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Medical and pharmacological communities have long searched for antimicrobial drugs that
increase their effect when used in combination, an interaction known as synergism. These
drug combinations, however, impose selective pressures in favour of multi-drug resistance
and as a result, the benefit of synergy may be lost after only a few bacterial generations.
Furthermore, there is experimental evidence that antibiotic treatment can disrupt coloniza-
tion resistance by shifting the balance between enteropathogenic and commensal bacteria in
favour of the pathogens, with the potential to increase the risk of infections. So, we ask, what
is the best way of using synergistic drugs? We pose an evolutionary model of commensal and
pathogenic bacteria competing in a continuous culture device for a single limiting carbon
source under the effect of two bacteriostatic and synergistic antibiotics. This model allows
us to evaluate the efficacy of different drug deployment strategies and, using ideas from opti-
mal control theory, to understand whether there are circumstances in which other types
of therapy might be favoured over those based on fixed-dose multi-drug combinations. Our
main result can be stated thus: the optimal deployment of synergistic antibiotics to remove
a pathogen in the presence of commensal bacteria in our model system occurs not in
combination, but by deploying them sequentially.
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1. INTRODUCTION

The evolution and spread of antibiotic resistance in
pathogenic bacteria represent a potentially grave public
health problem [1,2]. A common approach to dealing
with the evolution of antibiotic resistance and to increase
the efficacy of antimicrobial treatments is to use multi-
drug combination therapies [3–5]. However, the profiles
of interaction between different antibiotics and their
long-term effect on drug resistance are still poorly
understood. It has even been suggested, for example,
that synergistic drug combinations, those usually
preferred in clinical settings, may serve to promote the
evolution of drug resistance [6–8].

The standard pharmacological approach to therapy
design focuses on antibiotic combinations that increase
drug efficacy [9] without accounting for the effects
drugs might have either on the evolution of drug
resistance or on the innate resistance provided by the
host’s microbiota. And yet it has been shown that
the disruption of the gut microbiota that occurs when
antimicrobials are prescribed may increase the risk of
infection [10,11]. So, as a model to better understand
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these issues, we undertake a theoretical studyof an exper-
imental device (an extension of the basic chemostat) in
which two bacterial species compete for a single limiting
resource. By deploying antimicrobial agents in different
combinations into the device, we aim to use the drugs
to remove only one of those species.

To achieve this, we first define a growth inhibition
coefficient that characterizes the interaction between
both antibiotics at different concentrations, using stan-
dard enzymatic assumptions of how drugs inhibit their
targets. From the resulting growth inhibition surfaces,
we construct an evolutionary model that allows us to
study the effect that different drug combinations may
have on the heterogeneous population of bacteria cultured
in media with a single carbon source. Our experimental
design also permits dynamic control of the input of
both antibiotics into the device. As explained later, the
interaction between the two drugs is assumed through-
out to be synergistic, whereby each enhances the other’s
effect, a property we impose on our mathematical
models and validated using a standard experimental
system described in appendix D.

Our main results are stated in and beyond §2.8,
wherein it is shown that we can use optimization
This journal is q 2012 The Royal Society
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Figure 1. (a) Growth rate inhibition as a function of antibiotic concentration (the dimensionless growth inhibition denoted g(A)
throughout this section). (b) Growth rate (per hour) as a function of antibiotic concentration in the environment with maximum
resource available S ;S0. Here we see that the antibiotic-resistant phenotype (dashed line) has a higher growth rate than the
susceptible strain (solid line) when the antibiotic concentration is high. The fitness cost associated with resistance is expressed
by having a lower growth rate when the antibiotic concentration, A, is low.
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techniques to engineer treatment protocols that support
commensal bacteria while minimizing the density of
pathogens, even in the direst of possible circumstances.
The latter alludes to a biological assumption we engineer
into the problem that makes existence as difficult as
possible for the commensal species: the pathogen
population has at least one phenotype that is fitter
than the commensal bacterium in all abiotic environ-
ments and at all antibiotic concentrations. We call this
complete competitive advantage of the pathogen over
the commensal.
2. RESULTS

2.1. Drug interactions and the evolution
of resistance

The so-called bacteriostatic antibiotics do not
necessarily kill bacteria but suppress their growth
by inhibiting DNA replication, RNA synthesis or by
interfering with other aspects of cellular function.
Although the precise mechanism of action of drugs
from different functional classes can be difficult to
capture mathematically, in some cases, we can model
the inhibition of bacterial growth rate through the com-
petitive inhibition of an essential metabolite. For
example, the antibiotic rifampicin inhibits RNA poly-
merase by binding to its b subunit, erythromycin
binds to the 50S ribosomal subunit inhibiting protein
synthesis and doxycycline binds to the 30S subunit
and inhibits binding of aminoacyl-tRNA to the
mRNA-ribosome complex. We use these drugs to
motivate our approach.

Assuming the molecular dynamics supporting the
small antibiotic molecule and protein target is in
statistical equilibrium, competitive inhibition processes
like those described earlier can be modelled by kinetic
equations. Indeed, using basic enzymatics, dimension-
less expressions for inhibition of RNA transcription as
a function of the antibiotic rifampicin present in the
cell may be derived [12]. So, if A is the concentration
of antibiotic within the cell, the reduction in the rate
J. R. Soc. Interface (2012)
of RNA transcription, g(A) say, is a number between
0 and 1 of the basic form

gðAÞ ¼ 1� k1A
1þ k2A

; ð2:1Þ

where k1 and k2 are parameters. They may be considered
as evolvable phenotypes of the cell, and the susceptibility
of each cell type to the antibiotic can be determined, as
illustrated in figure 1a.

With rifampicin in mind, let us now assume for
simplicity that bacterial growth rate is proportional to
the resource uptake rate multiplied by the rate of
transcription of RNA; other myriad features of the
cell’s metabolism are then incorporated into a single
parameter, c. We then represent the growth rate, G
say, of a cellular phenotype in terms of the concentration
of available limiting resource, denoted by S, and the
concentration of a bacteriostatic antibiotic present in
the environment, A, as follows:

GðS ;AÞ :¼ c � uðSÞ � gðAÞ: ð2:2Þ

Throughout, S and A will be functions of time, t, and
the constant of proportionality here, c, is a resource
conversion or cell efficiency parameter measured in cells
per microgram where u(S) is the resource uptake rate.
The latter will be a Michaelis–Menten function with
affinity for resource, K, and maximum growth rate,
Vmax, specifically

uðSÞ ¼ VmaxS
K þ S

: ð2:3Þ

Bacterial phenotypes are now defined using growth
rates and antibiotic-susceptibility profiles, properties
that can be described in terms of the set of phenotypic
parameters ðVmax;K ; k1; k2Þ. For example, if an
antibiotic-susceptible bacterial phenotype has growth
rate denoted by

GsðS ;AÞ ¼ c
V s

maxS
Ks þ S

� �
1� ks

1A
1þ ks

2A

� �
;
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then a resistant phenotype would have, by definition, a
higher growth rate than antibiotic-susceptible bacteria
at high antibiotic concentrations. More formally, this
means that if the growth rate of a resistant phenotype
is given by the function

GrðS ;AÞ ¼ c
V r

maxS
Kr þ S

� �
1� kr

1A
1þ kr

2A

� �

then there must exist a critical antibiotic concentration
A* . 0 for which GrðS ;AÞ . GsðS ;AÞ for all A � A�.

