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Abstract
Four applications of permutation tests to the single-mediator model are described and evaluated in
this study. Permutation tests work by rearranging data in many possible ways in order to estimate
the sampling distribution for the test statistic. The four applications to mediation evaluated here are
the permutation test of ab, the permutation joint significance test, and the noniterative and iterative
permutation confidence intervals for ab. A Monte Carlo simulation study was used to compare these
four tests with the four best available tests for mediation found in previous research: the joint
significance test, the distribution of the product test, and the percentile and bias-corrected bootstrap
tests. We compared the different methods on Type I error, power, and confidence interval coverage.
The noniterative permutation confidence interval for ab was the best performer among the new
methods. It successfully controlled Type I error, had power nearly as good as the most powerful
existing methods, and had better coverage than any existing method. The iterative permutation
confidence interval for ab had lower power than do some existing methods, but it performed better
than any other method in terms of coverage. The permutation confidence interval methods are
recommended when estimating a confidence interval is a primary concern. SPSS and SAS macros
that estimate these confidence intervals are provided.
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Mediation models are often applied in psychological research to discover the mechanism by
which an independent variable affects a dependent variable. A third variable—an intervening
variable or mediator—intervenes between the independent and dependent variable. Methods
to ascertain whether a mediating variable transmits the effects of an independent variable to a
dependent variable are widely used in many substantive areas. Some examples of mediational
hypotheses are that the effect of exposure to information on behavior is transmitted by
understanding the information, that attitudes affect behavior through intentions, and that
psychotherapy leads to catharsis that promotes mental health (MacKinnon, 2008).

The single-mediator model is the focus of this article, as it is the simplest example of mediation.
This model is depicted in a path diagram in Fig. 1 and is specified in terms of Eqs. 1, 2, and 3:
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(1)

(2)

(3)

In these equations, Y is the outcome variable, X is the independent variable, M is the mediator,
τ represents the total effect of X on Y, τ′ represents the relation between X and Y adjusted for
M (the direct effect), β represents the relation between M and Y adjusted for X, α represents
the relation between X and M, β0i is the intercept for Eq. i, and ε, εY, and εM are residuals.
The mediated effect is the product of α from Eq. 3 and β from Eq. 2. The corresponding sample
values for α, β, τ, and τ′ are a, b, c, and c′.

Although several outstanding methods for statistical significance testing and confidence
interval estimation for mediation have been identified, even the best tests do not have ideal
Type I error rates, statistical power, and confidence limit coverage. MacKinnon, Lockwood,
Hoffman, West, and Sheets (2002) described 15 different tests of mediation that had been
proposed at different times. They compared these methods in terms of their Type I error rates
and their power to reject false null hypotheses. The tests varied in their ability to control Type
I error at the nominal rate. Even those that did control Type I error often had very low statistical
power. As MacKinnon et al. (2002) detailed, a major difficulty in testing for mediation is that
the sampling distribution of the mediated effect, ab, is typically not normal, as many tests of
mediation assume. The same is true for the c – c′ estimator of the mediated effect, which is
equivalent to the ab estimator when the regressions in Eqs. 1, 2, and 3 are estimated using
ordinary least squares (OLS; MacKinnon & Dwyer, 1993).

Under conditions in which the assumptions of classical statistical methods are violated, such
as a nonnormal distribution, resampling methods often outperform classical methods because
the resampling methods require fewer assumptions (Manly, 1997). Bootstrapping is one such
resampling method that has been found to perform well in terms of Type I error control, power,
and coverage, and it has therefore been widely recommended as an ideal approach to testing
mediation (MacKinnon, Lockwood, & Williams, 2004; Preacher & Hayes, 2004; Shrout &
Bolger, 2002), for more complex mediational models as well as for the single-mediator model
(Cheung, 2007; Preacher&Hayes, 2008; Taylor, MacKinnon, & Tein, 2008; Williams &
MacKinnon, 2008). Briefly, bootstrapping involves drawing many samples from the original
sample with replacement (meaning that the same case may be included more than once in a
bootstrap sample), estimating the mediated effect in each bootstrap sample, and using the
distribution of these estimates to find a confidence interval for the true mediated effect. For
the simplest bootstrap method, the percentile bootstrap, the (ω/2) × 100 and (1 − ω/2) × 100
percentiles are chosen as the limits of the confidence interval, where ω is the nominal Type I
error rate. Other methods, such as the bias-corrected bootstrap, make adjustments to which
percentiles from the bootstrap distribution are chosen as the confidence limits (Efron &
Tibshirani, 1993; MacKinnon et al., 2004). Another resampling method that has not as yet been
applied to testing for mediation is the permutation test (also called the randomization test).
Like bootstrap methods, permutation tests make fewer assumptions than do classical statistical
methods. MacKinnon (2008) suggested that the permutation test may be used to test mediation
and described how such a test might be conducted. The purpose of this article is to describe
and evaluate four permutation-based tests for mediation—the one proposed by MacKinnon
(2008) and three others—and to compare them to the best-performing existing mediation tests.
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Two of the proposed methods also allow for the forming of confidence intervals. To the best
of our knowledge, permutation-based confidence intervals have rarely been presented and have
not been described for the mediated effect. To introduce permutation tests, we describe their
use in comparing two means and in regression; we then describe the proposed applications of
permutation tests to testing for mediation in the single-mediator model.

