
structure, dynamical behaviour and physiology. As the
intermediate between structure and physiology, dyna-
mical behaviour is of particular importance [1]. One
ubiquitous dynamical behaviour is bistability [2–10].
Instead of a graded response to the stimulus, a bistable
molecule toggles between active and inactive states (all-
or-none), but the threshold concentration of the stimulus
for activation significantly differs from that for deactiva-
tion (hysteresis). The red lines in figure 1c constitute a
bistable switch. Biological examples of bistability include
Escherichia coli lac operon [2,3], mitogen-activated
protein kinase cascades [4], cell cycle circuits [5,11,12],
insulin signalling pathway [13–15] and synthetic gene
switches [16]. A comprehensive review of bistability was
made in [17]. Bistability corresponds to multiple fine
properties: it produces a ‘memory’ of a transient stimu-
lus, which is important for cell differentiation and cell
cycle progression [5,18–20]; it enables cell’s robustness
to noises while responding sensitively to signals
[21–23]; it is a mechanism through which small non-
coding RNAs can mediate gene regulation [24]; it confers
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adaptivity by adjusting hysteresis [14]; it helps one to
achieve biological rhythms with widely tunable fre-
quency and near-constant amplitude [25]. On the other
hand, disturbances to bistability often lead to complex
diseases such as cancer and diabetes [13,14,26].

However, these fine properties do not explain why bist-
ability had to emerge from evolution. First, the wide
variety of miscellaneous properties appear too special to
explain ubiquity. Occam’s razor (the principle that
plurality should not be postulated unless absolutely
necessary) argues for a simple and general explanation.
Second, bistability may not be unique in conferring
these properties. Other dynamics can possibly realize
the same physiological properties as well.

The first concern can be addressed by seeking an over-
arching principle that involves only general notions. The
second concern can be addressed by demonstrating that
the overarching principle necessitates bistability. One
starts from the principle and then deduces how the organ-
ism should be organized. If bistability emerges as an
indispensable mechanism, then bistability proves to be
necessary for the overarching principle, and the general-
ity of the principle can explain the ubiquity of bistability.

Optimal homeostasis is such an overarching prin-
ciple. Darwin’s theory of natural selection provided an
obvious mechanism for optimization in biology: more
optimized individuals are more likely to survive [27].
After many rounds of natural selection, a species is opti-
mally adapted to the environment it evolved in.
Homeostasis, first defined by Claude Bernard and
later by Walter Bradford Cannon [28,29], has become
a central concept in biology. Primarily through negative
This journal is q 2012 The Royal Society
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Figure 1. The set of locally optimal controls whose utilization rates are within the range h+Dh, where Dh ¼ 5 � 1025. (a) The
distribution of control counts over the T-values. (b) Three u(t) are illustrated: the worst control (grey, T ¼ 373), an average con-
trol (blue, T ¼ 290) and the globally optimal control (red, T ¼ 203.8). (c) The three controls in the form of u(I). They are
obtained by following the conversion procedure in figure 2. The dashed lines are for illustration purpose only; they are not
part of the controls.
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feedback control, homeostasis allows an organism to
maintain a stable parameter such as temperature. The
negative feedback control must accommodate competing
or even conflicting internal requirements and possibly
wide environmental variations. Those that achieve opti-
mal compromise are advantageous to survive natural
selection. Optimal homeostatic regulation appears to be
an overarching principle acquired through evolution.

Glucose homeostasis was an example frequently used
by W. B. Cannon to elucidate homeostasis [29]. During
the process, a balanced distribution of glucose is achieved
between the brain and the other tissues. Neurons, relying
absolutely on glucose as their energy source, can uptake
glucose without any help from insulin. The other cells
each possess a molecular pathway that, in response to
insulin signalling, assimilates glucose from the blood.
The insulin signalling pathway is sitting on the horns of
a dilemma: high insulin efficiency is desired for fast
removal of glucose after a meal to avoid hyperglycemia
and the consequential toxicity; on the other hand, an
insulin sparing state is required to guarantee the brain’s
safety during fasting (although insulin reduces to the
baseline level during fasting, the majority of tissue cells,
greatly outnumbering neurons, could still seize the
limited endogenous glucose that should be reserved for
the brain; thus, insulin sparing is required) [30–33].
Indeed, insulin therapy (to treat diabetes) has demon-
strated risks of hypoglycemia and brain damages
J. R. Soc. Interface (2012)
[33,34]. The dilemma was especially acute for ancient
hunter–gatherers who had to deal with sporadic food
availability—a sudden surfeit of food followed by a pro-
longed starvation [35]. Apparently, an optimal strategy
has to be evolved to solve the dilemma.

