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Increase in Sodium Conductance Decreases Firing Rate and
Gain in Model Neurons

Tilman J. Kispersky,* Jonathan S. Caplan,* and Eve Marder
Biology Department and Volen Center, Brandeis University, Waltham, Massachusetts 02454-9110

We studied the effects of increased sodium conductance on firing rate and gain in two populations of conductance-based, single-compartment
model neurons. The first population consisted of 1000 model neurons with differing values of seven voltage-dependent conductances. In many
of these models, increasing the sodium conductance threefold unexpectedly reduced the firing rate and divisively scaled the gain at high input
current. In the second population, consisting of 1000 simplified model neurons, we found that enhanced sodium conductance changed the frequency–
current (FI) curve in two computationally distinct ways, depending on the firing rate. In these models, increased sodium conductance produced a
subtractiveshiftintheFIcurveatlowfiringratesbecausetheadditionalsodiumconductanceallowedtheneurontorespondmorestronglytoequivalent
input current. In contrast, at high input current, the increase in sodium conductance resulted in a divisive change in the gain because the increased
conductance produced a proportionally larger activation of the delayed rectifier potassium conductance. The control and sodium-enhanced FI curves
intersect at a point that delimits two regions in which the same biophysical manipulation produces two fundamentally different changes to the model
neuron’s computational properties. This suggests a potentially difficult problem for homeostatic regulation of intrinsic excitability.

Introduction
The electrical excitability of spiking neurons is often characterized by
measuringtheactionpotential frequencyinresponsetoinjectedcurrent
to generate a frequency–current (FI) curve. The slope of the FI curve is
referred to as the gain of the neuron. Changes to the FI curve (Holt and
Koch, 1997; Chance et al., 2002; Prescott and De Koninck, 2003) can be
additive (a change in rheobase, the minimum current required to elicit
spiking) or multiplicative (a change in FI curve slope). Multiplicative
changestotheFIcurveareof interestbecausetheyarethoughtnecessary
to implement complex behaviors such as coordinate transformations
for reaching motions (Salinas and Thier, 2000) and detection of loom-
ing objects in the visual field (Gabbiani et al., 2002). Changes to the
neuronal input–output relationship (gain control) are thought to be
fundamental mechanisms by which neurons maintain appropriate re-
sponse levels to the changing features of their synaptic inputs (Destexhe
et al., 2003; Silver, 2010) and can alter the computational properties of
neurons (Lundstrom et al., 2009; Silver, 2010).

The number and kind of voltage-dependent conductances in
each neuron determine its excitability and the way it responds to
external drive. Therefore, it is of interest to understand how the
FI curves and gains of spiking neurons depend on the Na� con-
ductance. The initial purpose of this study was to determine the

effects of raised Na� conductance on neuronal gain. Because
intrinsic conductance densities can be quite variable across neu-
rons of the same cell type (Golowasch et al., 1999; Swensen and
Bean, 2005; Schulz et al., 2006, 2007; Goaillard et al., 2009), we
generated a set of models in which each individual model was
constructed with random maximal conductances. This ap-
proach, to assess the robustness of a given phenomenon by prob-
ing parameter space in a randomized fashion, has been used
before (Goldman et al., 2001; Prinz et al., 2004; Günay et al., 2008;
Taylor et al., 2009; Marder, 2011; Marder and Taylor, 2011) and
provides information about whether a model behavior is unique
relative to the space of many similarly constructed models.

Our initial expectation was that increasing the Na� conduc-
tance would enhance excitability across a wide range of inputs.
Instead, this study shows that, while excitability is enhanced at
low current injection levels, the opposite often occurs with high
current injection that results in high firing rates. Thus, increases
in Na� conductance in response to decreased activity (Desai et
al., 1999) would be homeostatic for conditions of low external
drive, but might produce paradoxical anti-homeostatic changes
at higher levels of external drive. These results suggest revisions of
our thinking about what the targets of homeostatic regulation
should be to ensure a neuron can stably regulate its gain.

Materials and Methods
Simulations. Simulations were run on a multicore personal computer using
MATLAB (The MathWorks). The model used in the computational exper-
iments was derived from a model that has been previously described in detail
(Turrigiano et al., 1995; Liu et al., 1998). This version of the model removed
all of the calcium-dependent homeostatic mechanisms leaving only static
biophysical conductances. Our results are produced by running the model
with a full set of conductances and a reduced version of the model in which
many of the conductances were removed. The full-conductance model has
seven active conductances as well as a leak conductance. These active chan-

Received April 9, 2012; revised June 11, 2012; accepted June 15, 2012.
Author contributions: T.J.K. and E.M. designed research; T.J.K. and J.S.C. performed research; T.J.K. and J.S.C.

analyzed data; T.J.K. and E.M. wrote the paper.
This work was supported by NIH Grants MH 46742 (T.J.K. and E.M.) and T90 DA032435 (J.S.C.). We thank Dr.

Fernando R. Fernandez for helpful comments on the manuscript and Dr. Ted Brookings and Dr. Timothy O’Leary for
useful discussions.

The authors declare no competing financial interests.
*T.J.K. and J.S.C. contributed equally to this work.
Correspondence should be addressed to Dr. Tilman J. Kispersky, Department of Biology, MS 013 Brandeis Univer-

sity, 415 South Street, Waltham, MA 02454-9110. E-mail: tilman@brandeis.edu.
DOI:10.1523/JNEUROSCI.2045-12.2012

Copyright © 2012 the authors 0270-6474/12/3210995-10$15.00/0

The Journal of Neuroscience, August 8, 2012 • 32(32):10995–11004 • 10995



nels are Na� (fast sodium), Kd (delayed rectifier potassium), KCa (calcium-
gated potassium), CaT

2� (transient calcium), CaS
2� (slow calcium), A

(potassium), and H (hyperpolarization-activated mixed cation). The re-
duced model has only Na, Kd, A, and leak channels.