Permutation tests
The permutation test was proposed by Fisher (1935), who used it to demonstrate the validity
of the t test. Unlike a classical statistical test, for which a test statistic calculated from the data
is compared to a known sampling distribution such as a t or an F distribution, a permutation
test compares the test statistic from the data to an empirical sampling distribution formed by
permuting the observed scores. Like the sampling distribution used in a classical statistical test,
this permutation-based distribution holds if the null hypothesis is true; if the calculated test
statistic is extreme in this distribution, the null hypothesis is rejected.

Comparing two group means
The case of testing the difference between the means of two independent groups, which is
typically done using an independent-samples t test, provides a straightforward example of the
application of the permutation test. The test works by first finding the difference between the
observed means. The data are then permuted, meaning that the cases are reallocated to the two
groups in all possible combinations (with the constraint that the group sizes are held constant
at their observed values). Permutation is done repeatedly to create all possible samples that
could have resulted from assigning the cases to the two groups. Each sample based on
reallocation provides an estimated difference between the group means that might have arisen
if the null hypothesis were true. The rationale is that if the null hypothesis is true, cases in both
groups come from the same population with the same group mean, so the cases could have just
as easily been found in either of the two groups. The differences between group means found
for each permuted sample provide estimates of differences that might arise by chance alone.
In other words, they form a sampling distribution for the difference given that the null
hypothesis is true. The observed difference between group means, based on the original,
unpermuted data, is compared to this distribution in the same way as in any other null hypothesis
test. If the observed value is extreme in the distribution, typically in the lowest or highest (ω/
2) × 100% of the distribution for a two-tailed test, the null hypothesis of no difference is
rejected. This permutation test is considered an exact test of the difference between two groups.

One difficulty of the permutation test is that the number of possible ways of reassigning scores
to the two groups is extremely large, even for small samples. For two groups of size n1 and
n2, the number of ways of reassigning the scores to the groups (i.e., the number of possible
permuted samples, or Np) is equal to the number of combinations of n1 + n2, taken n1 at a time
or n2 at a time:

(4)

For a two-group design with 10 scores in each group—for example, Np = 20!/(10!)(10!) =
184,756—calculating a test statistic for every one of these permuted samples can be quite time
consuming. Therefore, rather than creating every possible permuted sample, most applications
of the permutation test examine only a subset (of size np) of the possible permuted samples,
Np (Edgington, 1969, 1995). Tests for which np < Np are called approximate permutation
tests. Tests that use the entire set of permuted samples are called exact permutation tests. For
all further applications of the permutation test, we will discuss only the approximate version.
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Testing a regression coefficient
Permutation tests have been applied in several ways to tests of regression coefficients
(Anderson & Legendre, 1999; Manly, 1997; ter Braak, 1992). The approach described here is
known as the permutation of raw data (Manly, 1997). This application to regression analysis
is similar to the two independent-group tests described above. Rather than a single variable
defining group membership, there are potentially multiple predictors. In the case of a single
predictor, W, predicting an outcome variable, Z, this is the regression equation:

(5)

To perform a permutation test of the null hypothesis that the true coefficient for W, γ1, equals
zero, the model is first estimated for the original data to find g1. To form the permutation-based
sampling distribution, scores on the outcome Z are then permuted and reassigned to scores on
the predictor W in all possible combinations. To distinguish them from the unpermuted Z
scores, the permuted scores are labeled Z+. The regression model is reestimated, predicting
Z+ from W in each permuted sample; the resulting estimate of the coefficient for W in each
sample is labeled g1

+. The g1 coefficient from the original, unpermuted data is compared to
the sampling distribution of g1

+ obtained from the permuted samples to test the null hypothesis
that γ1 = 0.