In this paper, I use a mathematical model to describe
the glucose–insulin system. The plasma glucose and
insulin concentrations are controlled by the insulin sig-
nalling pathway. It is a negative feedback control
because the rising glucose and insulin levels activate
the control, but the effect of the control is to reduce
the glucose and insulin levels. I first assume that the
control is optimal in solving the earlier-mentioned
dilemma. By minimizing an objective function, I find
that the optimal control has to be a bistable switch
(optimality) bistability). Therefore, the best compro-
mise is not a median insulin response, but a timely,
hysteretic switching between full responsiveness and
unresponsiveness. Note that the optimal control is
obtained entirely from physiological considerations,
without using any information from the molecular
level (the insulin signalling pathway).

This optimal solution is in line with a previous dis-
covery that the actual control provided by the insulin
signalling pathway manifests bistability, which was
obtained entirely from analysing the insulin signalling
pathway, without using any information from the phys-
iological level [13,14]. By adjusting the parameters of
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Figure 2. A computer simulation of the glucose–insulin system. (a) The control u(t) is taken from the red control in figure 1b. The
‘on’ phase of the control is re-coloured in green. (b) The controlled (red and green) and uncontrolled (grey) insulin dynamics.
(c) The controlled and uncontrolled glucose dynamics. (d) The control in the form of u(I). (e) Twenty-four hour profile of
plasma insulin concentration averaged from 14 normal (red circles with solid lines) and 15 obese (yellow circles with dashed lines)
subjects. There are three spikes, caused by the three meals at 09.00, 13.00 and 18.00. ( f ) Twenty-four hour profile of plasma glucose
concentration. Normal person denotes red circles with solid lines and obese person denotes yellow circles with dashed lines.
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the insulin signalling pathway, I show in this paper that
an exact match can be achieved between the actual con-
trol and the optimal control. The matching also reveals
the structure–function relationship of the insulin sig-
nalling pathway. It turns out that the pathway can be
divided into three components, each playing a distinct
role in modulating bistability.

This paper uses a physiology-driven approach, which
starts from physiological properties to deduce how
network dynamics and structure are constrained (physi-
ology) dynamics) structure). Together with the fact
that positive feedback is necessary for bistability [6,36],
this paper establishes a chain of necessities: optimality)
bistability) positive feedback. Although less explored,
physiology-driven approaches have received more and
more attention recently [37–41]. In comparison, the
majority of works in systems biology are network-based.
J. R. Soc. Interface (2012)
They start from a particular network to deduce higher
level properties (structure) dynamics) physiology).
2. MODEL SYSTEM

2.1. Glucose–insulin feedback system

During fasting, the glucose and insulin levels in our blood
are maintained within a narrow range: 65–105 mg dl–1

for glucose [42] and 5–10 mU ml–1 for insulin [43]. Pro-
longed deviations from the range can cause serious
health problems. Hyperglycemia can damage certain tis-
sues and is the hallmark of diabetes. Hypoglycemia can
damage the brain, which depends critically on glucose.
Hyperinsulinemia increases the risks of many diseases.
The regulation of glucose and insulin must be tight to
keep them within the normal range.
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Glucose homeostasis is achieved by negative feed-
back. Upon a sudden glucose increase following meal
ingestion, the pancreatic beta cells are stimulated to
secrete more insulin. The rising insulin level stimulates
tissue cells (primarily in the muscles, adipose tissues
and the liver) to uptake glucose through a molecular
circuit known as insulin signalling pathway, whereby
the plasma glucose level is lowered. The insulin level
falls accordingly because the beta cells become less
stimulated. Finally, both glucose and insulin return to
their baseline levels.

Besides the insulin-mediated glucose utilization,
there is always a small but critical stream of glucose
to the brain. Unlike other tissue cells, neurons need to
consume glucose all the time, owing to their inability
to convert glucose into glycogen for storage. This is
not usually a problem while exogenous glucose is
abundant. During fasting, the liver generates glucose
to sustain the brain’s needs. The glucose uptake by
neurons is insulin-independent.

