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Abstract
We propose a novel approach to calculate the conduction velocity (CV) of the uterine contraction
bursts in magnetomyogram (MMG) signals measured using a multichannel SQUID array. For this
purpose, we partition the sensor coordinates into four different quadrants and identify the
contractile bursts using a previously proposed Hilbert-wavelet transform approach. If contractile
burst is identified in more than one quadrant, we calculate the center of gravity (CoG) in each
quadrant for each time point as the sum of the product of the sensor coordinates with the Hilbert
amplitude of the MMG signals normalized by the sum of the Hilbert amplitude of the signals over
all sensors. Following this we compute the delay between the CoGs of all (six) possible quadrant
pairs combinations. As a first step, we validate this approach by simulating a stochastic model
based on independent second-order autoregressive processes (AR2) and we divide them into 30
second disjoint windows and insert burst activity at specific time instances in preselected sensors.
Also we introduce a lag of 5 ± 1 seconds between different quadrants. Using our approach we
calculate the CoG of the signals in a quadrant. To this end, we compute the delay between CoGs
obtained from different quadrants and show that our approach is able to reliably capture the delay
incorporated in the model. We apply the proposed approach to 19 serial MMG data obtained from
two subjects and show an increase in the CV as the subjects approached labor.
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I. INTRODUCTION
Premature labor and delivery is an important public health problem as it is the main cause of
morbidity and mortality of newborns. One of the major challenges faced by obstetricians is a
proper diagnosis of labor which could be useful especially in the prediction of labor for
patients at high risk of premature delivery. To date there is no accurate and objective method
to predict the onset of labor or to distinguish between false and true labors. At present, the
progress of labor is monitored by recording changes in the cervical state and by measuring
the rate, duration and amplitude of uterine contraction using tocodynamometer or surface
electromyogram (EMG) electrodes.

The uterine contractions are a result of complex electrophysiological phenomena. It has been
suggested that the uterine myometrial activity is low throughout pregnancy with significant
increase during term or preterm labor [1]. The analysis of serial recordings (e.g., from
gestational week 23 onwards), more precisely the analysis of the conduction velocity (CV),
might help elucidate the nature of contractions and how the entire mechanism develops
throughout the gestation age.

Over the past years the uterine magnetomyogram (MMG) has become one of the most
promising biophysical markers for pre-term labor. The MMG recordings have important
properties which makes them a suitable candidate for the investigation of the uterine
activity: (i) they are independent of tissue conductivity (ii) the detection of the signal outside
the boundaries of the skin is possible without making any electrical contact with the body
and (iii) are independent of references, which ensures that each sensor mainly records
localized activity.

In an effort to facilitate the automatic detection of uterine contractions our group has
developed a method, consisting of multiple stages, to identify uterine contraction burst in the
MMG signals [2].

Although this technique has the advantage of capturing the dominant frequency information,
a single contraction marker is created for all sensors. This has the inconvenience that if one
decides to investigate specific sensors, in some of them one might find instances labeled as
contractile pattern although in reality there is no activity. Therefore, we have extended this
approach to encompass all magnetic sensors, that is, for each sensor a contraction marker is
computed using the power information from the respective sensor.

Early studies showed increased CV of the uterine myometrial cells before delivery and this
has been attributed to the increase in the gap junction between the myometrial cells [3], [4].
In this work we develop a novel approach to compute the CV of the multidimensional MMG
signals. At this time the prognostic capability of the CV has only been evaluated by means
of EMG [5].

To address the issue of the CV in MMG signals, we first detect and mark the contractile
patterns, within a 30 s running non-overlapping window, in each sensor using the above
mentioned method. Second, we subdivide the sensor space in 4 quadrants (Q) (see Fig. 1).
To study the interaction between quadrants we create pairwise combinations (e.g., Q1–2,
Q1–3, Q1–4, etc.), we mark the windows where sensors (from both quadrants) are active
and we compute the delay between the center of gravities (CoG) using the high order cross-
correlation function. Once the delay is computed the CV can be easily calculated as the ratio
between the delay and the distance between CoGs. We propose a novel way to compute the
delay within multidimensional data by which we can estimate the CV of the uterine
myometrial activity. We test the proposed approach on the data simulated using the model

Furdea et al. Page 2

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 August 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and show that our approach is able to capture the delay incorporated in the model. In the
next step we apply this to 19 serial MMG data sets from two pregnant women and study the
CV.

