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Abstract
Objectives—Use three-dimensional (3D) facial laser scanned images from children with fetal
alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can
reliably and accurately identify individuals prenatally exposed to alcohol.

Methods—A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D
facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two
study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine
learning, and pattern recognition techniques were used to automatically identify a set of facial
features that best discriminated individuals with FAS from controls in each sample.

Results—An automated feature detection and analysis technique was developed and applied to
the two study populations. A unique set of facial regions and features were identified for each
population that accurately discriminated FAS and control faces without any human intervention.

Conclusion—Our results demonstrate that computer algorithms can be used to automatically
detect facial features that can discriminate FAS and control faces.

Keywords
fetal alcohol syndrome; geometric feature extraction; image analysis; machine learning; pattern
classification

Introduction
Prenatal alcohol exposure is one of the most common non-hereditary causes of mental
retardation in the Western world. The adverse effects of alcohol on the developing humans
represent a broad spectrum of effects, collectively termed fetal alcohol spectrum disorders
(FASD). Fetal alcohol syndrome (FAS) is a subset of FASD and is defined by recognizable
facial dysmorphology, growth deficits, and cognitive and behavioral problems. FAS lies at
one end of the FASD spectrum, whereas alcohol-related neurodevelopmental disorder
defined as neurobehavioral impairment associated with prenatal alcohol exposure in patients
having apparent normal growth and structural development, falls toward the other end (1–3).

It is estimated that the prevalence of FAS in the general US population is between 0.5 and
2.0 per 1000 live births and FASD is 10 per 1000 live births (4). Importantly, studies outside
the United States have found even higher prevalence in particular geographic regions. For
example, in the Western Cape Province of the South Africa the prevalence of FASD was
estimated to be 68 to 89 per 1000 in first grade school children (5) and 39.2 to 46.4 using the
Hoyme et al. diagnostic classifications (3).

Individuals with FAS are identifiable because they typically present with growth deficiency,
structural abnormalities of the central nervous system and / or neurobehavioral deficits as
well as a pattern of minor facial anomalies including short palpebral fissures, smooth
philtrum, thin vermilion border of the upper lip, and midfacial hypoplasia (6). The ongoing
clinical challenge for the last three decades has been to expand the recognizable phenotype
so that individuals suffering from less readily recognized effects of intrauterine alcohol
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exposure can be identified. As mentioned, this group may be 10 times as large as the FAS
group (7, 8).

Although facial changes are required for the diagnosis of FAS, neurobehavioral deficits
occur in children with or without these cardinal features. Overall, deficits are worse in
dysmorphic than non-dysmorphic children but many studies have reported no significant
differences between these groups in neuropsychological functioning (9, 10). Specific
functional profiles are being sought to aid diagnosis of affected individuals along the
spectrum of FASD. Currently, physical features are used to identify children with FAS, but
even in dysmorphic individuals, clinical expertise is still poor (11, 12). Adding to the
difficulty in diagnosing FASD is the fact that the relevant phenotype is known to change as
the child grows to adulthood (13) and there are likely to be population or ethnic differences
in the expression of the facial features associated with the syndrome (14, 15). Therefore,
many children with FASD may not be diagnosed until they are older and they miss out on
important early interventions. Except for severe FAS cases, the best time considered to
diagnose is at age of five. However, the diagnosis becomes difficult during adolescence and
in adulthood. Although no known interventions have been shown to change the course of
FAS like other syndromes, the children do benefit from special programs and education.

Given that the effective management of FASD is dependent on the timely and reliable
diagnosis of affected individuals, there is a need for newer techniques, which in combination
with a clinician’s assessment would provide rapid and accurate pre-screening and early
diagnosis of children suffering from the effects of prenatal alcohol exposure. Three-
dimensional (3D) technologies offer the unique opportunity to develop novel image analysis
techniques to objectively identify the facial features. We proposed that this technique may
be helpful in identifying patients with FAS and a wider range of FASD patients. For
example, automated diagnostic techniques can be readily applied to 3D data and provide a
quantitative model for distinguishing individuals with FAS from controls. More importantly,
this could lead to an objective model for identifying children with FASD – which would be
beneficial, both for clinical and scientific reasons. In addition, these automated techniques
could be readily adapted for telemedicine applications, particularly in situations where
clinical expertise is lacking and travel to and from specialized centers is limited. Using this
automatic technique, pre-screening can be performed remotely with little effort and
expertise required.