It is well-known [13,14] that antibiotic-resistant
phenotypes may encounter a reduction in fitness in an
antibiotic-free environment, which is known as fitness
cost of resistance. In our modelling framework, this
property can be realized by imposing a lower resource
uptake rate ur(S) , us(S) and therefore a lower growth
rate at low antibiotic concentrations (figure 1b) that
results in the property Gr(S,0) , Gs(S,0).
2.2. Antibiotic interactions

Intuitively, antibiotics combinations can be classified as
synergistic (if the drugs interact to increase each other’s
effect), antagonistic (if their combined effect is less than
the most effective drug used individually) or additive
(if they do not interact). Although this intuitive classi-
fication of drug interactions seems straightforward, the
difficulty of rigorously defining the null interaction has
been a matter of controversy for decades and the
subject of a series of misconceptions [15,16].

The most widely accepted test to quantify drug
interactions are isobolograms as proposed by Loewe
[17] to measure synergy. This experiment measures
the in vitro susceptibility of a population of bacteria
growing in a bidimensional array of different combi-
nations of antibiotics. Optical densities (ODs) or
colony forming units are measured at the end of the
experiment and from the dose-response surface so
obtained; the interaction can be classified by lines of
equal drug effect that are known as isoboles. Here,
instead of modelling population-level dose-response
surfaces directly, we are going to derive them as an emer-
gent property of a model constructed from single-cell
inhibition rates.

In order to describe drug interactions at the cellular
level, we are going to assume that at any given moment
in time, two antibiotics are present in the environment
at concentrations A and B and that the bacterial
growth rate can be described by a function, G(S,A,B),
that depends on the concentrations of both drugs
and upon the concentration of the limiting resource,
S, in the environment. Just as in the case of a single
drug, this growth function will be modelled as a stan-
dard Michaelis–Menten term multiplied by a growth
inhibition coefficient g(A,B) that depends on the
concentration of both drugs:

GðS ;A;BÞ ¼ c � uðSÞ � gðA;BÞ: ð2:4Þ

Again, c denotes a resource conversion rate, and u(S)
is the resource uptake function defined in equation
(2.3). The function g(A,B) satisfies g(A,0) ¼ gA(A)
and g(0,B) ¼ gB(B), where gA(A) and gB(B) are
J. R. Soc. Interface (2012)
growth inhibition functions that characterize the
single and separate use of each antibiotic.

We shall represent the density of a population of
pathogenic bacteria growing under resource limitation
and under the effect of two bacteriostatic antibiotics
of concentrations A(t) and B(t) by the time-series
P(t). We will then assume that the concentration of
bacterium per unit of volume is so high and uniformly
distributed in space that it is possible to describe the
ecological interactions between different bacterial
populations using deterministic models based on the
mass action law [18]. The one we use here is stated
as follows:

d
dt

S ¼ �uðSÞ � P; ð2:5aÞ

d
dt

P ¼ GðS ;A;BÞ � P; ð2:5bÞ

d
dt

A ¼ �aA � P ð2:5cÞ

and
d
dt

B ¼ �bB � P; ð2:5dÞ

with initial conditions x(0) ¼ (S(0),P(0),A(0),B(0)).
Constants a and b are phenotypic parameters that
denote the rate of binding and the uptake rate of anti-
biotic molecules to their cellular targets. Throughout,
S0 will represent the maximal concentration of the
limiting carbon source.

2.3. Synergistic antibiotics

Let us choose two basal concentrations for each drug,
denoting them A0 and B0, respectively, and measure
them in micrograms per millilitre. We then define the
optimal drug ratio u* where 0 � u* � 1 to be that pro-
portion, u, that minimizes the cellular growth inhibition
coefficient gðuA0; ð1� uÞB0Þ for u in [0, 1]:

g ðu �A0; ð1� u�ÞB0Þ ¼ min
0� u� 1

gðuA0; ð1� uÞB0Þ:

Any treatment that deploys a fixed combination of
drugs at a constant ratio, u say, will be called a
combination treatment in the remainder.

As discussed already, two drugs act synergistically
when their combined effect is larger than the effect of
each drug when used separately, a property represented
formally by u* being inside the interval (0,1). If the
optimal drug combination in the earlier-mentioned
sense uses only one of the drugs, that is u* ¼ 0 or
u* ¼ 1, then we say their interaction is antagonistic. If
g(uA0, (1 2 u)B0) is constant as a function of u and
so u* could be any value between 0 and 1, we then
say that either the drugs do not interact with each
other, or their interaction is additive; we consider the
latter two statements to be synonymous.

We restrict our attention to antibiotic combination
therapies that use two bacteriostatic antibiotics from
closely related functional classes, namely those that
target subunits of the same enzyme complex. We will,
however, assume that they bind to non-overlapping
sites on that complex. Assuming that we can therefore
model their interaction as mutually non-exclusive com-
petitive inhibitors, we provide a rationale in appendix C
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Figure 2. (a) The shape of the isoboles of equal effect illustrates that doxycycline and erythromycin have a synergistic interaction,
as lower-dose drug combinations have the same effect as high-dose monotherapies. (b) Population-level growth inhibition of
Escherichia coli exposed to different antibiotic concentrations. Experimental data (cross symbols) are represented with standard
error bars, while solid lines represent predictions of the model (circles) described by equations (2.5a–d) with growth parameters:
Vmax ¼ 2511.6 h21, K ¼ 0.62 mg ml21, c ¼ 1.8 � 104 cells mg21, and inhibition parameters for eythromycin: k1 ¼ 3.46 ml mg21

and k2 ¼ 0.079 ml mg21 and for doxycycline: k1 ¼ 0.068 ml mg21 and k2 ¼ 0.198 ml mg21. (Online version in colour.)

Optimal deployment of synergistic drugs R. Peña-Miller et al. 2491
that allows us to write their combined inhibitory effect
in the following functional form:

gðA;BÞ ¼ 1
1þ kAAþ kBB þ kABAB

; ð2:6Þ

where kA, kB and kAB may be constants or rational,
bounded functions of (A,B) derived from the kinetics
of the drugs and their common target.

When there are multiple types of bacteria present in
an evolutionary model, the inhibition of the growth rate
of bacterial type i due to the use of a single antibiotic, A
say, will be described by the inhibition function

gAðAÞ ¼ 1� ki
1A

ki
2 þ A

� �
;

where k2
i will be called the antibiotic affinity of the cell

and k1
i controls the level of maximal growth inhibition.

Similarly, the growth inhibition function of antibiotic B
in the absence of antibiotic A is given by

gBðBÞ ¼ 1� ~ki
1 B

~ki
2þB

� �
:

We shall also suppose for simplicity that the bacterio-
static effect of combining both antibiotics is determined
by the multiplicative effect of the concentrations of each
antibiotic by assuming the multi-drug growth inhibition
function g(A,B) to be given by

gðA;BÞ ¼ gAðAÞ � gBðBÞ: ð2:7Þ

We acknowledge that interactions between drugs
targeting different enzymes in a pathway do not neces-
sarily lead to such simple functional forms for the drug
inhibition surface as that described in (2.7) (see [19], for
example). This is why we have restricted our attention
to drugs targeting essentially the same enzyme. How-
ever, we argue that in some cases, our simple rationale
should be able to capture the interaction between two
J. R. Soc. Interface (2012)
antibiotics that bind to non-overlapping sites of the
same target and whose interaction is known to be syner-
gistic, for example the drug pair studied in Hegreness
et al. [6].