II. MATERIALS AND METHODS
A. Data Acquisition

Serial recordings, sampled at 1220.7Hz, from two healthy pregnant women were analyzed
for the current study. The MMG recordings were performed at gestational age ranging
between 23 and 38 weeks (a total of 19 recordings). The duration of a recording was
typically around 30 minutes. Prior to any processing the data was down-sampled to 250Hz
and we excluded segments with maternal movement. For this purpose, we first extracted the
R peaks from the maternal magnetocardiogram (mMCG) [6]. In a next step we partitioned
the signals into 3 minute disjoint windows and in each window we compute the CoG for the
R peaks. We denote with mCoG the average of the CoG in particular inspection window and
with stdCoG its standard deviation. Whenever in a window

(1)

the corresponding sample was marked as movement artifact. Later on in the analysis,
whenever such a sample was encountered, the corresponding inspection window was
discarded from further analysis. We have found that equation 1 provides a fairly good
discrimination of the peaks that correspond to maternal movement. This was also in
agreement with the protocol recordings that were carried out during each measurement.

The study was approved by the Ethical Review Board of the Medical Faculty, University of
Tübingen. Each participant was informed about the purpose of the study and signed
informed consent prior to participation.

B. Center of gravity and Hilbert amplitude

1) CoG—We denote the j-th sample of the MMG signal at k-th sensor as  and the

corresponding Hilbert transform is represented as  where j = 1 … n with n representing
the number of magnetic sensors. We define the CoG for the j-th sample as follows:

(2)

The Hilbert transform of the MMG signal at k-th sensor is computed using the ’hilbert’
function in MATLAB (Mathworks Inc.) which yields a complex signal as a linear
combination of original signal with its Hilbert transform. The magnitude of this complex

signal gives the Hilbert amplitude .

C. High dimension cross-correlation function
In order to calculate the delay between two CoGs (which are 3-dimensional vectors) we
perform time shifted correlation analysis. For this purpose we hold CoGs from one of the
quadrants constant and shift the CoGs from the second by τ samples (back in time). We
discard the last τ samples from the CoGs that we hold constant in order to match the number
of samples in the later. To this end the correlation coefficient is computed between these two
CoGs. However, in this approach there is an element of bias as the correlation coefficient is
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computed for different number of samples for each shift. To avoid this bias and thereby to
quantify the correlation correctly, for each shift τ we discard from both CoGs the same
number of data points that corresponds to number of samples minus the maximum lag. The
maximum lag up to which we would like to perform the correlation analysis is set to 15
seconds of data. For each shift, we quantify the correlation using the following correlation
function [7]:

(3)

where Xt represents transpose of the matrix X and tr represents the trace of the matrix, i.e.
the sum of diagonal elements.

D. Modeling
We propose the following stochastic model based on the second-order autoregressive
process (AR2):

(4)

where the initial parameters of the AR2 process are computed as in [2]. The purpose of the
proposed stochastic model is to mimic the amplitude of the MMG signals by tweaking the
parameters of the model. This model is just sufficient to understand the limitation of our
approach as to capture the delay between the selected sensors. Moreover, this model cannot
explain the different frequency characteristic that may be present in the measured MMG
signals.

We create n realizations (to match the total number of the sensors) of the AR2 process for a
duration of 9.5 minutes with a sampling frequency of 250 Hz. We divide the sensor space
into four quadrants and in each quadrant we choose ten sensors where we will insert burst
activity. We divide S(t) into disjoint windows and we alternate every 30 seconds between
active and rest periods. During the active periods the signals in the ten selected sensors are
replaced with a filtered (bandpass filter at 0.35–0.8Hz) and amplified version of the
corresponding original AR2 processes. The first four active periods we modify the signal
only in one quadrant, that is, in the first active period signals are modified in Q1, in the
second active period in Q2, etc. Starting with the fifth active period we modify the signal in
quadrant pairs, that is, in the fifth active period, signals are modified in Q1–2, in the sixth
period in Q1–3, etc. In addition, whenever signals (in the ten selected sensors) are modified
in quadrant pairs, a delay of 5 ± 1 seconds is introduced in the signals of the second quadrant
of the pair. The duration of the delay was arbitrarily chosen and the values were drawn from
a poisson random distribution. For a schematic representation of the model with the
modified signals see Fig. 2.