Several techniques can be employed in automated facial feature analyses. The traditional
and most common approach is to extract surface data (typically, polygon mesh surface
representation) from volumetric images such as computerized tomography and magnetic
resonance imaging (16, 17). However, volumetric scans are expensive, non-portable, and
often invasive. We propose a new solution of combining facial features analysis with 3D
laser scanning technology. 3D laser scanning captures images that contain detailed surface
geometry (polygon mesh) and texture information. This technology has become more
tenable as the equipment to collect the images has become less expensive, faster, more
portable, and the resulting image has gained high resolution. Many of the newest models of
laser scanners are eye safe, which is essential for human studies, particularly with infants
and children.

As facial features are necessary for diagnosing FAS, this syndrome is an ideal model to use
for the development and testing of novel automated 3D facial feature analysis. Our approach
uses the polygon mesh surfaces of 3D facial scans of children with FAS and non-FAS to
develop and test an automated feature detection and classification model. The goal of our
study was to develop a computational model that can automatically compute facial features
from 3D scans and use this data to accurately identify children with FAS.
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Methods
Data collection

Data for this study were collected as part of an ongoing international consortium,
Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). One hundred and
forty nine participants from two sites: Cape Town, South Africa and Helsinki, Finland were
included in this study, among which 82 (50 FAS, 32 controls) were from Finland and 67 (36
FAS, 31 controls) were from Cape Town. This study was approved by the Institutional
Review Board at each site and at the grantee institutions (Indiana University School of
Medicine, Wayne State University School of Medicine, University of Cape Town Faculty of
Health Sciences, San Diego State University, and Hospital District of Helsinki and Uusimaa,
Hospital for Children and Adolescents, Helsinki, Finland). Either the participants or their
parent(s) / legal guardian(s) provided written informed consent.

As part of the study visit, each participant was examined by one or two members of the
CIFASD Dysmorphology Core, who completed a standardized, uniform assessment as
described by Jones et al. (11). The majority (86%) of the subjects from South Africa was
examined independently by two dysmorphologists and the remainder were seen by only one.
In Finland, the majority (73%) of the subjects was seen by only one dysmorphologist and
the remainder were seen by two. In those rare instances when the dysmorphologists did not
agree in their diagnosis, the two dysmorphologists discussed the case to reach an agreement
for a final diagnosis. Particular care was taken to exclude patients with a recognizable
craniofacial syndrome other than FAS. An objective classification system solely on the basis
of structural features (palpebral fissure, philtrum, and vermillion border) and growth
deficiency (head size and height and / or weight) consistent with the revised Institute of
Medicine criteria (3) was used to determine preliminary diagnosis. Under this scheme, a
participant could receive a preliminary diagnosis of FAS, no FAS, or deferred (11). Alcohol
exposure data were collected through a standard questionnaire consisting of four questions.
Collection took place at the interview or from a review of available study data. The extent of
reported prenatal alcohol exposure information was then classified into one of three
categories: none, minimal, and greater than minimal. Only individuals designated as FAS
with prenatal alcohol exposure (minimal or greater than minimal) and subjects classified as
no FAS with no prenatal alcohol exposure were included in this study. Individuals
designated as no FAS also did not have evidence of growth deficiency or any of the key
facial features associated with FAS. To provide the greatest power for discrimination, this
study only included in the analyses participants designated as either FAS or no FAS. The no
FAS participants served as study controls. Race and ethnicity were reported by the
participant or the parent/guardian as part of the study visit. As analyses focused on
population differences only participants reporting themselves to be either Finnish Caucasian
(FC) or Cape-colored (CC) were included in the analysis. Analyses were performed in each
of the two ethnic groups separately as well as in a combined group.