To test this, we measured the inhibitory effect on an
isogenic population of bacteria growing under resource
limitation and under the effect of two bacteriostatic
antibiotics that target different sites in the ribosome,
thus inhibiting protein synthesis. These were doxycy-
cline that binds to the 30S subunit and erythromycin
that binds to the 50S subunit of the ribosome. Using
the simple model described by equations (2.5a–d), we
were able to determine the degree of synergism between
both antibiotics at subinhibitory concentrations, a
feature illustrated by the isoboles of equal inhibitory
effect shown in figure 2a.

Assuming that the combined effect of both antibiotics
can be described by the multiplicative effect of each drug
used separately, we were able to capture population-level
inhibition of bacteria growing at different drug con-
centrations, as illustrated in figure 3. Details of the
experiment are described in appendix D.

Note that the model (2.5a–d) is constructed under the
assumption that the population of bacteria is composed
of a single bacterial type, although this assumption
may hold for short-term experiments, in general the
selective pressures imposed by both antibiotics would
promote the evolution of multiple antibiotic-resistant
phenotypes. For this reason, in the following section,
we will extend this model to account for bacteria that
can evolve resistance.

2.4. An evolutionary model

As it is clearly difficult to study drug pharmaco-
dynamics and pharmacokinetics in mammalian hosts
in the presence of a pathogen and in real time, although
perhaps not impossible with advances in imaging tech-
niques [20], the experimental system we study now will
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Figure 3. Population-level inhibition of E. coli growing in a glucose-limited environment and under the effect of different concen-
trations of doxycycline and erythromycin. (a) Experimental data, (b) model predictions. (Online version in colour.)
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use antibiotic deployment strategies in a continuous
culture device. Chemostats provide particularly ideal
experimental systems to test different profiles of drug
use because they can be mechanically adapted to con-
trol the supply of different antibiotics dynamically
throughout the course of an experiment.

A dense microbial community inhabits the intestine;
so in order for invasive pathogens to colonize a niche in
the gut, they have to compete with resident commensal
bacteria for any available chemical resources. This
competition provides an innate protective mechanism
termed colonization resistance and although the molecu-
lar basis of the interactions between host immune system,
invasive pathogens and microbiota remains largely
unknown, it is believed that pathogenic bacteria have
evolved different strategies for overcoming colonization
resistance. For example, by triggering the host’s
immune response and as a consequence changing the
population structure of the gut ecosystem, pathogens
may be able to colonize the host [21].

Furthermore, it is known that broad-spectrum
antibiotic treatments can decrease the density of the
microbial population in the gut considerably [22,23]. As
a result, a side effect of chemotherapy may be to disrupt
colonization resistance of the host and so increase the
risk of infection by an invasive pathogen.

With this in mind, let C ¼ (C1, . . . , Cn) and P ¼
(P1, . . . , Pm) denote the density of each phenotype of
commensal and pathogenic bacteria respectively, where
there are n of the former and m of the latter.

Mutation rates representing the changes in commensal
phenotypes that occur during cell division are contained in
the matrix written as follows: M1 :¼ ð1� 1ÞI þ 1M .
Here I is the identity matrix representing error-free,
clonal reproduction; e the mutation rate and M a non-
negative n-by-n mutation matrix where the ij th entry
in M represents the rate at which bacterial phenotype
j mutates into bacterial phenotype i when a muta-
tion occurs; the diagonal entries in M are zero as a
result. Similarly, the rate of mutation from pathogenic
J. R. Soc. Interface (2012)
bacterium type j into type i is given by the ij th entry of
the non-negative matrix W. As a result, the mutation
matrix for the pathogenic population is given by
W1 ¼ ð1� 1ÞI þ 1W .

If 1 denotes a column vector of those of the appropriate
dimension, 1 ¼ (1, 1, . . . , 1)T, then

1TM1 ¼ 1T;1TW1 ¼ 1T;1TW ¼ 1T and 1 TM ¼ 1T

will all be assumed throughout. Both M1 and W1 are
assumed to be non-negative and irreducible matrices
with 0 , e , 1.

We shall assume that each bacterial phenotype
consumes the limiting resource, at concentration S(t),
from the environment with the same affinity for that
resource K. So, if mi represents the maximal growth
rate for bacterial type i, then mi ¼ c . Vmax

i and the
growth rate of that type, Gi(S), will be given by c .
ui(S), where ui is a standard Michaelis–Menten term
ui(S) ¼ Vmax

i S/(K þ S). The chemostat’s dilution
rate will be denoted by d, S0 will represent the concen-
tration of the limiting resource held in a supply vessel
and c is a scalar denoting the conversion rate between
resource and biomass.

The state of the evolutionary microbial system under
consideration is given by x(t): ¼ (S(t),C(t),P(t)), and
the equation governing the evolution of the state in
the absence of antibiotics can be written as

d
dt

S ¼ dðS0 � SÞ � ðucðSÞ;CÞ � ðupðSÞ;PÞ; ð2:8aÞ

d
dt

C ¼W1ðGcðSÞ � CÞ � dC ð2:8bÞ

and
d
dt

P ¼M1ðGpðSÞ � PÞ � dP; ð2:8cÞ

with initial conditions x(0) ¼ (S(0),C(0),P(0)). A dot
(.) represents the element-by-element or pointwise pro-
duct between two vectors, parentheses represent inner
products in the sense that if uc(S) ¼ (uc

1(S), . . . ,
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Figure 4. A diagram of a chemostat adapted to supply anti-
biotic A at a rate a and antibiotic B at a rate b, while
maintaining the volume and supply rate of limiting resources
(held at concentration S0) at a constant rate. In this diagram,
the constraint a þ b ¼ d must apply because fluid and bio-
mass flows from left to right in the diagram along the black
lines as indicated by the arrows.
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uc
n(S)) and up(S) ¼ (up

1(S), . . . , up
n(S)), then

ðucðSÞ;CÞ ¼
Xn

i¼1

ui
cðSÞCi

and ðupðSÞ;PÞ ¼
Xm
i¼1

ui
pðSÞPi:

Throughout, parentheses will be used in this way to
denote inner products.
2.5. Incorporating antibiotics into the chemostat

The basic chemostat device could be readily adapted to
have two supply vessels with different antibiotics, as
shown in figure 4, whereby each of two supply vessels con-
tains the same concentration of other abiotic resources.
This ensures that the deployment of antibiotics does
not effect the supply of those resources, including the
limiting carbon source.