All currents besides calcium are calculated as

Ii � g� imi
phi�Vm � Ei�,

where i represents the individual channel type, p is the power to which the
activation variable is raised, g�i the maximal channel conductance, mi

p the
activation state variable, and hi the inactivation state variable. Vm is
membrane potential and Ei is reversal potential for that channel type. The
potassium reversal potential is �80 mV, the sodium reversal potential is
50 mV, and the mixed cation reversal potential for IH is �20 mV. The
leak reversal potential is �50 mV.

Channel activation (m) and inactivation (h) are calculated as:

dm

dt
�

m� � m

�m
;

dh

dt
�

h� � h

�h
.

All values for m�, h�, �m, �h, p, and the calcium dynamics are as described
previously (Turrigiano et al., 1995; Liu et al., 1998) and reproduced here.
The correctness of our implementation of the model was verified by
comparing model output to published results (Table 1).

Calcium currents are calculated as:

ICa � (gCaT
� gCaS

)(Vm � ECa).

Reversal potential for the calcium channels is calculated by the Nernst
equation based on the current intracellular calcium concentration:

ECa � �RT

zF � log �Caout

Cain
�,

where R � 8.314472 (J/K/mol), T � 273.15 � 23.5 °K, z � �2, F �
9.649 � 10 4 (C/mol). Calcium concentrations were calculated as in (Liu
et al., 1998):

d(Cain) � dt
(� 0.94 �M nF/nA)ICa � Cain � Cainternal_rest

Cabuffering_rate
,

Cabuffering_rate � 20 ms, Caout � 3000 �M, Cainternal_rest � 0.05 �M.

To build a database of 1000 full-conductance models and 1000 reduced
models, we began with two large sets of candidate models and then selected
those that fired tonically at a rate of 3–7 Hz, with a coefficient of variation
�0.05 when injected with a current of 0.2 nA/nF. The coefficient of variation
was calculated from the last 2 s of simulation data from each model neuron.
The candidate models were generated by randomly selecting active conduc-
tances from a uniform distribution ranging from 0.5 to 238 �S/nF for Na�, Kd,
KCa,andAandfrom0.1to4.5�S/nFforCaT

2�,CaS
2�, andHconductances.Leak

was set to 0.01 �S/nF in all cases. Expression of conductances in units of �S/nF
(and similarly for currents as nA/nF) is used to normalize for cell membrane
area. The full-conductance and reduced conductance candidate models were
generated with statistically independent conductance values.

We simulated both sets of models at a range of current injection steps. The
injected current, Iinj, ranged from �2 nA/nF to 10 nA/nF with finer steps in the
lower Iinj values. Each model was run for 3 s of simulation time with a time step
of 0.01 ms. We then reran each model with the maximal sodium conductance
tripled fromitsoriginalvalue.Forallmodelswerecordedfiringrate.Forasubset
of models we also recorded the voltage and channel state (activation and inacti-
vation) history.

Analysis. All analysis was done with custom scripts written in MATLAB.
Firing rate was calculated as the inverse of the mean interspike interval. The first
second of data was discarded for each run to allow the simulation to equilibrate
and frequency was only computed from the steady-state firing rate. Rheobase
was computed as the lowest value of injected current that yielded a non-zero
firing rate. Voltage threshold was computed at 10 nA/nF current injection as the
point on the action potential rising phase where the derivative of the voltage
trajectory reached 100 V/s. Voltage threshold was only computed in models that
fired action potentials at 10 nA/nF current injection (n�984). Gains were com-
putedintwoseparateways.WhencomputedovertheentireFIcurveatonetime
we fit an exponential function times a line using the following equation:

f� x� � � r� � �r0 � r��e�
x

�r� �mx � b�.

To measure the gain we took the derivative of that function to yield:

f	� x� � m� �r0 � r��e�
x

�r � r�� �
�r� � r0�e�

x

�r�mx � b�

�r
.

Table 1. Functions used to describe channel activation and inactivation kinetics

Channel p m� h� �m (ms) �h (ms)