2.2. Mathematical model

The dynamics of the glucose–insulin system can be
described by

dGðtÞ
dt
¼ s þmðtÞ � lGðtÞ � uðI ðtÞÞGðtÞ ð2:1Þ

and

dI ðtÞ
dt
¼ f ðGðtÞÞ � kI ðtÞ; ð2:2Þ

where t is the time; G(t) is the plasma glucose concen-
tration; I(t) is the plasma insulin concentration; s is the
basal rate of glucose required by the brain; during fasting
s is exactly the rate of glucose generated by the liver; m(t)
is the rate of glucose supplied by the meal; during fasting,
one has m(t) ¼ 0; l is the rate of insulin-independent
glucose utilization (by the brain) per unit glucose concen-
tration; u(I) is the rate of insulin-dependent glucose
utilization (by the majority of tissue cells) per unit glu-
cose concentration, it is the main factor controlling
plasma glucose clearance; k is the rate of insulin clear-
ance; f(G) denotes the rate of pancreatic insulin
secretion in response to glucose, it is a monotonically
increasing function of the glucose concentration [44–47].

It is natural to think that u(I) is a continuous and
monotonically increasing function (the more insulin,
the faster glucose uptake), which has been assumed
by others [47–51].

The present paper does not assume the function form
of u(I). Instead, it aims to determine u(I) that renders
optimal glucose homeostasis, based solely on equations
(2.1) and (2.2).
3. METHODS

Following the standard approach in optimal control theory
[52,53], the determination of an optimal control u(I)
consists of the following four steps:

— determine a time function u(t) that is optimal,
without considering its practicality;
J. R. Soc. Interface (2012)
— numerically solve equations (2.1) and (2.2) with the
optimalu(t) to obtain the corresponding G(t) and I(t);

— construct the optimal control u(I) from the optimal
u(t) and the corresponding I(t); and

— determine whether or not the obtained optimal con-
trol u(I) is practical, by examining whether or not
the insulin signalling pathway can realize the
desired u(I). If yes, then the optimal control u(I)
is practical. If not, then one has to repeat the
whole process with a relaxed optimization criterion.

3.1. Determination of the optimal u(t)

The objective function for optimization is designed as
follows. First, the efficiency of insulin action can be rep-
resented by T, the time when homeostasis is restored
upon an initial perturbation (e.g. by meal ingestion) begin-
ning at time t¼ 0. The smaller the T is, the more efficient
the insulin action. Therefore, the optimization should be
in terms of the minimization of T. Second, the optimization
is constrained byafixed average: �u ¼

ÐT
0 uðtÞdt=T . By set-

ting �u significantly smaller than umax (the upper bound of
u(I)), the overall action of insulin is limited, which is neces-
sary for brain safety. I actually useh ¼ �u=umax, termed the
utilization rate, to set the constraint. The utilization rate h
of normal cells should be small. A much larger utilization
rate may be adopted by cancer cells, which must consume
large amounts of glucose for them to become rapidly divid-
ing. In summary, the aim is to find the control u(t) that
restores homeostasis in the shortest time, whose average
is fixed at humax for some small h. That is,

min
uðtÞ

T subject to
1
T

ðT

0
uðtÞdt ¼ humax: ð3:1Þ

On the basis of the earlier-mentioned objective of
optimization, one first finds those u(t) that are locally
optimal, by employing Pontryagin’s maximum prin-
ciple [52] (electronic supplementary material, §2). One
then searches for the globally optimal u(t) among the
local optima (electronic supplementary material, §3).
3.2. Determination of G(t) and I(t)
corresponding to the optimal u(t)

With the optimal control u(t), one integrates equations
(2.1) and (2.2) to obtain the glucose dynamics G(t) and
the insulin dynamics I(t).
3.3. Determination of the optimal control u(I)

Since it is insulin that mediates the massive glucose util-
ization, the optimal control has to be in the form of
u(I), which can be obtained by synthesizing the optimal
u(t) and the corresponding I(t). That is, the optimal
control u(I) is a trajectory on the I versus u plane
whose coordinates at time t is (I(t), u(t)). For example,
if u(t) ¼ 1 þ sin(t) and I(t) ¼ 1 þ cos(t), then the con-
trol u(I) is along the unit circle (I 2 1)2 þ (u 2 1)2 ¼ 1
rotating counterclockwise.