In multiple regression, the procedure is largely the same. The model is first estimated for the
unpermuted data:

(6)

Scores on the dependent variable Z are then permuted and reassigned in all possible ways to
unpermuted scores on the predictors W1 and W2. As the null hypothesis being tested for each
predictor is that its partial association with the outcome variable is zero, it is important to
maintain the associations among the predictor variables (Anderson & Legendre, 1999).
Therefore, scores on the predictors are not permuted and reassigned; only the outcome variable
is permuted and reassigned. The model is reestimated for each permuted sample, allowing for
a null hypothesis true sampling distribution to be formed for each coefficient. Observed
coefficient values based on the original data are then compared to their corresponding
permutation-based sampling distributions in order to test the null hypothesis that each has a
true value of zero.

A confidence interval for a regression coefficient
In addition to null hypothesis testing of regression coefficients, the permutation method can
also be used to find a confidence interval for a regression coefficient (Manly, 1997). The
permutation methods described above estimate a sampling distribution given that the null
hypothesis is true; the observed statistic is compared to this distribution to test the null
hypothesis. Creating a confidence interval, on the other hand, requires estimating the actual
sampling distribution of the statistic. Because the sampling distribution to be estimated varies
around the observed value of the statistic rather than around zero, permutation confidence
interval estimation requires a different approach than permutation null hypothesis tests. Instead
of permuting scores on the outcome variable, finding a confidence interval for a regression
coefficient requires permuting residuals, an approach proposed by ter Braak (1992) for null
hypothesis testing and extended to estimating confidence intervals by Manly (1997). For a one-
predictor regression, the model is first estimated for the original, unpermuted data, as in Eq.
5, and the predicted values Ẑ and residuals eZ are calculated. The residuals are then permuted
and reassigned to unpermuted data (which includes scores on the predictor and outcome and
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predicted scores), after which the residuals are labeled . This process is repeated many times
to create a large number of permuted samples. Following the form of Eq. 5, new permutation-
based values of the outcome variable, Z*, are calculated in each permuted sample as the original

predicted score plus the permuted residual, . These permutation-based outcome
variables are then regressed on the predictor in each permuted sample, yielding permutation-

based estimates of the coefficient g1, labeled :

(7)

Note that the residuals in this regression are labeled e(Z*) to distinguish them from the original

residuals eZ and the permuted residuals .

The  values form an estimated sampling distribution for g1. Confidence limits for g1 are taken
as the (ω/2) × 100 and (1 − ω/2) × 100 percentiles of the distribution. This confidence interval
may also be used to perform a null hypothesis test: If zero is not included in the interval, the
null hypothesis that γ1 = 0 can be rejected.

An iterative search for a confidence interval for a regression coefficient
Another approach to finding confidence limits for a regression coefficient, proposed by Manly
(1997), requires a separate iterative search for each of the two confidence limits. We describe
the process only for the upper confidence limit; it is straightforwardly generalizable to
searching for the lower confidence limit. This approach is largely similar to the noniterative
approach, except that it uses the current estimate of the confidence limit in place of the sample
estimate of the regression coefficient to calculate the predicted values and residuals. It begins
by estimating the regression model for the original, unpermuted data, and finding the usual,
normal-theory upper confidence limit for g1, g1(ucl) = g1 + tω/2,(df=n−2)sg1 to use as a starting
value, where sg1 is the standard error of g1. Predicted values and residuals are then calculated
for the original data, but rather than finding predicted values in the usual way, using the
coefficients g0 and g1, this approach uses g1(ucl) in place of g1 in the calculation. Predicted
values are calculated as Ẑ(ucl) = g0 + g1(ucl) W, and the residuals are calculated as eZ(ucl) = Z −
Ẑ(ucl). As for the noniterative approach, the residuals are then permuted and reassigned to

unpermuted data, after which the residuals are labeled . This process is repeated many
times to create a large number of permuted samples. The residuals are used, as in the
noniterative approach, with the original predicted scores to calculate new outcome variable

scores: . These permutation-based outcome variable scores are then regressed on
the predictor in each permuted sample, as in Eq. 7:

(8)