Na 3 1

1 � e
V�25.5

�5.29

1

1 � e
V�48.9

5.18

1.32 �
1.26

1 � e
V�120

�25.0 � 0.67

1 � e
V�62.9

�10.0
��1.5 �

1

1 � e
V�34.9

3.6
�

CaT 3 1

1 � e
V�27.1

�7.2

1

1 � e
V�32.1

5.5

21.7 �
21.3

1 � e
V�68.1

�20.5

105 �
89.8

1 � e
V�55

�16.9

CaS 3 1

1 � e
V�33

�8.1

1

1 � e
V�60

6.2

1.4 �
7

e
V�27

10 � e
V�70

�13

60 �
150

e
V�55

9 � e
V�65

�16

A 3 1

1 � e
V�27.2

�8.7

1

1 � e
V�56.9

4.9

11.6 �
10.4

1 � e
V�32.9

�15.2

38.6 �
29.2

1 � e
V�38.9

�26.5

KCa 4 � 
Ca�


Ca� � 3� � 1

1 � e
V�28.3

�12.6
� 90.3 �

75.1

1 � e
V�46

�22.7

Kd 4 1

1 � e
V�12.3

�11.8

7.2 �
6.4

1 � e
V�28.3

�19.2

H 1 1

1 � e
V�70

6

272 �
1499

1 � e
V�42.2

�8.73

Steady-stateactivation, m�,andinactivation, h�, foreachofthechannels inthemodelareshown,alongwiththetimeconstantstoapproachthissteadystate,�m and�h. Ca is internalCa2�concentrationin�M. V representsmembranepotential inmV.
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In these equations r� is the asymptotic value of the exponential, r0 is the
initial value of the exponential and �r is the time constant of the expo-
nential. At higher values of x the curve is dominated by the line and the
variable m defines the slope and b defines the y-intercept. In nearly all
cases these functions fit FI curves extremely well with r 2 values �0.95.
When fitting only the high and low current injection regions of the FI
curve, we fit line segments because fitting a line to a restricted section of
the FI curve resulted in fits with lower errors. One-tailed t tests were used
when sample means were compared to zero and a paired t test was used
when comparing paired samples. Histograms were fit with normal dis-
tributions for comparison regardless of whether those distributions were
Gaussian. Figures were generated in MATLAB and finished in Inkscape
(inkscape.org).

Results
Firing rate change in a biophysically complex model
We constructed a population of 1000 model neurons, each with 7
separate active conductances similar to those used by Liu et al.
(1998), and based on voltage-clamp data reported by Turrigiano
et al. (1995) (see Materials and Methods). In this population the
maximal conductances were randomly assigned. For each model
generated in this fashion, we determined whether it would gen-
erate tonic spiking when a current of 0.2 nA/nF was injected.
Only models that showed stable tonic firing (coefficient of varia-
tion of its spike train �0.05) were included in this population.

We initially subjected model neurons to a range of biophysical
changes that have been observed experimentally in response to long-
term sodium blockade (Desai et al., 1999). This included reducing

the delayed rectifier potassium conductance (Kd), increasing the so-
dium conductance, or both. We noticed unexpected firing rate de-
creases for large increases in the sodium conductance at high current
injection levels and thus chose to study this manipulation in detail.
While our choice to triple the sodium conductance parameter was
arbitrary, using a large change yields a consistent effect that is easier
to study than more subtle manipulations in a highly variable popu-
lation. Smaller changes similar to those observed experimentally
(Desai et al., 1999) yielded a proportional effect size suggesting that
our results are not dependent on a large manipulation (data not
shown).

To assess model excitability over a range of input currents we
measured the FI curve for all models in the population. In one
example full conductance model neuron (Fig. 1A), the firing rate
increased with low current injection (0.2 nA/nF) when sodium
conductance was increased by a factor of 3 (Fig. 1A, left traces,
black: control, red: 3� gNa). For high current injection into the
same model neuron (10 nA/nF), the opposite occurred (Fig. 1A,
right traces) and increasing the Na� conductance led to de-
creased firing rates. The FI curves for this neuron (Fig. 1B) inter-
sect near the middle of the dynamic range (arrow). A second
example full conductance neuron (Fig. 1C) from the population
has different firing behavior because it has different maximal
conductances but retains the same qualitative changes to its ex-
citability (Fig. 1D) in response to Na� conductance increases
and thus also has FI curves that intersect (arrow).

Figure 1. Full models show divisive gain change at high firing rates. A, Voltage traces from a single model neuron at low injected current (0.2 nA/nF, left column) and high injected current (10
nA/nF, right column) demonstrate that tripling the sodium conductance increases the firing rate at low current injection levels (5 Hz to 9 Hz) but decreases the firing rate at higher current injection
levels (110 Hz to 60 Hz). Red traces have tripled sodium conductance. B, FI curve for this example model shows enhanced excitability at low rates (inset) and divisive gain change at higher rates. Lines
indicate fits to the data points (control, r 2 � 0.99; 3� gNa, r 2 � 0.99). Arrow indicates crossover point. C, D, Same as A and B for another example model (control, r 2 � 0.99; 3� gNa, r 2 � 0.98).
E, Distribution of the sodium and Kd conductances for the entire 1000 model database. Each black dot represents one model. Models drawn as larger red circles represent the models shown in A and
B (model 1) and C and D (model 2). F, Distribution of all the sodium conductances across the population. The selection criterion for this population favors lower values of maximal sodium
conductance. G, Distribution of all the maximal potassium Kd conductances across the population. H, Distribution of all the maximal A-current conductances across the population.
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As expected, in this database of biophysically complex models
with randomly generated conductances (Fig. 1E–H shows the
range of parameters present in the population), we observed a
wide variety of spiking behaviors and FI curves (Liu et al., 1998;
Goldman et al., 2001). For many models in the database (
300 of
1000 models), high input currents lead to a reduction in the gain,
a multiplicative scaling operation thought to underlie important
neuronal computations (Salinas and Thier, 2000; Gabbiani et al.,
2002; Silver, 2010). At low firing rates, increased Na� conduc-
tance usually (
970 of 1000 models) led to a decrease in the
rheobase of the neuron. Qualitatively, this meant that the firing
rate of the models with high Na� conductance was increased at
smaller input current, but decreased at larger input current rela-
tive to control which lead to the FI curves intersecting (Fig. 1B,D,
arrows). The change in rheobase could be explained easily since
enhanced Na� conductance leads to a hyperpolarized voltage
threshold allowing a smaller amount of input current to drive
spiking in the model. The decreased gain at higher input current,
however, required a more detailed analysis of the interaction be-
tween the sodium and delayed rectifier potassium conductances
which we address later.