For the present problem, figures 2 and 4, and elec-
tronic supplementary material, figure S3 give three
examples of the determination procedure.
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3.4. Practicality of the optimal control u(I)

To justify its practicality, the obtained optimal control
u(I) should be compared with the actual control, which
is generated by the insulin signalling pathway, whose
mathematical description can be found in electronic
supplementary material, §4. At the centre of the insulin
signalling pathway is the protein kinase AKT, which is
a master regulator of cell growth, proliferation and sur-
vival [54,55]. In particular, the activation of AKT leads
to glucose uptake. Therefore, the actual control can be
represented by the function A(I), where A represents
the concentration of the activated AKT and I rep-
resents the insulin level. The value of A(I) is bounded
between 0 and Amax, where Amax represents the total
concentration of AKT. The protein AKT is stable and
Amax can be assumed constant [54,56]. The actual con-
trol A(I) is constrained by equation (S40) (see also eqn
(A2) of [14]).
4. RESULTS

4.1. Optimal homeostasis necessitates
all-or-none

By applying Pontryagin’s maximum principle, I find
that a locally optimal control u(t) must be of a
‘bang–bang’ type—switching abruptly between two
extreme values 0 and umax, in a similar way as a residen-
tial thermostat in response to the temperature change.
This optimality then imposes an all-or-none require-
ment at the molecular level: either no AKT activation
or full AKT activation.

All-or-none is a recurring phenomenon in biology,
which was noticed as early as 1871 by Henry Pickering
Bowditch while he was studying the contraction of
heart muscle [57]. However, the advantages of all-or-
none remain largely unclear. Here, I demonstrate that
all-or-none at the molecular level is necessary for the
optimal regulation at the physiological level.

The result is independent of the parameters in
equations (2.1) and (2.2). The computations have
been symbolic only. I did not assign values for the par-
ameters, nor assume the functional forms for f(G) and
m(t) in the model. The model thus represents a general
homeostatic system. Because homeostasis and optimal-
ity are fundamental properties in biology, all-or-none
must be a ubiquitous property and its emergence
is inevitable.
4.2. Optimal control as a time function

The mathematical model has two ending time points:
t ¼ 0 is the time when the perturbation (meal inges-
tion) begins, and t ¼ T is the time when homeostasis
is restored. At both time points, the system is close to
the fasting state and the control must be off: u(0) ¼
u(T ) ¼ 0. This equality implies that an optimal u(t)
switches between 0 and umax only an even number of
times during 0 , t , T. If u(t) switched an odd
number of times, then one would have u(0) = u(T ).
Further analysis reveals that an optimal control only
switches twice (electronic supplementary material,
J. R. Soc. Interface (2012)
§2.4). That is, an optimal control must have the
following form:

u(t) ¼
0 for 0 � t , ton

umax for ton � t , toff

0 for toff � t , T

8<
: ; ð4:1Þ

where ton and toff are the time points at which u(t)
switches. In the following, a control satisfying equation
(4.1) is often abbreviated by 0-umax-0. Figure 1b
illustrates three examples of 0-umax-0 controls.

This result is also independent of the parameters
and functional forms in the mathematical model.
The obtained local optimality is likely to apply to the
homeostasis of all such systems using negative
feedback to control concentrations.

Equation (4.1) is also sufficient for u(t) to be opti-
mal, provided that a parametric condition (electronic
supplementary material, expression (S33)) is satisfied.
As explained in the electronic supplementary material,
expression (S33) should always hold when the model
parameters are reasonable. For the 8.3 � 105 controls
tested, I find electronic supplementary material,
expression (S33) always holds. Therefore, an arbitrary
0-umax-0 control is almost certainly an optimal one.
This implies that local optimality is easy to maintain
(the change of ton and toff will not remove optimality).
This would allow the system to easily resettle into
another optimum when metabolic conditions change.

It should be noted that the utilization rate of a 0-umax-0
control reduces to the duty cycle: h ¼ (toff – ton)/T.