When the sampling distribution is formed from the  values from the different permuted
samples, rather than taking confidence limits from it directly, as in the noniterative approach,
this approach checks whether the estimated confidence limit g1(ucl) has the desired percentile
rank of (1 − ω/2) × 100 in the permuted distribution. If it does, iteration ends, and g1(ucl) is
taken as the upper confidence limit. If it does not, g1(ucl) is adjusted—downward if the
percentile rank was too high, or upward if the percentile rank was too low—and another
iteration is run. The process is repeated until a value of g1(ucl) is found that yields the desired

(1 − ω/2) × 100 percentile rank in the sampling distribution of values of .
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Permutation tests for mediation
We describe four applications of permutation tests to testing the single-mediator model. All
are generalizations or extensions of the tests described above. One, the permutation test of
ab, was proposed previously by MacKinnon (2008), but the other three are new.

The permutation test of ab
MacKinnon (2008, Sec. 12.6) proposed a permutation test for mediation that makes use of the
permutation-of-raw-data approach described above for testing a regression coefficient (Manly,
1997). We refer to this method as the permutation test of ab. Applying this method requires,
first, that the regression models in Eqs. 2 and 3 be estimated for the original, unpermuted data
to find the values of a and b. Values of the outcome variable, Y, are then permuted a large
number of times and reassigned to unpermuted scores on the predictor, X, and mediator, M, to
created many permuted samples. The permuted Y values, labeled Y+, are then regressed on the
unpermuted X and M values in each permuted sample (as in Eq. 2 above), and the coefficient
for M in each permuted sample is labeled b*. Similarly, values of the mediator, M, are permuted
a large number of times and reassigned to values of the predictor, X, to create many permuted
samples. The permuted M values, labeled M+, are regressed on X in each permuted sample (as
in Eq. 3), and the coefficient for X in each permuted sample is labeled a+. Finally, corresponding
pairs of a+ and b+ values are multiplied to yield a+b+, and ab, the estimate of the mediated
effect from the original data, is compared to the distribution of a+b+ to perform a test of the
null hypothesis of no mediation.

The permutation test of joint significance
A second application of the permutation test to the single-mediator model is based on the joint
significance test, as discussed by MacKinnon et al. (2002; see also James & Brett, 1984; Kenny,
Kashy, & Bolger, 1998). The joint significance test for mediation is similar to the well-known
approach proposed by Baron and Kenny (1986), except that it does not require that c, the sample
estimate of τ in Eq. 1, be significant. To perform it, the regression models in Eqs. 2 and 3 are
estimated; to reject the null hypothesis of no mediation, both a (the estimate of α in Eq. 3) and
b (the estimate of β in Eq. 2) must be significant. The permutation test of joint significance has
the same requirements to find significant mediation. It differs only in that it tests the coefficients
a and b using permutation of raw data, as described above, rather than the usual t tests of
regression coefficients. Practically, this means that the steps in performing this test are nearly
identical to the steps for the permutation test of ab. The difference occurs in the final step,
where the a+ and b+ values are used for two separate null hypothesis tests rather than being
multiplied together in pairs to create a sampling distribution of a+b+. For the first test, the
sample estimate a is compared against the distribution of a+. For the second, the sample
estimate b is compared against the distribution of b+. If both null hypotheses are rejected, the
permutation test of joint significance rejects the null hypothesis of no mediation.

A confidence interval for the mediated effect
The permutation-of-residuals method described above for finding a confidence interval for a
regression coefficient may also be applied to finding a confidence interval for the mediated
effect. To find the confidence interval, the method is applied separately to the regression models
used to estimate the mediated effect, Eqs. 2 and 3. For Eq. 2, the model is first estimated, and
predicted values Ŷ and residuals eY are calculated. The residuals are then permuted and
reassigned a large number of times to unpermuted scores on X and M, after which the residuals

are labeled . New permutation-based values of Y, which are labeled Y*, are calculated in each

permuted sample as the original predicted score plus the permuted residual, . These
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permutation-based Y* values are then regressed on X and M in each permuted sample, yielding
permutation-based estimates of b, labeled b*:

(9)

Similarly, for Eq. 3, the model is estimated, and predicted values M ̂ and residuals eM are
calculated. The residuals are permuted and reassigned a large number of times to unpermuted

scores on X, after which the residuals are labeled . New permutation-based values of M,
which are labeled M*, are calculated in each permuted sample as the original predicted score

plus the permuted residual, . These permutation-based M* values are regressed on
X in each permuted sample, yielding permutation-based estimates of a, labeled a*:

(10)

Corresponding values of a* and b* are multiplied, to yield a*b*. The distribution of values of
a*b* is an estimate of the sampling distribution of ab. Confidence limits for the mediated effect
are the (ω/2) × 100 and (1 − ω/2) × 100 percentiles of the distribution. The confidence interval
may also be used to test the null hypothesis of no mediated effect.