Reduced model database shows subtractive shift at low rates
and divisive change at high rates
Next, we sought to understand whether the above results could be
reproduced in a more simplified biophysical model. Reduced

models are more amenable to detailed biophysical analysis and
allow for the precise identification of mechanisms that underlie
specific behaviors. The reduced model we generated contained
only Na� (INa) and delayed rectifier potassium (IKd) conduc-
tances along with an A-type potassium (IA) and leak conductance
(see Materials and Methods). While the INa and IKd are responsi-
ble for the spike generating mechanism, IA promotes type 1 FI
curve dynamics, such that the model neuron can fire at arbitrarily
low rates (Connor and Stevens, 1971; Connor et al., 1977; Dayan
and Abbott, 2001). We selected this model because it is a generic
representation of the core features of many types of spiking neu-
rons. Thus, these results should apply broadly to neurons with a
spiking mechanism similar to the one in this model. All further
results presented in this study were generated with the reduced
model.

We next generated a population of 1000 reduced models each
with random conductances and selected to have tonic firing at 0.2
nA/nF current injection. In an example reduced neuron (Fig. 2A)
we observed the same firing rate changes reported for the full-
conductance models and the same qualitative features in the FI
curves (Fig. 2B). An additional example model neuron also had
similar firing (Fig. 2C) and FI curve properties (Fig. 2D). We
measured the FI curves of all the models in the population (Fig.
2E–H, range of parameters present in the population) and re-
peated this process after increasing the maximal Na� conduc-
tance by a factor of three. As in the full conductance models, this

Figure 2. Reduced models show divisive gain change at high firing rates. A, Voltage traces from a single reduced model neuron at low injected current (0.2 nA/nF, left column) and high injected
current (10 nA/nF, right column) demonstrate that tripling the sodium conductance increases the firing rate at low current injection levels (6 –7.5 Hz) but decreases the firing rate at higher current
injection levels (68.5– 61.5 Hz). Red traces have tripled sodium conductance. B, FI curve for this example model shows enhanced excitability at low rates (inset) and divisive gain change at higher
rates. Lines indicate fits to the data points (control, r 2 � 0.99; 3� gNa, r 2 � 0.99). Arrow indicates crossover point. C, D, Same as A and B for an additional example model (control, r 2 � 0.98; 3�
gNa, r 2 � 0.99). Black dotted line in D (main panel and inset) connects individual control data points and highlights that there are models that experience rapid changes in frequency over the input
current range. E, Distribution of the sodium and Kd conductances for the entire, 1000 model database. Each black dot represents one model. Models drawn as larger red circles represent the models
shown in A and B (model 1) and C and D (model 2). F, Distribution of all the sodium conductances across the population. The selection criterion for this population favors higher values of maximal
sodium conductance. G, Distribution of all the maximal Kd conductances across the population. The selection criterion for this population favors lower values of maximal Kd conductance. H,
Distribution of all the maximal A-current conductances across the population.
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population showed an increase in the excitability of the neuron at
low firing rates when Na� conductance was tripled. As the input
current increased, additional Na� conductance decreased the
firing rate for equivalent input current (Fig. 2B,D, red FI curves).
As before, this meant that the two FI curves intersected one an-
other (Fig. 2B,D, arrows).

These observations indicated that the fundamental mecha-
nisms that were responsible for generating a subtractive shift in
rheobase and a divisive change in gain at high firing rates under
conditions of high Na� conductance were present in this reduced
model. Furthermore, compared with the full model, the divisive
gain change in the reduced model was highly robust and present
in the majority of the models generated in this manner (984 of
1000 models) even though the conductances of individual mod-
els were highly variable (Fig. 2E–H).

Finally, to ensure that our results were not dependent on very
large changes to the sodium conductance, we reran our simula-
tions with conductance changes more similar to those observed
experimentally. After activity deprivation, cultured neurons have
been reported to undergo a 1.3� increase in their sodium con-
ductance (Desai et al., 1999). When increasing the sodium con-
ductance by this amount we observed approximately a 25%
decrease in the gain compared with the full effect (data not
shown) suggesting that the reported effect size is proportional to
the sodium conductance change and that our results were not
dependent on a large manipulation size.

To quantify these observations across the population, we first
determined whether increasing the Na� conductance by a factor
of three in the population of reduced models changed the rheo-
base. When Na� conductance was increased, rheobase was de-

creased in all models in the population (Fig. 3A, rheobase shift
from control to 3� gNa averaged 
�0.1 nA/nF). To measure the
change in excitability generated over the entire input current
range we fit an exponential function multiplied by a line to the FI
curves from the population (see Materials and Methods). In gen-
eral, this function fit the FI curves extremely well (r 2 � 0.95 in
most models). For each model we fit both the control and 3�
Na� conductance FI curves and then subtracted the two fit lines
from one another (control minus enhanced Na� conductance).
When these differenced fit lines were averaged over the entire
population, a picture of the changes in the excitability emerged
(Fig. 3B, black line, mean; gray region, �1 SD, n � 1000). As
expected, at low current injection levels the mean difference was
negative indicating that the firing rate was higher with enhanced
sodium conductance than in the control condition. Conversely,
at higher current injection levels the value of the difference curve
was positive, indicating that the control FI curve had higher firing
rates in this range. Finally, the current injection level that yielded
a zero frequency difference value corresponds to the crossover
point of the FI curves and fell near 1.5 nA/nF current injection.