To account for the supply of antibiotics, we extend
the state x(t) and write

xðtÞ :¼ ðSðtÞ;CðtÞ;PðtÞ;AðtÞ;BðtÞÞ:

An evolutionary model for a population of commensal
and pathogenic bacteria competing in a single resource-
limited environment and subject to the inhibiting effect
of two bacteriostatic antibiotics of concentration A and
B can now be written as

d
dt

S ¼ ðaþ bÞ
zfflfflfflffl}|fflfflfflffl{d

S0 � dS � ðucðSÞ;CÞ

� ðupðSÞ;PÞ; ð2:9aÞ
d
dt

C ¼W1ðGcðS;A;BÞ � CÞ � dC ; ð2:9bÞ

d
dt

P ¼M1ðGpðS ;A;BÞ � PÞ � dP; ð2:9cÞ

d
dt

A ¼ aA0 � dA� aAðð1;CÞ þ ð1;PÞÞ ð2:9dÞ

and
d
dt

B ¼ bB0 � dB � bBðð1;CÞ þ ð1;PÞÞ; ð2:9eÞ

with a given initial condition x(0) ¼ (S(0),C(0),
J. R. Soc. Interface (2012)
P(0), A(0),B(0)). The parameters a and b repre-
sent binding rates of each bacterial phenotype to
each of the corresponding antibiotic molecules and 1
again denotes a vector of ones, (1, 1, . . . , 1), of the
appropriate dimension.

In the remainder, the system (4a–e) will be
written as

d
dt

x ¼ Fðx;a;bÞ

for brevity, with the initial condition given by a non-
negative vector x(0) ¼ x0. We want to control the
input of both antibiotics into the system throughout
an experiment of duration T; so our control variables
will be a(t) and b(t), where 0 � t � T, and both control
variables are constrained to lie between 0 and d.
2.6. Complete competitive advantage

To mimic a potentially dire situation for the commensal
bacteria, we make a number of assumptions. We assume
that the wild-type susceptible pathogen (denoted Ps)
outcompetes the commensal bacteria (C) in the absence
of antibiotics. We then assume a cost of resistance so
that, at sufficiently high concentrations of antibiotic,
the commensal bacteria are able to outcompete the
wild-type pathogen.

However, Ps will be assumed able to evolve resistance,
to A say, and the A-resistant pathogenic phenotype
(denoted Pa) will then outcompete the commensal. Simi-
larly, if drug B is high in concentration, the B-resistant
pathogenic strain (Pb) will also outcompete the commen-
sal. Furthermore, a multi-drug environment imposes
strong selective pressures in favour of pathogen mutants
resistant to both antibiotics and thus the multi-resistant
strain (Pab) will outcompete C and eventually colonize
the host when both A and B are sufficiently high in
concentration.

We do not allow the commensal to evolve drug resist-
ance. The rationale for this is that gut commensals form
a community composed of many different species and
while resistance might evolve in some of these species,
we are making a coarse assumption that the commensal
microbiota as a whole will behave as if it is mostly
composed of susceptible bacteria.

In the situation so-described, there is no value for the
concentration vector of the two drugs (A,B) for which the
commensals have the highest growth rate, as illustrated
in figure 5. In any fixed environment, there exist at
least one pathogenic strain that outcompetes the com-
mensal type and we therefore say that pathogens have
complete competitive advantage.

In this dire situation, we pose a question that might
seem to have an obviously answer in the negative: is
there a drug deployment policy that can make the com-
mensals persist as time increases? And if one exists, can
we determine an optimal treatment protocol that mini-
mizes the density of pathogens?
2.7. Controlling the chemostat optimally

To minimize the evolution of antibiotic resistance, it is
self-evident that the optimal strategy is simply never
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use antibiotics. This is clearly unreasonable from the per-
spective of a single host because without treatment the
wild-type pathogen will colonize the host. Conversely,
drug overdose selects for resistant phenotypes and, as a
consequence, decreases the longer-term efficacy of the
antibiotic. Then, for a drug deployment policy to be
considered long-term optimal, it has to be able to drive
the pathogens to extinction while preserving its efficacy.

Taking into consideration the idea that we would like
to support the commensal microbiota, we define the
healthy state of the system whereby the commensal
bacteria are in equilibrium and there are no pathogens
present. Ideally, we would steer the system towards
the healthy state in such a way that we minimize anti-
biotic use, but our present question is simpler: do there
exist treatment protocols that drive the pathogen
density to zero and the commensal to fixation even
when the former has complete competitive advantage?

Motivated by techniques from optimal control, we
shall use a genetic algorithm to show numerically by
example that this is possible by optimizing the treat-
ment protocol with respect to the following objective
functional:

Jða;bÞ ¼
ðT

0
ð1;CÞ � ð1;PÞdt;

where
d
dt

x ¼ Fðx;a;bÞ; xð0Þ ¼ x0:

ð2:10Þ

We assume, as shown in figure 4, that the maximum
input rate of antibiotic is the same as the dilution rate
of the chemostat, so that

0 � a; 0 � b; aþ b ¼ d:

We therefore define a set of admissible controls by

V :¼ fða;bÞ [ L1ð0;TÞ � L1ð0;TÞja � 0;

b � 0;aþ b ¼ d a:e:g

and seek an admissible control a* and b* such that the
J. R. Soc. Interface (2012)
payoff is maximized:

Jða�;b�Þ ¼ max
ða;bÞ[V

Jða;bÞ: ð2:11Þ

The existence of the optimal control ða�;b�Þ [ V

such that Jða�;b�Þ � Jða;bÞ for all ða;bÞ [ V is
demonstrated in appendix A.

We are interested in the idea of sequential treatments,
defined as follows. Two admissible antibiotic deployment
protocols, a and b, are said to be sequential if only one
of the antibiotics A and B is used at any one time:

aðtÞ � bðtÞ ¼ 0 ð2:12Þ

for almost all t between 0 and T. If we define the set of
admissible sequential protocols

Vseq :¼ fða;bÞ [ V jaðtÞ � bðtÞ ¼ 0 a:e:g

then Vseq is a weak* dense subset of V.
To see this, the following construction is useful. Let

IN ¼ tkð ÞNk¼0 be a partition of the interval [0,T ] so that
t0 ¼ 0 , t1 , � � � , tN�1 , tN ¼ T and let PCðIN Þ be
the space of real-valued, piecewise-constant functions
on IN taking only one of the values either 0 or 1 on
each interval of the form (tk, tkþ1). The set of admissible
bang-bang controls

Vbb :¼ fða;bÞ [ V j9N ;
IN and a [ PCðIN Þ such that aðtÞ ¼ d � aðtÞ;
bðtÞ ¼ d � ð1� aðtÞÞg

is a subset of, and weak* dense in V [24] but Vbb , Vseq

and so Vseq is also weak* dense in V.
The outcome of these standard control theoretic

ideas is the result that sequential protocols can do as
well as any within V:

max
ða;bÞ[V

Jða;bÞ ¼ sup
ða;bÞ[Vseq

Jða;bÞ:

This means that sequential antibiotic deployment
protocols that rotate or alternate in turn between two
antibiotics can perform as good as any protocol in V.
In particular, since V contains the entire spectrum of
combination therapies, from drug A-only to drug-B
only, we see that sequential protocols are, in general,
at least as good as those that define a fixed proportion
of each drug throughout the term of the experiment.