4.3. Optimal homeostasis necessitates bistability

The optimal control u(I) can be determined from u(t) and
I(t). Figure 2 shows an example of the determination. The
to-be-converted u(t) is illustrated in figure 2a. It is also
illustrated in figure 1b as the red control (the one with
ton¼ 70.5 and toff¼ 90.95). With this u(t), I run the
model to obtain G(t) and I(t). The values for the model
parameters are obtained from the literature (electronic
supplementary material, table S1). As shown in figure
2b,c, glucose and insulin concentrations have a spike-like
change before returning to the baseline levels G0 and I0,
respectively. The results are realistic as demonstrated by
the comparison with clinical data (figure 2e,f, which are
adapted from [58]). By synthesizing u(t) and I(t), the con-
trol u(I) is traced out in figure 2d. It is also presented as
the red control in figure 1c.

The obtained u(I) is a bistable switch characterized by
all-or-none and hysteresis. As I increases, the glucose
uptake switches on fully, once I exceeds the threshold
Ion¼ I(ton) ¼ 43.70. As I decreases, the glucose uptake
switches off fully, once I drops below the threshold Ioff¼

I(toff) ¼ 12.23. Interestingly, hysteresis emerges during
the switching: glucose uptake is triggered (terminated)
by a larger (smaller) insulin concentration (Ion . Ioff).

The emergence of hysteresis is explained as follows.
Once the control switches on at ton, the glucose utiliz-
ation is so massive that the plasma glucose and
insulin concentrations drop almost immediately. In
this event, Ion is either the peak of I(t) (figure 2b) or
is close to the peak (electronic supplementary material,
figure S3b). Therefore, Ion . Ioff is almost inevitable.
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Although intuitively natural, assumptions about
u(I) (i.e. continuity, monotonicity and even the prop-
erty of being a function in previous studies [47–51]
are challenged by the locally optimal solution obtained
here. First, all-or-none implies discontinuity. Second,
hysteresis defies monotonicity. Finally, an optimal con-
trol is not a strict function: in the range Ioff , I , Ion,
one preimage corresponds to two images.

4.4. The globally optimal control

The globally optimal control can be obtained by enu-
merating the local optima, which are characterized by
only two parameters ton and toff. In the ton versus toff

plane, the area of all the meaningful points is illustrated
in electronic supplementary material, figure S5a. I enu-
merate all the 8.3 � 105 points in the area, up to a grid
size 0.05 min for both axes. For each point, the homeo-
stasis time T and the utilization rate h are calculated
(electronic supplementary material, §3.2).

The globally optimal control is in terms of a given util-
ization rate. Therefore, it should be searched among all
the points whose utilization rates are within a narrow
range h+ Dh, where the tolerance Dh ¼ 5 � 1025

accounts for the fact that few, if any, controls have a
utilization rate exactly h.

I first study the set with h¼ 0.1, which contains 1048
points whose T-values are heterogeneous (figure 1a).
Figure 1b shows u(t) of three points in the set: the
grey, blue and red controls achieve the slowest (T¼
373 min), an average (T¼ 290 min) and the fastest
(T¼ 203.8 min) homeostasis, respectively. The red control
is therefore the globally optimal control for h¼ 0.1.

Figure 2 was produced by using the globally optimal
control for h ¼ 0.1 (i.e. the red control in figure 1b). As
a comparison, the uncontrolled dynamics ĜðtÞ and Î ðtÞ
were also obtained (the grey curves in figure 2). One sees
that ton¼ 70.5 min happens to be the timewhen ĜðtÞ and
Î ðtÞ are at their peaks, which confers two respective
advantages. The first advantage is rapidity. The peak of
ĜðtÞ corresponds to the largest possible plasma glucose
concentration (Gon � 133 mg dl–1). Thus, absorbing glu-
cose around ton¼ 70.5 min would yield the maximum
efficiency (because the rate umaxGon is the largest poss-
ible). The homeostasis time T ¼ 203.8 min is realistic
because it typically takes about four hours to restore
homeostasis upon a regular meal [42,49,58]. The second
advantage is brain safety. From figure 2b, one sees that
Ion is about 43.7 mU ml–1, the peak of Î ðtÞ. This large
threshold would prevent fortuitous glucose uptake trig-
gered by small insulin levels, thus sparing glucose for the
brain. Interestingly, although the globally optimal control
was selected according to rapidity, it is also optimal in
terms of its opposite—brain safety.