Fitting the FI curves also allowed computing the gain by tak-
ing the derivative (the slope) of the fit line equation (see Materials
and Methods). To measure where the gains of the FI curves were
most different, we subtracted the derivatives of the control and
3� gNa FI curves from one another (Fig. 3C, black line, mean;
gray region, �1 SD, n � 1000, control minus enhanced sodium
conductance). The maximum gain difference was near 1.5 nA/nF
current injection, very close to the crossing over point (Fig. 3B,
zero crossing). We also computed the change in voltage threshold
in the population by measuring when the rate of rise of an action

Figure 3. Enhanced sodium conductance causes a subtractive shift at low rates and a divisive gain change at high rates. A, The rheobase (current threshold) decreases in all models when sodium
conductance is increased. Histogram plots values by which rheobase shifts when going from control to 3� gNa. All shifts are negative indicating that the shift occurs in all 1000 models. B, Subtraction
of FI curve fits (control � 3� gNa) show that the difference is reliably negative at low rates and positive at high rates suggesting a subtractive shift at low rates, a crossover point and a divisive gain
change at high rates. Gray area represents 1 SD (n � 1000). C, Subtraction of the derivatives of the FI curve fits shows the input current at which the models experience the largest gain difference.
Gray area represents 1 SD (n � 1000). D, Voltage threshold is hyperpolarized in all models that spike at high current injection (n � 984) when Na � conductance is increased. E, Histograms of gain
distributions of low and high firing rates for each model under control and 3� gNa conditions. At low firing rates, the distributions have similar means while at high rates, gain is reduced (black,
control; red, 3� gNa, n � 583). Model population was subselected to ignore FI curves with jumps in frequency that correspond to missed spikes. Gray lines are Gaussian distributions with the same
means and variances as the data in the histograms. F, Gain changes significantly at high rates but not at low rates. Gain changes are plotted as percentages to normalize between low and high firing
rates (low rate, 0.3 � 8.1%, p � 0.37, n � 583; high rate, �18.7 � 3.9%, p � 0.001, n � 583, one-sample t test).
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potential exceeded 100 V/s. In all models that spiked at high
current injection, we observed a decrease in the voltage threshold,
indicating that spikes could be initiated from a lower starting
voltage when Na� conductance was tripled (Fig. 3D, voltage
threshold shifted 
�4 mV from control to 3� gNa, n � 984).

The mean gain difference at low current injection was 
1
SD above zero (Fig. 3C, gray region), which seemed large given
the similarity of many FI curves in this range (Fig. 2 B). The
large difference could be explained by observing that several
control FI curves had low gain at low input current but large
and abrupt changes in gain as input current was increased (see
Fig. 2 D, dotted line, for an example; effect occurs in 417 mod-
els out of 1000). Inspection of voltage traces determined that
this phenomenon was because these models had failed spikes
at low current injection levels during which the neuron would
depolarize to near threshold, nearly spike, and then return to
rest. As input current increased, these perithreshold depolar-
izations turned into action potentials, rapidly increasing the
firing rate.

We subselected those models from the population that dis-
played tonic spiking at all low current injection levels (not just at
the initial level of 0.2 nA/nF). In those 583 models we fit line
segments to both the control and 3� Na� conductance FI curves
at both low and high current injection and compared the slopes
(Fig. 3E). For this analysis, we fit line segments because the low
and high regions of the FI curves were not well fit by the curves
used previously. The slopes of the line segments at low rates were

very similar (Fig. 3E, left column, control, 21.9 � 1.5 Hz/nA; 3�
Na�, 21.2 � 1.0 Hz/nA, n � 583), whereas a noticeable difference
was present in the slopes at higher rates (Fig. 3E, right column,
control, 3.3 � 0.5 Hz/nA; 3� Na�, 2.7 � 0.3 Hz/nA, n � 583).
We measured the percentage change in each model at low and
high rates and found that there was no significant change at low
rates (Fig. 3F, low rate, 0.3 � 8.1%, p � 0.37, n � 583, t test)
whereas the slope was significantly changed at high firing rates
(Fig. 3F, high rate, 18.7 � 3.9%, p � 0.001, n � 583, t test).
Together, these results show that the population of models that
fired tonically through the entire low-frequency range had a sub-
tractive shift in their FI curves with no slope change at low rates
and a divisive change in gain at high firing rates all in response to
a single conductance change.

Mechanism of gain change at higher firing rates
To understand how the targeted change to the Na� conductance
was producing a divisive change in gain at higher firing rates in
the reduced model neurons, we investigated the activation level
of the individual spiking conductances during an action potential
with 10 nA/nF current injection. We first compared a spike from
a representative model neuron (Fig. 2, model 1 shown) before
and after changes to the Na� conductance (Fig. 4A, top). There
was no change in mean voltage with increased Na� conductance
computed over a single interspike interval (data not shown).
However, we did notice that individual spikes became wider with
increased Na� conductance. Additionally, increasing the Na�

Figure 4. Sodium conductance changes lead to a proportionally greater activation of Kd conductance which lowers the firing rate overall. A, Top, An example action potential from a single model
being injected with 10 nA/nF of current from the population (model 1 from Fig. 2) was overlaid from both control and 3� gNa conditions. Enhanced sodium conductance widens the action potential.
Bottom, A phase plot of the same action potential shows that the voltage initially rises faster and then repolarizes more slowly followed by a final phase of more rapid repolarization when compared
with control. B, Gating variables during the action potential shown in A. The normalized action potential is plotted in gray for comparison. Solid lines represent control; dotted lines represent 3�
gNa. Top, High sodium activation is prolonged (purple dotted line). This leads to enhanced activation of the Kd conductance (blue dotted line). Bottom, No major changes to the amplitude of the
sodium inactivation are observed (green). C, The difference of gating variable values (3� gNa minus control) shows that while the wider spikes lead to greater mean gNa activation, the Kd activation
variable is enhanced proportionally more. There is no change in the mean level of activation for the sodium inactivation. Values are adjusted for firing rate. D, The time spent by the sodium activation
in the open state is prolonged continuously when the sodium maximal conductance is increased up to 10-fold (2500 nS). Two (nearly identical) lines are plotted corresponding to the two models
shown in Figure 2. Inset, Schematic of the quantity being measured, the time when the sodium activation variable value is �0.96 during an action potential. E, Histogram of sodium channel
activation variable values over a train of action potentials (black, control; red, 3� gNa). Arrow highlights that with 3� gNa the gate is more likely to be open (a taller bar indicates more time spent
in the open state). Axis is zoomed in to highlight high values of activation. F, Histogram of Kd activation variable values during a train of action potentials (black, control; red, 3� gNa). Arrow
highlights that with 3� gNa, the Kd activation has consistently higher values indicating increased open probability.
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conductance hyperpolarized the voltage threshold for spike ini-
tiation, as we previously noted (Fig. 3D).

To more quantitatively analyze the change in spike width we
plotted the change in voltage relative to the voltage (Fig. 4A,
bottom). In both cases, the most depolarized voltage value
achieved remained approximately unchanged (near the sodium
reversal potential). With enhanced Na� conductance, single ac-
tion potentials depolarize more rapidly (a higher rate of rise).
Conversely, the repolarization of the spike on the downstroke
phase was initially slower than control, but the final phase of
repolarization was more rapid than control leading to an overall
lengthening of the spike.

To understand how increased sodium conductance and wider
spikes were leading to a reduction in firing rate (equivalent to an
increase in the interspike interval) at high current injection, we
plotted the sodium channel activation variable [m in the classic
Hodgkin and Huxley formalism (Hodgkin and Huxley, 1952)],
the sodium channel inactivation variable (h) and the Kd channel
activation variable (n) during a single action potential (Fig. 4B).
We compared traces from control conditions (Fig. 4B, solid
lines) with those generated after the Na� conductance had been
increased threefold (Fig. 4B, dashed lines). We lined up the traces
based on the rising phase of the Na� channel activation variable
(Fig. 4B, purple lines) and superimposed the corresponding ac-
tion potential with voltage normalized to be between 0 and 1 (Fig.
4B, gray traces, same spike as in Fig. 4A). Because the increased
sodium conductance prolongs the depolarization of the neuron,
keeping the sodium channels open longer (Fig. 4B, purple, top
and bottom), more time must elapse before sufficient sodium
channels are inactivated to reduce the inward current to a point
where the Kd current can effectively oppose it. This change by
itself was sufficient to explain the wider spikes but not the in-
creased interspike interval.

The change in the interspike interval can be explained by com-
paring the action potential voltage trajectory with the Kd channel
activation (Fig. 4B, blue, top). The Kd channel has slow activation
kinetics when compared with the sodium channel. Because of the
prolonged depolarization of the neuron during an action poten-
tial when Na� conductance was tripled, the Kd channels had
more time to activate, reaching a higher maximum activation
level during a spike (Fig. 4B, blue, top). The slow decay of the Kd

activation variable is ultimately responsible for increasing the
interspike interval (lowering the firing rate). Contrary to Kd, the
Na� inactivation (Fig. 4B, green, bottom) had little change in its
amplitude or kinetics and simply shifted its trajectory to match
the wider action potential.

We quantified the change in open probability normalized for
firing rate of these three gates between control and enhanced
Na� conductance. We found that for any changes in the Na�

activation there was a disproportionate increase in the Kd open
probability (Fig. 4C). In contrast, there was no change in the open
probability of the Na� inactivation gate between the two condi-
tions tested. Thus the lower firing rate observed with enhanced
Na� maximal conductance is due to a prolonged depolarization
of the voltage that leads to a greater activation of Kd ultimately
slowing the overall firing rate.

Because greater spike width due to larger Na� conductance
seemed to be critical for firing rate changes via enhanced Kd

channel activation, we ran two example models (the models pic-
tured in Fig. 2) over a much larger maximal sodium conductance
parameter range (Fig. 4D, figures shows two nearly superim-
posed curves). The model population had sodium conductances
ranging between 0.5 and 250 nS/nF under control. We further

extended this range to cover a tenfold increase ranging from 5 to
2500 nS/nF and measured the length of time the Na� activation
gate stayed open during an action potential (Fig. 4D, inset sche-
matic, double arrow indicates measured quantity). As expected,
this duration continued to increase with continually increased
maximal Na� conductance, providing evidence that the explana-
tion for how more Na� conductance can lead to lower firing rates
is accurate in this model.