Now the set of sequential protocols is not weak* closed
as it contains, for example, the non-sequential 50%-A,
50%-B combination therapy (where a(t) ; d/2) in its
weak* closure and so the existence of an optimal control
within Vseq cannot be established in general (one does
exist within V, though). Notice also that the optimal
deployment protocol in V is not sequential in general
because Vseq is a much smaller set than V itself.

It follows from the fact that Vbb , V is weak* dense
that

max
ða;bÞ[V

Jða;bÞ ¼ sup
ða;bÞ[Vbb

Jða;bÞ;

a property telling us that in order to find near-optimal
deployment protocols ða;bÞ [ V we need to search
only within PCðIN Þ, possibly for large enough N.
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This property is exploited in the numerical calculations
we perform using a genetic algorithm in §2.8.

2.8. Supporting commensal bacteria with
sequential protocols

Seeking a context in which to find highly optimized
therapies with two drugs, consider a protocol whereby
pathogenic bacteria and commensal bacteria are both
introduced into the chemostat at t ¼ 0. In order to colo-
nize the chemostat, the pathogens have to outcompete
the commensal bacteria, and to mimic a colonization
resistance experiment, we shall assume that the initial
population of commensals and wild-type pathogens
are at equal densities initially, with no drug-resistant
mutants. Recalling our working assumption that patho-
gens have a greater fitnesses than commensals in an
antibiotic-free environment, the pathogens will colonize
the host if we fail to use the antibiotics; so, in effect, we
are forced into treating with antibiotics in order for the
commensal to survive.

Suppose now that pathogens evolve resistance to the
antibiotics through two possible point mutations that
occur at mutation rate e where the accumulation of
two mutations confers multi-drug resistance. To reflect
this, the mutation matrix for the population of
pathogenic bacteria P ¼ ðPs;Pa;Pb;PabÞT is given by
the irreducible, stochastic matrix

M1 ¼

1� 1
1
2
1

1
2
1 0

1
2
1 1� 1 0

1
2
1

1
2
1 0 1� 1

1
2
1

0
1
2
1

1
2
1 1� 1

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ ð1� 1ÞI þ 1

0
1
2

1
2

0

1
2

0 0
1
2

1
2

0 0
1
2

0
1
2

1
2

0

0
BBBBBBBBB@

1
CCCCCCCCCA

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{M

:

As already discussed, the commensal bacteria
cannot evolve resistance to antibiotics used and we
assume that the pathogen has complete competitive
advantage. By controlling the input of antibiotics,
we will now attempt to drive the pathogens to extinc-
tion while supporting the commensal. The state of
the specific model we now use is x ¼ (S, C, Ps, Pa, Pb,
Pab, A,B) and we take advantage of the theoreti-
cal results of the previous section by numerically
maximizing the objective functional (1) within the
space of sequential protocols where w ¼ (0, 1, 21, 21,
21, 21, 0, 0).

The result of first of the numerical simulations is
shown in figure 6, illustrating the dynamics of different
drug deployment mechanisms. It is shown that the
deployment of just one antibiotic is ineffective and
while the best combination strategy is initially effective
J. R. Soc. Interface (2012)
at suppressing pathogens, it also imposes a severe cost
on the commensal population. Indeed, the constant
deployment of any two-drug cocktail at any fixed
drug ratio will have the consequence that one of
the pathogens colonizes the system (figure 6b). It is
clear, therefore, that in order to find a drug deployment
strategy that can allow the commensals to persist, we
have to allow the ratio between drugs to change
over time.

Although optimal treatments can be obtained for the
treatment objective J(a, b) either with an optimization
algorithm or by solving the Euler–Lagrange equations
associated with this functional, in practice this can be
a challenging computational task, particularly when T
is large. However, the optimal control for J under the
constraint that we must deploy antibiotic at all times
is a sequential protocol that can be described as follows.
Deploy one antibiotic at the beginning of the exper-
iment until some as yet unknown moment in time
when a switch to a different will be needed; a repetition
of this process will then define a sequential protocol.
While computation of near-optimal controls could be
achieved using a variety of different optimization
methods, we chose the genetic algorithm described in
appendix B.

Figure 7 shows the results of applying this algorithm
to the model (2.9) where the parameter values are
given in appendix E. The result is a sequential protocol
whereby the commensals have the highest density at
the end of the experiment and this was obtained by
numerically maximizing the treatment objective J. The
sequential protocol so-obtained is just one from an infi-
nite family of suboptimal controls that outperform all
the fixed-ratio combination protocols with respect to
the treatment measure J, as shown in figure 7b.
3. DISCUSSION

We provided an evolutionary model of a microbial micro-
cosm and used it to evaluate the efficacy of different drug
deployment strategies. Our model is derived from kinetic
interactions between drugs and their targets, and is
consistent with the outcome of an experiment designed
to measure the inhibitory effect different concentrations
of two antibiotics have on a bacterial population cultured
under resource limitation.

We use the model to demonstrate, from well-known
optimal control theory, that although commensals may
be outcompeted by a rapidly evolving pathogen in any
fixed multi-drug environment, we may still be able to
design treatment protocols based on the sequential
deployment of drugs that exclude the pathogen from
the system.

It is noteworthy that in spite of the strong synergistic
interaction between the two drugs we considered, the
optimal protocol was not to use them in combination.
Indeed, even suboptimal but dynamically changing pro-
tocols can succeed where fixed-ratio combination
therapies fail. Note, however, that although we have
focused our study on a drug pair with a synergistic
interaction, the analysis supporting the optimality of
sequential treatments is independent of the drug inter-
action profile and therefore also holds when the
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combination strategy (equal concentrations of each drug) is most effective at suppressing the density of pathogens. However, com-
mensals are also suppressed, eventually allowing the multi-drug-resistant pathogen to colonize the host. (c,d) Single-drug
protocols are ineffective, allowing resistant pathogens to colonize the system.
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interaction is antagonistic. We naturally chose to use
synergism as a case study because it is the combination
preferred in clinical settings.

In order to determine an optimal control, or even
a near-optimal controls, we essentially need to have
access to complete information about the future
dynamics of the system that are not likely to be available
J. R. Soc. Interface (2012)
in practice. Determining the unfolding dynamics of drug
resistance evolution is a difficult task, necessitating vast
amounts of genomic data to be processed. An alternative
to searching for the optimal protocol could, therefore, be
to implement sequential treatment protocols based on
partial information of the present state of the system
as part of a feedback control.
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Figure 8. Numerical simulations of a long-term experiment (T ¼ 1300) of a complete competitive advantage scenario where the
numerical values of the parameters used are given in table 1. In both examples, commensals are at equilibrium before susceptible
pathogens are introduced into the system (at t ¼ 0). The period when commensals (solid lines) are in equilibrium and there are no
pathogens (dashed lines) present has a dark-grey background and the interval of time between initiation of infection and anti-
biotic deployment (at t ¼ 300) has a light-grey background. The dashed line represents the sum over all pathogenic phenotypes
while the solid line represents the density of commensals through the duration of the experiment. (a) All combination treatments
select for drug-resistant pathogens, the initial benefit of treatment soon vanishes and pathogens colonize the system, driving the
commensal to extinction. (b) In this example, commensals are able to persist with a sequential protocol designed using a feedback
control heuristic. (The sequential protocol is illustrated with dark boxes denoting drug B and light boxes denoting drug A at the
bottom of the figure.)
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Depending on the precise goal, we could implement
such a feedback as part of a heuristic that allows us
to decide upon the best drug usage strategy at each
moment in time, based on the information we currently
have access to. For instance, a very simple heuristic
could be designed based on deploying just one anti-
biotic into the chemostat, but switching immediately
to a different drug if the observed levels of resistance
to the current antibiotic are too high. If we denote
with t the sampling time, then we can decide which
drug to deploy at time t based on the following rule:

(i) deploy just one antibiotic into the chemostat
(for example, drug A) during the time-interval
[t - t, t);

(ii) at time t measure the levels of resistance to the
current antibiotic used, in this example Pa(t);

(iii) switch to drug B if Pa(t). max(Ps(t),Pb(t),
Pab(t)) and deploy this drug for another t units
of time. Otherwise, continue the deployment of
drug A and repeat the process.