A standard protocol was employed to collect 3D facial images at the two study sites using
the same type of Minolta Vivid 910 laser scanners (Konica Minolta Sensing Americas, Inc.,
Ramsey, NJ, USA). Each participant was seated approximately 660 mm from the scanner
and six scans were collected: two frontal, two 45° to the right of the frontal axis, and two
45° to the left of the frontal axis. The three views ensured that the entire facial area was
covered and the repeat scans allowed for the selection of the best set of views. The total scan
time for each image was approximately 0.6 s. A semi-automatic stitching process using a
commercially available software package, RAPIDFORM™ 2004 (INUS Technology
Incorporated, Seoul, Korea) was then applied to merge the best scans of each of the three
views into one single 3D surface image.
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Facial feature analysis
For this study, we developed a novel automated facial feature analysis technique that
compared mathematically defined surface features within selected regions of FAS and
control faces and then extracted a subset of these features that yielded the most
discriminatory power to identify the FAS subjects (Fig. 1). Initially, the FAS and control
faces were aligned so that corresponding features across different faces could be easily
identified and compared. An initial set of features was computed using geometric feature
computation algorithms and simple statistical evaluation. Then, pattern recognition and
machine learning algorithms were applied to the initial feature set to generate the optimal
diagnostic features and classifiers that best discriminated the FAS and control faces.

Face alignment
Each participant’s face dataset was represented as one single polygon mesh surface
consisting of a set of polygons (usually triangles) connected like a mesh to form a surface
(see Fig. 1). To properly compare 3D facial images and their features, all scans were
precisely aligned in a common coordinate system. This ensured that features (e.g. points,
lines, and regions) defined on one face (e.g. a standard face dataset) could be properly and
accurately mapped to the same features on all other faces so that a one-to-one
correspondence was automatically established. The alignment was carried out by first
defining a template face and then aligning each new dataset with the template face. The
template face is a standard face dataset usually selected randomly from the control group,
which we used as a common platform to define and register facial features.

The alignment defined the correspondence of facial features on different faces by mapping a
feature on the template face to any other face that had been aligned with the template. The
basic idea of the alignment algorithm is to gradually adjust the orientation and position of
the face dataset so as to minimize the total distance between the face dataset and the
template face. We employed a popular and highly effective solution, Iterative Closest Point
(ICP) algorithm (18, 19) which computes the optimal geometric transformation of the
dataset to match the template face by iteratively finding a local minimum of a mean-square
distance metric.

Because of size and shape differences between faces, ICP-based alignment can lead to the
misalignment of certain local features. To avoid local feature misalignment, we applied an
additional morphing process by interpolating a set of feature landmarks to generate a
morphed intermediate face between the template face and the aligned faces. The feature
landmarks were prominent and easily identifiable points on the face (e.g. the corners of the
eyes) and were manually selected on both the template face and the aligned face. The
template face was then morphed into the aligned face by interpolating their corresponding
landmark points. The morphing was implemented using the Hardy’s scattered data
interpolation function (20, 21).

The morphed face served as an intermediate step in building a feature-preserving
correspondence between points across different faces. This alignment process builds a
correspondence function that maps a vertex on the template face to a point on an aligned
face. This allowed us to define features (e.g. regions) on the template face, which could then
be automatically mapped to all other face datasets and enabled us to compute features for a
large number of face datasets automatically.

Feature computation
Feature values were defined and computed within facial regions. A facial region is defined
as a surface area of the face represented by closed boundary lines. A region can first be
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defined on the template face, and then mapped to each sample face where features were
computed. Here, feature computation refers to the definition and computation of feature
values (or measurements) of each region. Many measurements (such as curvatures and
moments of inertia, etc.) can be computed for a given region to represent the geometric
properties and shape information of the surface within the region. For our study, four feature
measurements were computed within each region: Area, Aspect Ratio, Flatness, and
Curvatures.

• Area: It measures the surface area of the region. Because a region on a face is
defined by its mapping to the corresponding region on the template face through an
intermediate morphed face, the differences in areas of various regions reflect the
shape differences (primarily in size) of the faces in a given facial region.

• Aspect Ratio: It measures the ratio of the width to the height of a region. Similar to
‘area’, differences in aspect ratio reflect shape differences.

• Flatness: It measure show flat the surface is within the region. It can be computed
by fitting a planar surface to the region using a least square minimization.

• Curvatures: Curvatures measure the local curving of the surface at each point
within a region. The average curvatures for all points in a region provide
information about the shape variation within the region. For polygon mesh
surfaces, curvatures are computed using discrete differential geometry operators
(22). Two typical types of curvatures were computed: Gaussian curvature κG = κ1
× κ2 and Mean Curvature κH = (κ1 + κ2)/2, where κ1 and κ2 are called Principal
Curvatures representing the maximum and minimum curvatures, and the directions
in which these two curvatures are defined are called principal directions.