Finally, we plotted histograms of the values of each activation
variable over a train of action potentials to visualize more clearly
how the Na� conductance change influenced the open probabil-
ities of each gate. These histograms count the frequency of each
value of the activation variables and thus indirectly measure how
long the gate spends in the open state. The Na� activation rapidly
switched between the entirely open or closed configuration.
When the Na� conductance was increased, the activation vari-
able spent more time in the open state (Fig. 4E, arrow), which can
be seen as an increase in the height of the bar at values near 1.0.
The values of the Kd activation were greater overall with increased
Na� conductance than those observed under control (Fig. 4F,
arrow), indicating that the Kd conductance was activated more
strongly. Together, these results show that increasing the Na�

conductance enhances the proportion of a spike phase that the
Na� channel activation spends in the fully open state (Fig. 4E,
arrow). Enhanced activation leads to a larger activation of the Kd

conductance (Fig. 4F, arrow), ultimately leading to a reduction of
the firing rate by delaying the subsequent spikes.

Crossover point variance suggests a more complex
homeostatic regulator
As mentioned above, a consequence of the observed rate-
dependent FI curve modulation is that the control and enhanced
Na� FI curves intersect. The intersection point represents the
input current and frequency value at which the subtractive shift
in the FI curve transitions into a divisive gain change. We mea-
sured how the crossover point changes between each model in the
database of 1000 reduced model neurons. For each set of FI
curves (control and threefold increased Na� conductance) we
used the fit lines computed previously and calculated where these
two curves intersected. We found variance in the distribution of
the crossover points, both in terms of the current values and the
frequency values at which they occurred (Fig. 5). This indicated
that there was no fixed current or frequency value that delimits
the regions in which enhancing the Na� conductance either pro-
duces a subtractive shift in the FI curve or a divisive gain change.
We binned both the current and frequency values of the transi-
tion and found that the current values had a large peak at 
1.4 nA
with a tail at higher current values and that the frequency values
were roughly normally distributed (Fig. 5, histograms, gray lines
are normal distributions with mean and variance equal to the
data in the histograms). In general, these findings indicate that a
homeostatic regulator of excitability cannot be implemented
based on fixed readouts because these values will vary in real
neurons.

Discussion
Nervous systems show remarkable resilience in their ability to
remain functional when perturbed by neuromodulators (Marder
and Bucher, 2007) and by temperature changes (Rosbash, 2009;
Tang et al., 2010, 2012). Responses to such global changes and
more targeted genetic or pharmacological manipulations are of-
ten modest, suggesting that compensatory or degenerate mecha-
nisms are a core feature of nervous systems. Neurons in
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functioning circuits are faced with the task of continuously mod-
ulating their excitability in response to changing inputs and al-
tered environmental conditions. In this study, we asked how
targeted increases in the number of sodium channels would in-
fluence the excitability of a model neuron. At higher input cur-
rents, increased Na� conductance led to a surprising reduction of
the firing rate and the outcome of a Na� conductance increase
depended on the firing rate of the neuron. We conclude that this
phenomenon poses a difficult problem for neurons attempting to
maintain their excitability by changing conductance densities
and suggests they must not only match a target level of mean
activity but also match a target input– output relationship.

Sodium conductance changes as a mechanism for
gain control
The experimental and theoretical study of gain control has
elucidated in detail how the properties of synaptic input trains
alter neuronal gain (Destexhe et al., 2003) and how some bio-
physical properties influence the shape of the input– output
relationship (Desai et al., 1999; Lundstrom et al., 2008, 2009;
O’Leary et al., 2010). Neurons in vivo are subject to high rates
of synaptic input that introduce membrane voltage fluctua-
tions and membrane conductance changes (Paré et al., 1998;
Destexhe and Paré, 1999; Harvey et al., 2009). These two prop-
erties of in vivo neurons have been shown to have a significant
influence on the FI curve (Holt and Koch, 1997; Chance et al.,
2002; Mitchell and Silver, 2003; Prescott and De Koninck,
2003; Prescott et al., 2006). Alternate mechanisms for gain
control such as synapses with short-term depression have also
been proposed as mechanisms for multiplicative gain control
(Abbott et al., 1997; Rothman et al., 2009). Comparatively
little attention, however, has been focused on cell-autono-
mous methods of gain control such as the regulation of intrin-

sic conductances (Moyer et al., 1996; Cantrell and Catterall,
2001; Zhang and Linden, 2003; Schulz, 2006).

We present a population of model neurons in which the gain
is divisively scaled at higher firing rates while there is a subtractive
shift in the FI curve at low rates, both in response to an increase in
the Na� conductance. This mechanism is significant because it
represents an intrinsic form of gain control in which the neuron
can itself influence its input– output relationship by changing its
intrinsic properties rather than integrating synaptic inputs over
which it has no direct control.

The idea that the entire input– output property of a neuron is
the key quantity that must be homeostatically regulated has been
proposed previously (Stemmler and Koch, 1999; Triesch, 2007;
Lundstrom et al., 2008, 2009). These previous studies have re-
lated basic biophysical properties such as conductance ratios
(Lundstrom et al., 2008), timescales of biophysical variables
(Lundstrom et al., 2009), maximization of information transfer
(Stemmler and Koch, 1999) and the statistical distribution of
inputs (Triesch, 2007; Wark et al., 2007) to the FI curve. This
study has implications for defining the properties of a homeo-
static mechanism that could regulate the entire input– output
property of neurons, not just the mean firing rate. Additionally,
our study reinforces the idea that neurons in functioning net-
works cannot always rely on single conductance changes to have
a single effect on excitability.