There are many different rules we could write, and we
make no claim about the optimality of such rules, but
surprisingly this simple feedback heuristic can be suffi-
cient to allow the commensals to persist and drive the
pathogens to extinction (figure 8b). This illustrates that
even suboptimal sequential protocols can be effective at
treating the presence of the pathogen in situations where
even the best combination treatment will not work, as
shown in figure 8a.

The practical implementation of this feedback rule is
contingent upon knowing the strain responsible for a
bacterial infection and then knowing the relative den-
sities of strains carrying resistance alleles or plasmids.
This is biologically detailed information, although the
J. R. Soc. Interface (2012)
increasing availability of tools to determine such infor-
mation [25] might make the implementation feedback
rules a practical possibility in time.

In summary, these results suggest that in order
to remove a fit, adapting pathogen in competition
with commensal bacteria, increasing the killing efficacy
of the antibiotics is not as important as designing
rational deployment strategies that select against
drug-resistant pathogens.
APPENDIX A. EXISTENCE OF AN
OPTIMAL CONTROL

The dependence of equation (2.9a–e) on the control
variables is affine in the sense that there is a smooth map-
ping F 0 : Rnþmþ3 ! Rnþmþ3 such that Fðx;a;bÞ¼
F 0ðxÞ þ au þ bv and the objective functional Jða;bÞ
in (2.10) is linear in the state, x, as it can be written in
terms of a weight vector, w:

Jða;bÞ ¼
ðT

0
ðw; xðtÞÞdt: ðA 1Þ

As a result, J : L1 � L1 !R is continuous with
respect to weak*, L1-convergence. Moreover, V is a
closed, convex subset of L1 � L1 and so is compact
with respect to the weak* topology on L1 � L1.

Solutions of (2.9a–e) satisfy a control-independent,
dissipative bound of the following form: for each initial
condition x0 there is a t0 depending on x0 such that

SðtÞ þ 1
c
ðð1;CðtÞÞ þ ð1;PðtÞÞÞ � S0 þ 1 ðA 2aÞ

and

AðtÞ � A0 þ 1; BðtÞ � B0 þ 1; ðA 2bÞ
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for all t . t0. To see this, define S : ¼ S0 2 S 2 (1/c)�
((1,C(t))+(1,P(t))) and note that the differential
inequality (d/dt)S � 2dS follows from (2.9a–e),
the bound in (A 2a) now follows. The bounds in (A
2b) are obtained from the inequalities (d/dt)A �
d(A0 2 A) and (d/dt) B � d(B0 2 B) satisfied by posi-
tive solutions of (2.9a–e).

Theorem A.1. There exists an optimal control
ða�;b�Þ [ V such that Jða�;b�Þ � Jða;bÞ for all
ða;bÞ [ V.

Proof. Seeking an optimal control that maximizes the
payoff functional defined in (A 1) subject to the system
of differential equations given in (2.9a–e), suppose that

sup
ða;bÞ[V

Jða;bÞ ¼ lim
k!1

Jðak ;bkÞ

for a supremizing sequence of admissible controls
ðak ;bkÞ , V, where bk ¼ d � ak . This sequence
has an associated sequence of state responses
ðxkÞ , W 1;1ðð0;TÞ;Rnþmþ3Þ that satisfies ðd=dtÞxk

¼ Fðxk ;ak ;bkÞ where xkð0Þ ¼ x0 for each k.
Because 0 � ak þ bk � d almost everywhere, we can

assume without loss of generality that

ðak ;bkÞQ� ða�;b�Þ [ V

as k! 1 because V is compact with respect to the
weak* topology in L1 � L1.

Owing to the dissipative bound (A 2), there is an
M . 0 independent of k such that k xk k1� M and so,
using ðd=dtÞxk ¼ Fðxk ;ak ;bkÞ; xkð0Þ ¼ x0, we obtain a
k-independent W1,1-bound on xk. We may therefore
assume without the loss of generality that xk Q

� x� in
W 1;1 and so, basic compact embedding results allow us
to take the latter convergence in C 0ð½0;T �;Rnþmþ3Þ. As
a result, continuity properties of the nonlinear mapping
F can be used to deduce that ðd=dtÞx� ¼ Fðx�;a�;b�Þ
and x�ð0Þ ¼ x0. Furthermore,

lim
k!1

Jðak ;bkÞ ¼ lim
k!1

ðT

0
ðw; xkÞdt ¼

ðT

0
ðw; lim

k!1
xkÞdt

¼
ðT

0
ðw; x�Þdt ¼ Jða�;b�Þ

and so Jða�;b�Þ ¼ supfJða;bÞjða;bÞ [ Vg. B
APPENDIX B. GENETIC ALGORITHM

To compute near-optimal antibiotic deployment pro-
tocols, a genetic algorithm searches for near-optimal
sequential protocols through the space of bang–bang
controls using the following simple strategy. Given
a partition of the time-interval [0,T ] into n equal sub-
intervals, a single drug flows into the chemostat at
maximum dose on each sub-interval and a switch of
antibiotic may occur at the end of each sub-interval.

The set of all potential switches fyn1; yn2; . . . ; ynng,
can be expressed as a binary string representing ‘yes/
no’ switching decisions of length n; this string is called
the chromosome, C, of a given treatment. Each gene,
yni, can be expressed by allele 0, meaning that the same
drug is going to be deployed at the next sub-interval, or
by allele 1, meaning that a switch to the other drug is
J. R. Soc. Interface (2012)
necessary. We therefore associate each chromosome
C [ f0; 1gn with a bang–bang control strategy a(t; C)
and from this we compute its fitness Jðaðt; CÞ;bðt; CÞÞ;
where bðt; CÞ ¼ d � aðt; CÞ and J is computed by
solving the differential equation (2.9).

The total number of different sequential protocols to
search through is 2n and the following algorithm was
used to determine an optimized control from this set:

(i) fix a population size N and choose a random
initial population of N chromosomes,
PC0 ¼ fC1; C2;. . . ; CNg

Given PCk define PCkþ1 as follows;
(ii) compute the fitness Jðaðt; CiÞ;bðt; CiÞÞ for each

Ci in the current population;
(iii) select the fittest chromosomes and reproduce

them pair-wise. The chromosome of the resulting
offspring is constructed by recombination, inherit-
ing each allele from only one of the parents, where
these are chosen randomly for each gene; and

(iv) mutate a fixed proportion of genes of the popu-
lation by randomly bit-flipping the alleles of some
proportion of chromosome, also randomly chosen.