The features computed over the selected regions formed a feature vector which was then
further filtered and analyzed to establish the diagnostic feature set.

Initial feature set identification
To successfully identify a reliable set of features to discriminate individuals with FAS from
controls, it was essential to start with a larger set of potential features which were evaluated
and their number reduced as part of the system training process. As our features were
defined with respect to regions, we first needed to derive a way to systematically generate
and evaluate various regions on a face. This was carried out by subdividing the face into
uniform grids of several different sizes and then computing the four feature measurements
within each grid area. By evaluating the ability of the feature measurements within each grid
area to separate FAS and control faces, we found the best combination of neighboring grid
areas to form optimal regions (consisting of potentially multiple grid areas) which
discriminated FAS and control subjects.

To identify the initial feature set to be used in the system training process, we first computed
a likelihood value at each point on the face that measured the overall difference between the
FAS and control groups in terms of given feature values at this point. We defined a feature
as a pair (r,v), where r is a region defined on a face surface and v is a quantity
(measurement, statistics, etc.) computed within region r that represented a given geometric
property of the region. We call v a feature value. For a given initial region r, k types of
feature values can be computed:
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For a set of pre-defined regions, the feature selection process determined a set of optimal
pairs, {(ri,vj)}, that had the best discriminatory power between the FAS and control groups.

A feature map is a visualization of a color-coded face representing the ‘feature differences’
with respect to a given type of feature value (curvature, moment, etc.). If there are k types of
feature values, k feature maps can be generated. The feature values in each feature map were
computed within individual regular regions that were generated by a uniform subdivision of
the face at a given resolution. Therefore, a feature map could be visualized in different
resolutions, i.e. different sizes of regular regions. The use of different sizes of regions was
important as feature values in a neighborhood of smaller regions do not necessarily reflect
the feature value of the combined larger region. The ‘feature difference ’ represented the
mean difference of feature values in a given region between two groups. The visualization
allowed the user to examine the regions or areas of the face that exhibited the greatest
differences between the two groups. The ‘feature difference’ value was computed using a T-
value. The correspondence function mapped a region onto each facial image and the feature
value was computed for all faces. The ‘difference’ was defined by the T-value:

where V̄1 and V̄2 were the means of the feature values in the region over the FAS and
control groups, respectively, and s1 and s2 were their respective SDs.

There are several advantages in the selection of regions rather than individual points with
high T-values. First, the correspondence across different datasets is not accurate up to the
single point level. Therefore, automatically generated point features are generally not very
reliable because of the inaccuracy of the feature mappings. Only when these points form a
concentrated region, can we be reasonably sure that such a concentration is significant.
Second, human vision is more sensitive to concentrated regions than scattered point patterns,
so regions are an easier and more reliable unit for user interaction. Third, it is easier to
interpret biologically the meaning of regional rather than point differences.

Feature selection
A systematic approach was employed to generate the initial set of features for feature

analysis. We computed on each face a set of all possible features, {( , vj)}, where m
indicated the different resolutions of region subdivision, i represented the list of all regions
at a given resolution, and j represented the different types of feature values computed in
each region. As these features needed to be defined and computed as corresponding feature
vectors across all sample faces, we used the template face to define the base feature vector.
For each face, the distance map was applied to find the corresponding regions.

The T-value of a feature represents a measure of ‘difference’ of this feature with respect to
the given two groups of datasets, and therefore can be used to automatically filter out the
less important features. For each feature type and each resolution of the region subdivision,
the T-values of all the regular regions were sorted in decreasing order into a feature list. A
T-value threshold approach was employed to select the top features from each list. In each
list, let the minimum and maximum T-value be a and b, respectively. For a given percentage
thresholding p (e.g. 10% for p = 10), a feature with a T-value t will be selected if it satisfies
the condition:
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i.e. the features with top p% of T-values were selected.

Feature analysis classifier
This initial feature vector was too large for the feature classification algorithms. In pattern
recognition, more features do not necessarily lead to better classification results [i.e. ‘curse
of dimensionality’ (23)]. Thus, a subset of this feature vector needed to be selected. As
shown by Hua et al. (24), the optimal number of features used in a machine learning process
often depends on the statistical distribution of the datasets and the specific classifier. But the
general rule of thumb is that the ratio of the sample size to the number of features should be
greater than 3.