III. RESULTS AND DISCUSSION
A. Event based simulation

The results of the event based simulation are summarized in Table I. The first row contains
the average delay that was inserted in the preselected ten sensors of the model described in
section II–D. The second row shows the delay as computed by the high-dimension cross-
correlation function. We understand that the high-dimension cross-correlation function
which was introduced in section II–C is able to capture the delay between the CoGs.
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B. MMG data
The proposed approach was applied to biological datasets as described in section II–A. Fig.
3 shows the CV in subject A (top) and subject B (bottom), obtained for each quadrant pair
over the gestational age. A total of 19 datasets were investigated (14 for subject A and 5 for
subject B). The values for each week were obtained as follows: for each quadrant pair in
each ’active’ inspection window the delay between corresponding CoGs was computed
using the high dimension cross-correlation (HDCC) function as defined in section II–C. The
delay was tested for significance using a bootstrapping approach.

In a next step the velocity (for inspection windows that were marked ’active’) was
calculated as the ratio of the distance between CoGs and the delay between the
corresponding CoGs. In case of negative delay, we used the absolute value of it. Finally, for
a given dataset we quantify the CV by taking its highest value from all quadrant pairs.

A recent study has shown the better performance in predicting the preterm labor using the
propagation velocity in combination with the peak frequency compared to the standard
clinical methods such as Bishop score, contractions, and cervical length [5].

In a previous study [8] the authors investigated several linear and non-linear signal
processing methods on groups of term and pre-term delivery records recorded before and
after the 26th week of gestation. The authors emphasize that their goal was not to predict the
beginning of labor nor following the changes in spectra prior to delivery but to differentiate
these groups early during the pregnancy. The authors conclude that when using a 0.3–3 Hz
filter two methods (i) the median frequency of the power spectrum and (ii) the sample
entropy provide best discrimination for the investigated groups. For their term recordings the
authors observe a slight decrease in the median frequency of the power spectrum as time of
gestation progresses, while other studies show an increase in the power spectra distribution
[9], [10]. The decrease is later explained by the difference in the processing of the recorded
data. Fele-Zorz and colleagues processed entire records, the entire electrical activity of the
uterus, while in those other studies individual contractile events, i.e., the bursts associated to
contractions, were processed. The authors also conclude, that if entire records are processed
and records are taken more than 7 weeks prior to delivery, a slight decrease of the power
spectra distribution is observed for term records. In this work we have shown that the
propagation velocity is positively correlated with the gestational age in Subject A and this
can be attributed to the gradual increase in the gap junction between the myometrial cells
during pregnancy. Indeed this subject delivered in two weeks from the last study. In Subject
B, no clear trend is seen between propagation velocity and gestational age, which could be
due to the insufficient number of recordings or due to no significant change in the uterine
dynamics. This subject delivered within four days from the last study but by c-section mode.
Thus, in these two subjects studied there is a correlation between the CV and the outcome.

In future work this will be tested on a larger population and compare CV with the traditional
used clinical measures in predicting the term/preterm labor.

IV. CONCLUSION
A novel approach to calculate the CV of the uterine contraction bursts in MMG signals has
been presented.

The results are in line with those previously reported by Govindan and colleagues [11] and
they indicate a faster conduction time between muscle cells as the subject approaches term.

In future work, the proposed approach will be applied to a larger amount of low-risk datasets
to investigate its prediction power. The use of the current method might provide a better

Furdea et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 August 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



understanding of the electro and magnetophysiology of uterine activity and its development
throughout the gestational age.
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Fig. 1.
Partitioning of the sensor space in four quadrants. Diamonds, crosses, asterisks and squares
are marking the sensors that belong to the first, second, third and fourth quadrant,
respectively. Black circles mark sensors in which the AR2 processes are modified.
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Fig. 2.
An example of the modified signals. Top: signals belonging to Q1 (blue) and Q2 (red), note
that in the fifth active window the signal in Q2 is delayed. Bottom: signals belonging to Q2
(blue) and Q4 (red), note that in the ninth active window the signal in Q4 is delayed.
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Fig. 3.
Conduction velocity in subject A (top) and subject B (bottom). The values for each week
represent the maximum velocity that occurred in all quadrant pairs. Black thick line shows
the trend in the data.
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