The population PCkþ1 then contains only the fittest
N members of the previous generation, their offspring
and the mutated chromosomes.
APPENDIX C. SYNERGY RESULTS
FROM TWO ANTIBIOTICS TARGETING
ONE PROTEIN

Motivated by the interaction between rifampicin and
closely related drugs such as rifabutin and sorangicin
A that reduce transcription rates, consider the following
enzymatic model:

Aþ P O
k1

k�1

PA; B þ P O
k2

k�2

PB; sþ P O
k3

k�3

Ps; ðC 1aÞ

sþ PA O
k4

k�4

PA
s ; sþ PB O

k5

k�5

PB
s ; sþ PAB O

k10

k�10

PAB
s ;

ðC 1bÞ

B þ PA O
k8

k�8

PAB O
k�9

k9

PB þ A ðC 1cÞ

and Ps þ R O
k6

k�6

PR
s �

k7! M þ P þ sþ R: ðC 1dÞ

Equation (C 1) describes the concentration of RNA
polymerase P, an antibiotic pair A and B that bind to
P and the final product mRNA that we denote by M.
Messenger RNA is transcribed when P binds to a
sigma-factor, here denoted s and the Ps complex then
binds to the promoter region R of some gene on the
bacterial chromosome. With the consumption of ATP,
not modelled here, the eventual transcription of M
results whereupon the promoter region of the gene,
the sigma factor and RNA polymerase unbind from
the transcription unit of the gene. The model (C 1) is
built on an assumption that both antibiotics, A and
B, inhibit the binding of the mature transcription
unit, which here is just an RNA polymerase-sigma
factor complex, to the promoter region of the gene.



Optimal deployment of synergistic drugs R. Peña-Miller et al. 2499
This model does not really describe the details of how
these drugs work. To more closely respect the mode of
action, we would need to include a cascade of additional
terms of the form

PA
s þ R! PAR

s ! M3 þ P þ sþ R and

PB
s þ R! PBR

s ! M5 þ P þ sþ R:

Here M3 and M5 represent oligomers just a handful
of nucleotides long that are the abortive mRNA-like
transcripts produced when rifampicin-like drugs are
bound to RNA polymerase [26]. However, this more
complicated model does not provide any additional
theoretical insight into the interaction of drugs target-
ing the same enzyme; (C 1) is already sufficient to
have non-trivial, synergistic drug interactions as we
now aim to show.

Assuming mass-action kinetics, from (C 1) we obtain
the following model for the time-course of concentrations
of each of the agents involved in the transcription of
mRNA:

d
dt

PAB
s ¼ k10s � PAB � k�10PAB

s ; ðC 2aÞ

d
dt

PAB ¼ k8PA � B � k�8PAB þ k9A � PB

� k�9PAB � k10s � PAB þ k�10PAB
s ; ðC 2bÞ

d
dt

PA
s ¼ k4PA � s� k�4PA

s ; ðC 2cÞ

d
dt

PB
s ¼ k5PB � s� k�5PB

s ; ðC 2dÞ

d
dt

PA ¼ �k8PA � B þ k�8PAB � k4s � PA

þ k�4PA
s þ k1P � A� k�1PA; ðC 2eÞ

d
dt

PB ¼ �k9PB � Aþ k�9PAB � k5s � P5

þ k�5PB
s þ k2P � B � k�2PB; ðC 2f Þ

d
dt

PR
s ¼ k6Ps � R� ðk7 þ k�6ÞPR

s ; ðC 2gÞ

d
dt

Ps ¼ �k6Ps � Rþ k�6PR
s þ k3P � s� k�3Ps; ðC 2hÞ

d
dt

R ¼ �k6Ps � Rþ ðk7 þ k�6ÞPR
s ; ðC 2iÞ

d
dt

s ¼ �k3P � sþ k�3Ps � k4PA � sþ k�4PA
s

� k5PB � sþ k�5PB
s þ � � � � k10s � PAB

þ k�10PAB
s þ k7PR

s ðC 2jÞ

and
d
dt

M ¼ k7PR
s ; ðC 2kÞ

where A and B are assumed to be held at constant values
during transcription.

Equation (C 2) has constants of integration, namely
the total available RNA polymerase

Ptot :¼ P þ Ps þ PA þ PB

þ PAB þ PA
s þ PB

s þ PAB
s þ PR

s

and the totality of gene promoters Rtot :¼ Rþ PR
s . Let
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us now assume that all process have equilibrated so that
M is produced at a constant rate in (C 2k), then

PAB
s ¼ k10

k�10
� s � PAB

and PAB ¼
k8B � PA þ k9A � PB

k�8 þ k�9

:

Now, PA
s ¼ ðk4=k�4ÞPA � s and PB

s ¼ ðk5=k�5ÞPB � s
so with (C 2e) and (C 2f) in equilibrium, we obtain

0 ¼ �k8PA � B þ k�8PAB � k4s � PA þ k�4PA
s

þ k1P � A� k�1PA

and

0 ¼ �k9PB � Aþ k�9PAB � k5s � P5 þ k�5PB
s

þ k2P � B � k�2PB;

that can be rewritten using the preceding algebraic
relationships for PA and PB as a function of P;A and B:

k�1 þ B
k8 k�9

k�8 þ k�9
� k9 k�8

k�8 þ k�9
A

� k8 k�9

k�8 þ k�9
B k�2 þ A

k9 k�8

k�8 þ k�9

0
BB@

1
CCA PA

PB

� �

¼ P
k1A

k2B

� �
: ðC 3Þ

The linear equation defined by (C 3) can be solved to
give

PA ¼ P � A � kAðA;BÞ and PB ¼ P � B � kBðA;BÞ

where kA and kB are rational functions of the form

kðA;BÞ ¼ p1 þ p2Aþ p3B
1þ p4Aþ p5B

;

where the set of five parameters p1; . . . ; p5 are various
combinations of the rate parameters in (C 1); there
is one set of these parameters for each of the
two antibiotics.