An iterative search for a confidence interval for the mediated effect
The iterative-search approach to finding a confidence interval for a regression coefficient,
described above, may also be extended to finding a confidence interval for the mediated effect.
As in the case of the regression coefficient, a separate search is required for each of the two
confidence limits. We describe the process only for the upper confidence limit. This process
is largely generalizable to searching for the lower confidence limit; we will note points where
the process differs for the lower limit. The regression models in Eqs. 2 and 3 are first estimated
for the original, unpermuted data, and the mediated effect ab is calculated. The first-order
standard error (Sobel, 1982) is used to calculate the starting value for the upper confidence

limit: , where sa and sb are the standard errors of a and b. Because
ab is the product of two regression coefficients rather than of a single regression coefficient,
this estimate of the upper confidence limit cannot be directly used to calculate predicted scores
and residuals, as in the iterative-search approach for the confidence interval for a regression
coefficient. The estimated confidence limit must be analyzed into two components, one for a
and one for b, which, when multiplied together, yield ab(ucl). We label these components
a(ucl) and b(ucl), but note that they are not the same as the upper confidence limits for a and b.
Because there are infinitely many pairs of values of a(ucl) and b(ucl) that can be multiplied to
yield a particular value of ab(ucl), constraints must be applied to find a unique pair. We apply
two constraints: first, a(ucl) and b(ucl) are required to be equidistant from a and b, respectively,
in units of their respective standard errors. Second, for an upper confidence limit, a(ucl) and
b(ucl) must be on the same side (positive or negative) of a and b, respectively. (For a lower
confidence limit, a(ucl) and b(ucl) must be on opposite sides of a and b, respectively.) Although
these constraints are somewhat arbitrary, the first is based on the goal of making the confidence
limit be equally a function of both components, and the second is used because, for mediated
effects near zero, it will correctly choose a negative value for the lower confidence limit and
a positive value for the upper. These constraints yield two possible pairs of values for the
components; in our application of the method, we always selected the pair that were closer to
a and b. Appendix A gives details of how these constraints are used to analyze ab(ucl) into
a(ucl) and b(ucl), as well as how the estimated lower confidence limit, ab(lcl), is analyzed into
its components, a(lcl) and b(lcl). Once the estimated confidence limit has been analyzed into its
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components, the remainder of the procedure is similar to the iterative search for a confidence
interval for a single regression coefficient. Each confidence limit component is used in place
of its corresponding coefficient to calculate predicted values and residuals. For a(ucl), the
predicted values are calculated as M ̂

(ucl) = b03 + a(ucl)X, and residuals are calculated as
eM(ucl) = M − M ̂

(ucl). For b(ucl), the predicted values are calculated as Ŷ(ucl) = b02 + c′X +
b(ucl)M, and residuals are calculated as eY(ucl) = Y − Ŷ(ucl). To create permuted samples, both
sets of residuals are then permuted and reassigned a large number of times to their
corresponding unpermuted predictors. Values of eM(ucl) are permuted and reassigned to

unpermuted values of X, after which they are labeled . Values of eY(ucl) are permuted and

reassigned to unpermuted values of X andM, after which they are labeled . In each permuted
sample, new outcome variable scores are calculated as the sum of the original predicted value

and the permuted residual. The new outcome for M is , and the new outcome

for Y is . Finally, these new permutation-based outcome variables are regressed
on their corresponding predictors, as in Eqs. 9 and 10:

(11)

(12)

Pairs of values of  are multiplied, and the estimated upper confidence limit

ab(ucl) is compared to the distribution of values of  to check whether it has the desired
percentile rank of (1 − ω/2) × 100. If it does, iteration ends, and ab(ucl) is taken as the upper
confidence limit. If it does not, ab(ucl) is adjusted—downward if the percentile rank is too high,
or upward if the percentile rank is too low—and another iteration is run.