Electronic supplementary material, figure S3 shows the
dynamics resulting from the sub-optimal blue control in
figure 1. Because the control turns on early (ton¼

22.25), the spikes are suppressed. However, this marked
early suppression does not bring a long-term benefit:
T ¼ 290 . 203.8. Moreover, Ion¼ 13.9 mU ml–1 is a
little too small. It may be fine for a normal person
whose basal insulin level is around I0 ¼ 10 mU ml–1 [58].
But a typical obese person has I0 around 20 mU ml–1
J. R. Soc. Interface (2012)
[58], which has exceeded 13.9 mU ml–1. This implies a
massive glucose uptake during the fasting state of that
obese person, which is dangerous to the brain.

The globally optimal controls for other small h-values
may also have Ion around 43.7 mU ml–1, because Ion is
around the peak of Î ðtÞ, which is not affected by the con-
trol. To test this idea, I determine u(I) for 10 different
h-values: 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20,
0.25 and 0.30 (six of them are shown in figure 3a). The
first eight cases all have Ion � 43.7. Therefore, Ion is
indeed independent of h as long as h is not too large.
For h ¼ 0.25 and 0.30, Ion deviates to 41.8 and 37.7,
respectively. Now consider the threshold Ioff. As h

increases, Ioff apparently decreases. The delayed switching
off leads to a shorter homeostasis time. As h increases
from 0.05 to 0.30, T decreases from 363.5 to 79.3 min.
4.5. Optimal controls are realizable

To prove that optimal controls are realizable, one needs
only to show that the insulin signalling pathway can gen-
erate bistability, which is indeed true [13–15]. Moreover,
the insulin signalling pathway is well organized to gener-
ate bistability (electronic supplementary material, §4).
The pathway has three components, which play uncorre-
lated roles in modulating the shape of the actual control
A(I): the input component (green colour in electronic
supplementary material, figure S7) sets the threshold
Ion; the output component (blue colour in electronic sup-
plementary material, figure S7) makes A(I) an ideal step
function that switches at Ion (electronic supplementary
material, figure S8a); the positive feedback (red colour
in electronic supplementary material, figure S7) deforms
the step function into a bistable switch (electronic
supplementary material, figure S8b).

Note that electronic supplementary material, figure S8
corresponds to the ideal condition K ¼ 0, where K ¼ Km/
Amax [14]. Here Km is the Michaelis constant of the
AKT phosphorylation and dephosphorylation cycle. The
parameter K affects the shape of the actual control
through electronic supplementary material, equation
(S40). Figure 3b–d illustrate actual controls (generated
by the pathway) with K ¼ 0, 1024 and 1022, respectively.
Under the ideal condition K ¼ 0, the actual con-
trols (figure 3b) match exactly with the optimal controls
(figure 3a). As K becomes larger, the actual con-
trols become less sensitive and more deviated from the
optimal controls. The smallness of K (i.e. the largeness
of Amax) is thus crucial to confer sensitivity.

This result concurs with a previous discovery that
enzyme saturation is an important mechanism of ultrasen-
sitivity [59–61]. When in high concentration, AKT, as the
substrate of enzyme reaction, saturates the surface of
the converter enzymes. Enzyme saturation alone can
achieveultrasensitivity in the absence of allosteric coopera-
tivity [59]. Because the saturation portion of the enzyme
reaction curve has a slope of nearly zero, this type of
sensitivity was called zeroth-order ultrasensitivity [59].
4.6. The actual control is adaptive

The globally optimal control is subject to changes
in metabolic conditions (starvation, overnutrition,
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pregnancy, inflammation, etc.). This necessitates the
adaptivity of the actual control so that the global opti-
mum can be tracked as much as possible. Mathematical
analysis of the insulin signalling pathway reveals that
the actual control is parametrized by K, a and b (elec-
tronic supplementary material, equation (S40)), which
characterize the output, feedback and the input com-
ponents of the pathway, respectively. It turns out that
the three parameters play orthogonal roles in adjust-
ing the actual control. The parameter K is to produce
all-or-none: the smaller the K is, the more sensi-
tive the control [14,59–61]. For simplicity, one can
J. R. Soc. Interface (2012)
assume K ¼ 0, which renders simple solutions to
electronic supplementary material, equation (S40):