The dynamics of sodium channel activation and inactivation
are complex (Carter and Bean, 2011), as are the effects of sodium
conductance changes on excitability. Upregulation of the sodium
conductance can lead to increases in excitability (Hodgkin, 1975;
Cantrell and Catterall, 2001) but also decreases (Günay et al.,
2008). Somatic excitability is enhanced by dendritic sodium
channel block in pyramidal neurons of the weakly electric fish
(Fernandez et al., 2005), chronic tetrodotoxin (TTX) treatment
leads to decreased EPSC frequency at hippocampal CA3 recur-
rent synapses (Kim and Tsien, 2008), blocking activity in layer 5
cortical interneurons with TTX enhances pyramidal cell den-
dritic responses (Murayama et al., 2009), and repeated light stim-
ulation enhances the response of visual neurons by increasing
sodium currents in Xenopus tadpoles (Aizenman et al., 2003).
Our study adds to the literature describing unexpected excitabil-
ity changes following altered sodium conductance.

Correlations between maximal conductance measurements
Previous work has shown that ion channel mRNA levels may
covary (Schulz et al., 2006, 2007) and that conductances are not
regulated in isolation (Desai et al., 1999; O’Leary et al., 2010).
Instead, individual conductances may be tightly correlated with
other conductances, sometimes with those that have opposite
functions, suggesting that neurons use multiple mechanisms to
reach a homeostatic set point. The models generated for this
study had conductance values consistent with the generation of
tonic firing. When we plotted the gain of each model versus its
baseline sodium conductance, we found no linear relationship
between these quantities (data not shown), suggesting that gain is
not inherently higher with more Na� conductance for models in
the population. The gain changes observed in this study occurred
only after the baseline models were perturbed, effectively altering
the balance between the conductances.

We additionally considered models with multiple conduc-
tance changes similar to those seen in experimental work in
activity-deprived neurons in which Na� and Kd conductances
change in concert (Desai et al., 1999). In those experiments, so-
dium conductance increased by a factor of 1.3� and Kd conduc-

Figure 5. FI curve crossover point occurs at diverse values of both frequency and current. The
crossover points for all the reduced models are plotted in input current vs frequency space (n �

1000, few models had no intersection or extreme values for their crossover points and are
omitted for clarity). The crossover point represents the value of current and frequency that
separates the two effects enhanced sodium conductance has on the control FI curve. The scatter
plot highlights that the crossover points from each model occur at many different values of
frequency and current. Histograms of the current values (bottom, 1.55 � 0.31 nA/nF) and
frequency values (right, 26.7 � 3.36 Hz) are plotted along with representative normal distri-
butions (gray lines) that have equivalent means and variances.
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tance decreased by 0.6� after chronic tetrodotoxin blockade.
Both sodium and Kd conductances changes of that magnitude
independently decreased the gain at high firing rates. When com-
bined in the model, they produced 
50% of the full effect we
report for a 3� sodium conductance increase (data not shown).
It is possible that if a dramatic change to the Na� conductance
occurred in a real nervous system due to a genetic alteration, for
example, other conductances might compensate (Alkon, 1984;
Mee et al., 2004; Swensen and Bean, 2005; Laezza et al., 2007;
Lorenzetto et al., 2009). Even though such a process is not explic-
itly possible in our model, the voltage-dependent, and thus inex-
orably linked, conductances compensated for one another
regardless of this. As we have shown, the enhancement of the
Na� conductance results in an enhancement of the Kd conduc-
tance that was strong enough to lower the firing rate overall.
Thus, the opposing nature of the Na� and Kd conductances, and
their joint dependence on the voltage, causes them to provide a
rudimentary mechanism for homeostatic control in response to a
single perturbation, even though we did not explicitly endow the
model with a mechanism to achieve this.

The reduced models presented in our study did not simulate
calcium entry during action potentials. The increases in sodium
conductance resulted in wider action potentials which would
likely lead to increased calcium entry in real neurons. Calcium is
well known to trigger a variety of intracellular processes which
could influence the input– output relationship of real neurons or
trigger additional homeostatic feedback mechanisms in ways not
addressed by these simulation results.

Reliable neuromodulation in a simple model
An interesting question that arises from observing variability in
nervous systems is that it can seem unclear how neuromodulators
can have reliable effects on their targets if those targets are highly
heterogeneous (Marder and Thirumalai, 2002). In practice, ex-
ternal stimuli such as therapeutic drugs affect the majority of a
population in a similar manner even though it is self-evident that
individuals in that population must have brain circuits con-
structed with different numbers of neurons, different synaptic
weights and different histories of neuromodulation and activa-
tion. Previous work has investigated this phenomenon experi-
mentally (Grashow et al., 2009). Theoretical work has shown how
a model neuron with a diverse parameter space can be robust to
change but still respond reliably to neuromodulation (Goldman
et al., 2001) and investigated the structure of the parameter space
of heterogeneous models with similar behavior (Achard and De
Schutter, 2006). Our study fits into this conceptual framework by
demonstrating a highly consistent FI curve change in a popula-
tion of heterogeneous models in response to the same conduc-
tance density change.

Implications for homeostatic control mechanisms
Commonly, work describing neuronal homeostasis has made
the implicit assumption that the mean firing rate of a neuron is
the quantity that should be controlled (Turrigiano et al., 1995,
1998). However, it is well appreciated that neurons can have a
large range of firing rates and a key property of neuronal
computation is that neurons can meaningfully respond to a
wide variety of input levels. This requires a homeostatic feed-
back process that not only ensures that mean firing rate re-
mains at a reasonable level but instead ensures that the entire
input– output relationship is kept in a computationally mean-
ingful range. Our study demonstrates that changing intrinsic

conductances can sometimes lead to anti-homeostatic effects
on the input– output relationship.
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