Method
Four permutation methods for testing mediation were evaluated: the permutation test of ab,
the permutation test of joint significance, the permutation confidence interval for ab, and the
iterative permutation confidence interval for ab. The purpose of the present study was to
examine the performance of these methods in terms of their Type I error, power, and coverage.
For purposes of comparison, four of the best-performing methods of testing for mediation
recommended on the basis of previous research are also included. These methods are the joint
significance test, the asymmetric-distribution-of-the-product test using the PRODCLIN
program (MacKinnon, Fritz, Williams & Lockwood, 2007), the percentile bootstrap, and the
bias-corrected bootstrap (Efron & Tibshirani, 1993).

The eight methods of testing for mediation were evaluated in a Monte Carlo study. Data were
generated and the methods of testing for mediation were performed using SAS 9.2 (SAS Inc.,
2007), with the exception of the asymmetric-distribution-of-the-product test, which was done
using the PRODCLIN program (MacKinnon et al., 2007). The predictor (X) was simulated to
be normally distributed. The mediator (M) and the outcome (Y) were generated using Eqs. 2
and 3. Residuals were simulated to be normally distributed, and the intercepts were simulated
to be zero. Four factors were varied in the study. The sizes of α and β in Eqs. 2 and 3 either
were set to be zero or were varied to correspond to Cohen’s (1988) small, medium, and large
effects (as in MacKinnon et al., 2002). As most methods of testing for mediation have been
found to be relatively insensitive to the size of τ′, it was varied at only two levels: zero and
large. Because resampling methods such as permutation tests and bootstrapping typically show
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the largest differences from classical methods in smaller samples, sample size was set to be
25, 50, 100, and 200 in different conditions. The entire design consisted of 128 conditions: 4
(α) × 4 (β) × 2 (τ′) × 4 (sample size). In each condition, 4,000 replications were run, and
the eight methods of testing for mediation were all applied. All permutation methods were used
in their approximate form, using 1,999 permuted samples for each (with the original,
unpermuted data also included, for a total of 2,000 samples); for the bootstrap methods, 2,000
bootstrap samples were drawn.

The methods were compared using three criteria: Type I error, power, and coverage. The Type
I error for each method was the proportion of replications in a condition for which the null
hypothesis of no mediation was true (i.e., αβ = 0) yet the method rejected the null hypothesis.
The power for each method was the proportion of replications in a condition for which the null
hypothesis of no mediation was false (i.e., αβ ≠ 0) and the method did reject the null
hypothesis. A nominal Type I error rate of ω = .05 was used for all of the hypothesis tests.
Coverage was used to compare only the methods that allow for estimation of a confidence
interval. This included five of the methods: the permutation confidence interval for ab, the
iterative permutation confidence interval for ab, the asymmetric-distribution-of-the-product
test, and the percentile and bias-corrected bootstrap methods. The coverage for each method
was the proportion of replications within a condition for which the confidence interval
estimated using the method included the true mediated effect αβ. A nominal coverage level of
95% was used for all confidence intervals.

Results
Across the three criteria for comparing the methods’ performance, the results were very similar
for conditions in which α and β took on particular values, regardless of which coefficient took
on which value. For example, the results for α = 0 and β = .14 (small) were similar to those
for β = 0 and α = .14. Therefore, for simplicity, the results are presented averaging across such
pairs of conditions. The patterns of results were also largely similar across the two levels of τ
′, so only results for the τ′ = 0 conditions are presented. In a very small number of replications
(less than 0.1%, and no more than 11 of the 4,000 in any condition), the asymmetric-
distribution-of-the-product test failed to find one or both of the confidence intervals. These
replications are therefore excluded in the calculation of Type I error, power, and coverage for
this method.

Type I error
Type I error rates are shown in Table 1. Most methods had Type I error rates well below the
nominal level when both α and β were zero. The Type I error rates increased with increasing
size of the nonzero coefficient and were generally near the nominal level for conditions in
which the nonzero coefficient was large. The increase from near zero to about the nominal
level occurred more quickly with increasing size of the nonzero coefficient in larger samples
than in smaller ones. There were two exceptions to this pattern. First, the permutation test of
ab had a Type I error rate was near the nominal level when both α and β were zero, but its rate
increased to far beyond the nominal level—as high as .769—as the nonzero coefficient
increased from zero. Second, the bias-corrected bootstrap also had some elevated Type I error
rates in smaller samples. Its rate peaked at .083, with rates of at least .070 in four other
conditions. Other than these two methods, and one condition in which the rate for the
asymmetric distribution of the product had a Type I error rate of .061, no method had a Type
I error rate as high as .060 in any condition.