A ¼ 0 ðstableÞ,
A ¼ Amax ðstableÞ

and A ¼ a�1Amaxðb�1 � c�1I ÞðunstableÞ;

where c is a scaling constant. In figure 3e, the solutions
are represented by three lines, which constitute a bis-
table switch with Ion ¼ cb21 and Ioff ¼ cb21 2 ca.
Define DI ¼ Ion 2 Ioff ¼ ca to be the hysteresis width.
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It now becomes clear that a and b play uncorrelated
roles: a adjusts the hysteresis width DI without chan-
ging the threshold Ion; b adjusts the threshold Ion

without changing the hysteresis width DI.
To better understand the roles played by a, six

actual controls are generated with K ¼ 0, a fixed b

and six a (figure 3b). The a-values are so selected
that the resultant controls match exactly the globally
optimal ones in figure 3a. For example, the a of
the red A(I) is determined as follows: by using the
relation DI/Ion ¼ ca/(cb21) ¼ 24.5/43.7 ¼ 0.56, one
obtains a ¼ 0.56b21. The exact match between
figure 3a,b implies that the insulin signalling pathway
is ideal if K! 0. Moreover, the correspondence
becomes clear between the molecular parameter a and
the physiologic parameter h. As a or h increases, DI
increases but Ion remains the same. The parameter a
negatively correlates with the intracellular nutrient
J. R. Soc. Interface (2012)
level C (sensed by the protein complex mTOR).
Because nutritional conditions can range from star-
vation to overnutrition [62–64], a is highly tunable. A
larger a (i.e. a smaller intracellular nutrient level C)
means that the cell is more ‘hungry’, which necessitates
a larger h to pump more glucose into the cell. In this
way, the adaptive mTOR signalling translates to the
adaptive regulation of the glucose–insulin system.

To better understand the roles played byb, four actual
controls are generated with K ¼ 0, a fixed a and four b
(figure 3f ). As b decreases, both Ion and Ioff increase,
but DI is fixed. That is, the bistable switch drifts along
the I-axis without any distortions. This drift may well
be an adaptation to some systemic change of insulin
levels. For example, the overall insulin levels (including
the baseline I0) of a typical obese person are twice as
large as those of a normal person (figure 2e). This necessi-
tates a corresponding rise of Ion, the threshold for the
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insulin signalling pathway to switch on glucose uptake.
If otherwise, then the plasma insulin level could easily
exceed Ion because the baseline level I0 is too high, causing
fortuitous glucose uptake that is adverse to brain safety.
The raise of Ion is achieved as follows. The parameter b
reflects PI3-kinase activity, which is negatively regulated
by many factors such as free fatty acid [65–67]. As a
person becomes obese, the free fatty acid level becomes
elevated, which weakens PI3-kinase activity and makes
b smaller. Consequently, Ion is raised because it is
inversely proportional to b.

To better understand the roles played by K, figure 3b
is reproduced with non-zero K-values. For K ¼ 1024,
the controls are deformed only slightly (figure 3c).
Even for K as large as 1022, the actual controls are
still close to optima (figure 3d). The smallness of K
can be realized by the condition ‘enzyme saturation’,
a well-known mechanism of ultrasensitivity, first
discovered in [59].

4.7. Generality

With the parameter values in electronic supplementary
material, table S1, the mathematical model (equations
(2.1) and (2.2)) is just for glucose–insulin homeostasis.
Without assigning any parameter values, equations
(2.1) and (2.2) represent a general negative feedback
system in biology.

To demonstrate the generality of equations (2.1) and
(2.2), I start from a simple model:

_G ¼ 1� G; ð4:2Þ

which stabilizes at G0 ¼ 1. With a transient stimulation
m(t) added to the right-hand side of equation (4.2), the
state point leaves, but will finally return to, G0. To
expedite homeostasis, a control 2u is used, which
turns the model into

_G ¼ 1�G þmðtÞ � uG:

If u is a constant, then the control is open-loop (non-
feedback). To be a feedback control, u must change
adaptively with a signal reflecting the level of G. The
signal can be G itself. For example, u ¼ gG is a pro-
portional control that leads to the dynamics
_G ¼ 1�G þmðtÞ � gG2. However, it is common that

G is impossible or inappropriate for signal transduction.
In this event, another entity I, which tracks the change
of G (equation (4.4)), serves as the feedback signal. The
model can be described by

_G ¼ 1� G þmðtÞ � uðI ÞG ð4:3Þ

and

_I ¼ G � I : ð4:4Þ

Being negative, the control 2u(I) is a negative
feedback one.