To reduce the size of the feature vector to about one-third the size of the sample, an
additional feature selection process was applied to determine an optimal subset of the
existing feature vector that had the best discriminatory (diagnostic) power. A very effective
and commonly used method is the Correlation-based Best First search algorithm. The Best
First search starts with an empty set of features and generates all possible single feature
expansions. The subset with the highest evaluation is chosen and is expanded in the same
manner by adding single features. If expanding a subset results in no improvement in
discrimination of the two datasets, the search drops back to the next best unexpanded subset
and continues from there.

The Correlation-based Feature Selection (CFS) approach uses a search algorithm along with
a function to evaluate the merit of the feature subsets. The heuristic by which CFS measures
the ‘goodness’ of feature subsets takes into account the usefulness of individual features for
predicting the class label along with the level of inter-correlation among them. It is based on
the hypothesis that ‘Good feature subsets contain features highly correlated with (predictive
of) the class, yet uncorrelated with (not predictive of) each other’ (25).

In feature analysis, the selected feature vector was analyzed using pattern classifiers on the
same training set (two-thirds of the total data sets). The other one-third was used as a test set
for validation. There are many powerful machine learning based data classifiers. Radial
basis function networks (RBFN) classifier was used in our study. We had also experimented
with other classifiers (e.g. Support vector machine) and found that results are quite similar.
RBFN is a special neural network classifier for supervised learning. It is a multilayer, feed-
forward neural network that is well suited to applications such as pattern discrimination and
classification.

Validation of results
A Test-set (TS) approach was used to validate the results. In this approach, one-third of the
images were randomly selected and put aside as a test set to be used to validate the
diagnostic function generated from the analysis. The remaining two-thirds of the images
were treated as a training set and used to select the features and derive a function for best
separating FAS faces from control faces. This ensured that data in the test set were never
involved at any stage of the feature selection and analysis processes.

Results
A total of 149 images were analyzed of which 55% were FC and 45% were CC. The
majority (54.4%) of participants was female and the age of the participants ranged from 2.8
to 21 years. The age of study participants varied between the two sites; however, the age of
the FAS and control patients at the same site did not differ significantly (p = 0.4 for the FC
sample; p = 0.2 for the CC sample). The age variation between the FAS and control groups
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for the combined sample (combining FC and CC together) was also small (p = 0.73).
Summary statistics for the two population groups are provided in Table 1.

A different feature set was identified for each of the two samples that can automatically
discriminate FAS and controls. Table 2 shows the classification results using the TS
validation with both FC and CC samples, as well as a combined sample. They had excellent
ability to correctly classify FAS and controls for both the FC and CC samples. Within the
FC sample, this automated technique correctly classified 88.2% of the FAS faces and 100%
of the control faces. Within the CC sample, the automated technique was able to correctly
classify 90.9% of FAS faces and 90% of the control faces. A total of 15 features were
selected for the FC analysis, among which six were curvatures, four were flatness, three
were aspect ratios, and two were areas. For the CC sample, a total of 19 features were
selected, among which seven were curvatures, six were flatness, three were aspect ratios,
and three were areas.

The ability of this method to discriminate FAS and controls when using the combined FC
and CC data was substantially poorer (Table 2). Among the misclassified cases, seven were
from the CC sample and three were from the FC sample. All false-positive cases (controls
classified into FAS) were from the CC sample, and all five misclassified FC faces were
false-negative cases (FAS classified into controls).

Discussion
We developed a method that automatically computes facial features from 3D images and
used them to discriminate subjects with FAS from controls. We demonstrated that this new
mechanism when used in conjunction with our analytical approaches can distinguish
individuals with FAS from ethnically similar controls. However, our results also found that
facial features automatically selected by the algorithm to distinguish FAS and control faces
vary among different ethnic populations. Prenatal alcohol exposure not only leads to the
specific dysmorphic features outlined in the criteria for FAS – short palpebral fissure, thin
upper lip and vermillion border – but also to other more subtle yet, by 3D imaging,
identifiable features that make the overall gestalt of a FASD face. For the purpose of
comparison, we tested whether the classification rate would improve if the FC and CC
samples were combined to gain a larger sample. We found that the classification rate was
lower with a sample of mixed races, indicating that ethnicity plays a significant role in the
features that help to identify individuals who are prenatally exposed to alcohol. Our study
population included a wide age distribution and, therefore, we cannot conclusively
determine whether the unique features that distinguish FAS and controls in each population
can be attributed to ethnic differences or the effects of age on the facial features of FAS or
the pattern of maternal alcohol use. However, the mean ages of the FAS group and the
control group for each of the samples (FC, CC, and combined) were not significantly
different (with p-values of 0.4, 0.2, and 0.7, respectively). To further verify this notion, we
added age as a new feature in the analyses. The computer algorithm did not pick age in the
final feature set for the FC and CC samples. Although age was in the final feature set in the
analysis for the combined sample, it did not improve the classification rate. Therefore, we
postulate that age did not have a significant effect on our results.