The Type I error rates for each method in each condition in which the null hypothesis was true
were tested against the nominal Type I error rate of .05. This was done by finding the standard

Taylor and MacKinnon Page 9

Behav Res Methods. Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



error for the proportion of replications in which the null hypothesis was rejected (i.e., for the
observed Type I error rate), forming a 95% confidence interval for the proportion, and checking
whether .05 was in the confidence interval. As is shown in Table 2, the permutation test of
ab had Type I error rates significantly above .05 in 82% of the null-true conditions, and the
bias-corrected bootstrap had Type I error rates significantly above .05 in half of the null-true
conditions. No other methods had difficulty with excess Type I error.

Power
Power levels are shown in Table 3. The permutation test of ab is excluded from the table
because of its dramatically inflated Type I error rates. Differences between methods in power
were most pronounced in conditions of midrange coefficient sizes and effect sizes. When
coefficients and effects were small, all methods had low power; when they were large, all
methods had high power. Across conditions, the bias-corrected bootstrap was consistently the
most powerful method. The difference between its power and the power of the second most
powerful method was in a few conditions larger than .050. The asymmetric-distribution-of-
the-product test was usually the second most powerful method. Following it were a group of
methods that performed very similarly. In descending order of power, these were the
permutation confidence interval for ab, the percentile bootstrap, the joint significance test, and
the permutation joint significance test. The iterative permutation confidence interval for ab
nearly always had the least power of any of the tests.

Unlike Type I error, there is not an a priori power level that methods are expected to achieve.
Power performance was therefore tested by comparing the methods against each other. In each
condition, the method having the maximum power was found, and all other methods’ power
levels were tested against it using a z test of the difference between proportions. This
comparison was done twice (see the second and third rows of Table 2). In the first comparison,
only the permutation test of ab was excluded because of its excess Type I error. In the second,
both the permutation test of ab and the bias-corrected bootstrap were excluded because of their
excess Type I error. This was done because, although the excess Type I error for the bias-
corrected bootstrap was not close to being as great as for the permutation test of ab, the method
still did have Type I error rates significantly greater than the nominal level in half of the null-
true conditions. In the first analysis, the bias-corrected bootstrap never had significantly less
power than the most powerful method (except when more than one method had a power of 1,
it was in all conditions the most powerful method). Among the remainder of the methods, the
asymmetric-distribution-of-the-product test was most likely to have power not significantly
lower than the most powerful method. In the second analysis, with the bias-corrected bootstrap
excluded, the asymmetric-distribution-of-the-product test never had power significantly lower
than the most powerful method. It was followed by the permutation test of ab, which had
significantly lower power in 8% of conditions.

Coverage
Coverage is only applicable for methods used to form confidence intervals: the asymmetric-
distribution-of-the-product test, the percentile and bias-corrected bootstraps, and the
noniterative and iterative permutation confidence intervals for ab. For conditions in which the
null hypothesis is true, coverage is simply one minus the Type I error rate when a 100 × (1 −
ω)% confidence interval is used, as it was in the present study. This is true because a Type I
error indicates that a confidence interval did not include zero; as zero is the true value (αβ =
0), this also indicates a failure of coverage. Coverage results are therefore inferable from the
values in Table 1, and they mirror the Type I error rate results. In null-hypothesis-true
conditions, all of the methods used to form confidence intervals had too high coverage (greater
than .95) for the smallest nonzero coefficient sizes and sample sizes, but their coverage fell to
near the nominal level for larger nonzero coefficients and sample sizes. The bias-corrected
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bootstrap was alone in having its coverage fall as low as .917, and below .930 in several other
conditions. Among other methods, the only case of coverage falling below .940 was the one
condition in which coverage for the asymmetric-distribution-of-the-product test had coverage
of .939.

The coverage results for 95% confidence intervals in null-hypothesis-false conditions are
shown in Table 4. Across methods, most problems with undercoverage were greater for smaller
coefficient sizes and improved as the coefficient sizes increased. There was not as clear a
pattern for sample size: Some undercoverage problems occurred for the smallest samples, but
others appeared only in larger-sample conditions. For example, the asymmetric-distribution-
of-the-product test had good coverage for the α small, β small condition with n = 25 and 50,
but poor coverage (.897 and .916) for larger ns. The bias-corrected bootstrap had coverage as
low as .904, with a few other conditions below .930, but had generally better coverage with
increasing sample size. The other three methods—the percentile bootstrap and both of the
permutation-confidence-interval-for-ab methods—had little difficulty with coverage in any
condition. The iterative permutation confidence interval for ab performed particularly well,
with a minimum coverage of .944.