Equations (4.3) and (4.4) represent a general homeo-
static system achieved by negative feedback. This
general model, however, is only a special case of
equations (2.1) and (2.2) (with s ¼ l ¼ k ¼ 1, and
f(G) ; G), which implies that equations (2.1) and
(2.2) are even more general.
J. R. Soc. Interface (2012)
My analysis on equations (2.1) and (2.2) has shown
that locally optimal u(t) must be 0-umax-0 (equation
(4.1)), which certainly applies to the model described
by equations (4.3) and (4.4). An intuitive explanation
of this result is as follows.

Without any constraints, it is easy to see that the opti-
mal control is ‘all’ (i.e. u(t) ; umax). By consistently
applying the maximum control umax, the homeostasis
time is certainly minimal. But this ‘all’ solution might
be unacceptable owing to many biological constraints: a
great deal of energy would be wasted; the constitutive
activation of a molecule might lead to cancer; potential
conflicts with other physiological requirements; etc.

With the constraint h , 1, the optimal control
cannot be ‘all’. My analysis has revealed that it is still
simple: ‘all-or-none’. The control turns on fully at
time ton and turns off fully at time toff. This result
implies that a bell-shaped u(t) (increases gradually
and decreases gradually) cannot be an optimal control.

Figure 4a illustrates a locally optimal u(t). By inte-
grating equations (4.3) and (4.4) with this control, one
obtains G(t) and I(t), illustrated in figure 4b,c, respect-
ively. One then synthesizes u(t) and I(t) to obtain u(I),
which is again a bistable switch (figure 4d). Note that
the parameters here (s ¼ l ¼ k ¼ 1) significantly differ
from those of the glucose–insulin system (s ¼ 0.425,
l ¼ 0.005 and k ¼ 0.3). The function m(t) here (figure
4e) is also different from the one used for the glucose–
insulin system (electronic supplementary material,
figure S4). Here f(G) is just the linear function G, while
in the glucose–insulin system f(G) is a nonlinear, Hill
function (electronic supplementary material, equation
(S36)). Despite all these differences, the same bistability
feature was obtained. This is in line with the theoretical
results that the optimal control is largely independent of
the values of the parameters in equations (2.1) and (2.2).
5. SUMMARY

The ubiquity of bistability now has a reason. As organ-
isms become more complex, homeostatic regulation of
the internal environment becomes more difficult owing
to the increasing number of competing requirements
that have to be accommodated simultaneously. This
paper has shown that bistability is necessary to confer
optimal compromise in homeostatic regulation. Although
the mathematical model was initially for glucose homeo-
stasis, the bistability solution is independent of the
parameters in the mathematical model. The model can
thus represent a general homeostatic system beyond
merely glucose homeostasis. Bistability is thus required
for the optimal homeostasis of all such systems using
negative feedback to control concentrations.

Glucose homeostasis is a critical process, in which
hyperglycemia and hypoglycemia are both unaccepta-
ble. To ensure the priority of the brain in receiving
glucose, the insulin signalling pathway works like an
overflow valve. During the fasting state, the valves are
closed firmly so that the limited glucose all goes to
the brain. The opening of the valves is significantly
delayed to wait until the plasma glucose concentration
builds up (in order that the subsequent glucose
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transportation is more efficient) and until the insulin
level exceeds a preset threshold Ion. The other tissue
cells can then enjoy the surplus glucose. The valves
close and close fully when the insulin level drops
below another threshold Ioff, which is smaller than Ion.
The valve is thus hysteretic. This optimal strategy has
been confirmed by mathematical and computational
analysis. We now realize that what is required for the
optimal regulation at the physiologic level is exactly
what is provided by the insulin signalling pathway at
the molecular level.

The valve is tunable to track the varying metabolic
conditions. As a person becomes obese, his/her insulin
levels increase, which is balanced by the corresponding
increase in the threshold Ion. However, this adaptivity
is not without limitations—excessive production of
insulin may damage the pancreas and finally lead
to insulin shortage and the emergence of diabetes.

In the evolutionary time scale, abundance of food
and sedentary lifestyle are only recent things, which
constitute acute environmental changes that may chal-
lenge the evolved optimality that worked well for our
ancestors. The twin epidemics of obesity and diabetes
have raised an alarm about maladaptation. It is the
time to adjust our lifestyle to restore the optimality
and to avoid being eliminated by natural selection.
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