Continuing with the equilibrium assumptions,
PR
s ¼ Ps � R � k6=ðk7 þ k�6Þ follows from (C 2g) but

then adding the latter to (C 2h) yields Ps ¼ k3s � P=
ðk�3 þ Rðk6 k7=ðk7 þ k�6ÞÞÞ ¼: s � P � nðRÞ, whence

PR
s ¼ s � P � k3R

k�3 þ Rðk6 k7=ðk7 þ k�6ÞÞ
k6

k7 þ k�6
¼

: s � P �mðRÞ:
By defining kABðA;BÞ :¼ ðk8kAðA;BÞ þ k9kBðA;BÞÞ

ðk�8 þ k�9Þ�1 we can write

Ptot ¼ P � 1þ nðRÞsþ AkA þ BkB þ ABkABð

þ k4s

k�4
AkA þ

k5s

k�5
BkB þmðRÞs

�
;

¼ P � ð1þ ðnðRÞ þmðRÞÞsþ AkAð1þ ‘4sÞ
þ BkBð1þ ‘5sÞ þ ABkABÞ
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and so

d
dt

M ¼ k7s � P �mðRÞ

¼ k7s �mðRÞ � Ptot

1þ ðnðRÞ þmðRÞÞsþ AkAð1þ ‘4sÞ

þ BkBð1þ ‘5sÞ þ ABkAB

;

a function that we denote by v(A,B).
We finally define g(A,B) to be the dimensionless

reduction in the production rate of mRNA due to A
and B, g (A,B) ¼ v(A,B)/v(0,0), which equals

gðA;BÞ ¼ 1þ ðnðRÞ þmðRÞÞs
1þ ðnðRÞ þmðRÞÞsþ AkAð1þ ‘4sÞ

þ BkBð1þ ‘5sÞ þ ABkAB ;

¼ 1
1þ A � qAðR;sÞkA þ B � qBðR;sÞkB

þ AB � qABðR;sÞkAB: ðC 4Þ

We have written qAðR;sÞ in place of ð1þ ‘4sÞ=
ð1þ ðnðRÞ þmðRÞÞsÞ for brevity; the functions qB and
qAB are similarly defined as ð1þ ‘5sÞ=ð1þ ðnðRÞþ
mðRÞÞsÞ and 1=ð1þ ðnðRÞ þmðRÞÞsÞ respectively.

Suppose all the parameters are fixed in (C 4) apart
from A and B, so that

gðA;BÞ ¼ 1
1þ AkA þ BkB þ ABkAB

;

where kA; kB and kAB are constant and strictly positive.
To see the function g(A,B) so-defined defines a syner-
gistic interaction, suppose u lies strictly between 0
and 1. To ensure a fair comparison in terms of dosage
between single-drug and combination environments,
we normalize A and B so that gðA; 0Þ ¼ gð0;BÞ,
which requires AkA ¼ BkB.

We find

1
gðA; 0Þ �

1
gðuA; ð1� uÞBÞ ¼ �uð1� uÞ � ABkAB , 0

and, as a result, gðuA; ð1� uÞBÞ , gðA; 0Þ whenever
0 , u , 1 and the drugs A and B are therefore said to
synergize because they are most effective at reducing
the rate of mRNA synthesis when used in combination.
The numerical simulations in the paper use the further-
restricted inhibition function

gðA;BÞ ¼ 1
1þ AkA

� 1
1þ BkB

¼ 1
1þ AkA þ BkB þ AB � kAkB
J. R. Soc. Interface (2012)
which, by the same reasoning, also represents a syner-
gistic interaction.
APPENDIX D. EXPERIMENTAL METHODS

The experimental protocol used to obtain the dataset in
figures 2 and figure 3 is taken from Hegreness et al. [6]
and reproduced here for completeness.

Bacterial Strain

Escherichia coli Strain MC4100 (ordered from the Coli
Genetic Stock Center: http://cgsc2.biology.yale.edu/
Strain.php? ID=9973) was used. Stocks were made
from a single colony picked for an overnight LB-culture
and frozen for further use.

M9 Growth Medium

The experiment was then performed in M9 growth
medium prepared as follows: part A: 350 g l�1

K2HPO4, 100 g l21 KH2HPO4; part B: 29.4 g l21 triso-
dium citrate, 50 g l21 ðNH4Þ2SO4, 5 g l�1 MgSO4. Parts
A and B were 50 times stock solutions in water, that
were sterilzed by autoclaving. For M9 minimal
medium, they were diluted in water accordingly. 0.2
per cent glucose and 0.1 per cent casamino acid were
added as nutrients for the M9 growth medium.

Antibiotics used

Antibiotics used were erythromycin (from Aldrich,
product no. 856193) and doxycycline (Sigma, product
no. D9891), two antibiotics known to synergize [6].
Liquid stocks were prepared from powder stocks at
50 mg ml21. For this purpose, erythromycin hydrate
was dissolved in ethanol and doxycycline hyclate in
sterile water (afterwards filter sterilized).

Maximal antibiotic concentrations were determined
for each antibiotic in preliminary trials as concen-
trations leading to full inhibition of bacterial growth
for 24 h using just one of the antibiotics at a
time. The maximum concentration of each drug was
10 mg ml21 for erythromycin and 0.3 mg ml21 for doxy-
cycline. For each, 11 dilutions in M9 growth medium
ranging from no antibiotic to maximal concentration.

Setup

A grid of all combinations of these concentrations was
replicated six times and spread in a systematically ran-
domized way over three 384-well plates at 50 ml per well.
Extrawells were filled with growth medium but not inocu-
lated with bacteria for background OD measurements.
For inoculation, the wells of a 96-well plate were filled
with 100 ml of MC4100 overnight culture, and then a
very small subsample was taken by dipping a full 96-rack
of 10 ml tips first into the 96-well plate and then into one
of the four 96-well subsets of the 384-well plate.

The three plates were sealed with a transparent plastic
foil, the liquid was centrifuged down with a short spin
and the OD was measured in a Tecan Genios plate
reader. They were then grown in a 378C incubator and
shaken at 130 r.p.m. for 24 h. For OD measurements,
they were taken out of the incubator every 30 min.

http://cgsc2.biology.yale.edu/Strain.php?ID=9973
http://cgsc2.biology.yale.edu/Strain.php?ID=9973
http://cgsc2.biology.yale.edu/Strain.php?ID=9973
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APPENDIX E. MODEL PARAMETERS
Table 1. Model parameters.

parameter description value

d chemostat dilution rate 0.6 h21

e rate of point mutations 0.01
c resource conversion rate 108 cell mg21

K bacterial half-saturation constant 0.06 mg ml21

mi maximal growth rate of bacterial type
i per hour (note c .Vi

max ¼ mi)
mc ¼ 1.16, ms ¼ 1.3, ma ¼ 1, mb ¼ 1, mab ¼ 0.87

S0 resource supply concentration 6 mg ml�1

A0 antibiotic A supply concentration 1 mg ml�1

B0 antibiotic B supply concentration 1 mg ml�1

a antibiotic A binding rate 1� 10�8 mg cell�1

b antibiotic B binding rate 1� 10�8 mg cell�1

k1
i maximal growth inhibition of bacterial type

i by antibiotic A (dimensionless)
kc

1 ¼ 0:59; ks
1 ¼ 0:45;ka

1 ¼ 0:81;kb
1 ¼ 0:41;kab

1 ¼ 0:69

~ki
1 maximal growth inhibition of bacterial type

i by antibiotic B (dimensionless)
~kc

1 ¼ 0:56; ~ks
1 ¼ 0:47; ~ka

1 ¼ 0:38; ~kb
1 ¼ 0:79; ~kab

1 ¼ 0:71

k2
i affinity for antibiotic A of bacterial type i kc

2 ¼ 0:15; ks
2 ¼ 0:2;ka

2 ¼ 0:3; kb
2 ¼ 0:2;kab

2 ¼ 0:4 (all mg ml21)
~ki

2 affinity for antibiotic B of bacterial type i ~kc
2 ¼ 0:18; ~ks

2 ¼ 0:25; ~ka
2 ¼ 0:2; ~kb

2 ¼ 0:4; ~kab
2 ¼ 0:39

(all mg ml21)
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