The accuracy of the classification obtained in this study is substantially improved from those
obtained in an earlier study (26), which also employed facial recognition technique but
utilized 2D photographs. The results in this study, though requiring more expensive and less
portable technology, clearly demonstrate the superiority of 3D images as a means to
discriminate FAS subjects and controls. These results suggest 3D images are a useful
addition to the current dysmorphology and clinical evaluation of individuals suspected of
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prenatal alcohol exposure. Importantly, this approach shows great promise as part of
growing efforts to develop novel telemedicine applications which would allow better clinical
care in remote locations. The TS validation approach we employed in this technique
provides accurate prediction for its clinical performance as the test set was never used in any
of the training and data processing steps, i.e. it was treated the same as any new clinical data
(of the same ethnic population).

In our method, several different pattern classification techniques (e.g. Neural Networks,
Support Vector Machines, etc.) can be applied to derive the computational models for FAS
classifications. Whereas the classification rates remain high with different techniques, the
specific feature selected for these computational models, however, are not always the same.
As pattern classification algorithms select only independent features, we speculate that this
inconsistency could be the result of feature correlations for FAS faces, and each time a
different set of independent features among the correlated features could be selected. We
believe as a future work that further study is needed to better understand this phenomenon
before making meaningful biological interpretations from the specific feature set. Another
future direction will be to apply this technique to other syndromes that may also have facial
characteristics.

Factors such as age, ethnicity, and pattern of maternal alcohol ingestion may play a role in
the detection of facial features associated with FASD. Therefore, when additional samples
are collected, we intend in future studies to perform analyses evaluating the effects of age
and maternal alcohol ingestion patterns on the ability to classify FAS (and ultimately
FASD). These analyses may provide additional evidence for determining whether the unique
features that distinguish FAS and controls in each population can be attributed to ethnicity,
age or pattern of maternal alcohol intake.

Greater understanding of the phenotypic characteristics associated with prenatal alcohol
exposure, particularly if these differences can be reliably and objectively defined, will assist
in the more efficient diagnosis of prenatally exposed individuals. More importantly such
phenotypic markers and analytical techniques may allow clinicians to ‘expand the
phenotype’ to detect individuals who may not meet the more stringent criteria of FAS but
who nonetheless suffer from clinically significant effects of prenatal alcohol exposure.
These individuals occur with a much greater frequency than FAS, but currently remain
largely undetected because they fail to express clinically evident facial dysmorphology
meeting the diagnostic criteria. Identification of FAS in early childhood is important as
research suggests that early identification of alcohol exposed children fosters positive
outcomes and reduces the likelihood of secondary disabilities (27).
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Clinical relevance

A new 3D facial image analysis technique was developed to identify children with FAS.
Laser scans of facial images were collected, processed, and analyzed using computer
graphics, machine learning, and pattern recognition techniques to determine the facial
features that best discriminate FAS and control subjects. It provides an automated and
potentially more accurate and efficient means to identify individuals with FAS. We hope
this application can be further developed to detect a wider range of individuals with
FASD and believe it may be suitable in the future for telemedicine applications.

Fang et al. Page 13

Orthod Craniofac Res. Author manuscript; available in PMC 2012 August 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
An overview of the 3D face analysis method.
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Table 1

Subject demographics

FC (n = 82) CC (n = 67)

FAS Control FAS Control

Number of subjects 50 (61%) 32 (39%) 36 (54%) 31 (46%)

Number of females 29 (58%) 19 (59%) 17 (47%) 16 (52%)

Mean age (SD) 13.12 (3.5) 13.75 (3.6) 5.09 (1.9) 4.48 (2.0)

FAS, fetal alcohol syndrome; FC, Finnish Caucasian; CC, Cape-colored.
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