As with Type I error, the coverage levels for each method in each condition were tested against
the nominal coverage level of .95. This was done by finding the standard error for the proportion
of replications in which the confidence interval included αβ (i.e., for the observed coverage
level), forming a 95% confidence interval for this proportion, and checking whether .95 was
within the confidence interval. As is shown in Table 2, the two permutation confidence interval
methods performed best on this criterion, with the iterative permutation confidence interval
performing particularly well. The bias-corrected bootstrap performed most poorly, with
coverage significantly below .95 in over half of the conditions.

Discussion
This article has introduced four methods of testing for mediation using a permutation approach
and, in a Monte Carlo study, has compared their performance to that of other best-performing
approaches to testing for mediation. The permutation test of ab performed poorly, with Type
I error rates far beyond the nominal level in conditions in which one of α and β was nonzero.
The permutation joint significance test performed similarly to, but no better than, the joint
significance test. Particularly in the smallest samples and when τ′ was large, the permutation
joint significance test had less power. The permutation confidence interval for ab lagged behind
the two best-performing methods (the bias-corrected bootstrap and the asymmetric-
distribution-of-the-product test) in power, but it had better Type I error control than the bias-
corrected bootstrap, and better coverage than both. The iterative permutation confidence
interval for ab had the least power of any method tested, but also the best coverage.

As in previous research (MacKinnon et al., 2004), the results of this study suggest that testing
mediation is accomplished better by directly estimating the sampling distribution of the statistic
being tested, rather than by estimating the sampling distribution that would hold if the null
hypothesis were true and comparing the observed statistic to that distribution, as is done in
most hypothesis testing. Other than the causal-step methods, such as the joint significance test,
methods of testing for mediation estimate the sampling distribution of the mediated effect
ab. The permutation test of ab estimates the sampling distribution of ab that holds if α = β =
0 and tests ab against that. Themethod controls Type I errorwhen α = β = 0, but when the null
hypothesis is true but α or β ≠ 0, it rejects the null hypothesis at far beyond the nominal rate.
In this way, it performs similarly to Freedman and Schatzkin’s (1992) approach, as tested by
MacKinnon et al. (2002). Some other methods tested by MacKinnon et al. (2002), such as a
test using the first-order standard error (Sobel, 1982), control Type I error but have far less
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power than do the best-performing methods. These methods estimate a null-true sampling
distribution that holds when αβ = 0 but that gets the shape of the sampling distribution wrong
when the null is false, and therefore have low power. The best-performing methods therefore
do not estimate the sampling distribution of ab when the null hypothesis is true. Rather, they
directly estimate the sampling distribution of ab given the observed sample value ab. The
asymmetric-distribution-of-the-product test estimates the shape of the sampling distribution
by taking the product of assumed normal sampling distributions for a and b. The bootstrap
methods resample the data to estimate the shape of the sampling distribution. The permutation
confidence interval methods permute the data to achieve this same end.

The superior performance of the methods that directly estimate the sampling distribution on
the basis of the sample value ab demonstrate a case in which testing a null hypothesis with a
confidence interval is superior to testing the same null hypothesis using a null-hypothesis-true
sampling distribution. Confidence intervals have been widely recommended (Cohen, 1994;
Wilkinson & the Task Force on Statistical Inference, 1999), and our results provide more
motivation for this change in reporting research results. In most familiar cases, where only the
location, but not the shape, of the sampling distribution of the statistic of interest varies with
the value of the parameter (e.g., a t test for the difference between group means), a confidence
interval and a test against a null-hypothesis-true sampling distribution necessarily yield the
same decision regarding the status of the null hypothesis. But in situations such as mediation,
where both the location and the shape of the sampling distribution of the statistic of interest
vary with the value of the parameter, the conventional approach of estimating a null hypothesis
sampling distribution and shifting its mean to estimate the confidence interval is not optimal.
A confidence interval estimated using the shape of the sampling distribution estimated from
the data is not only a superior confidence interval, it yields a superior null hypothesis test.

Recommendations
The findings of the present study echo previous research in suggesting that the distribution-of-
the-product test and bootstrap tests are the best performers for testing mediation. The bias-
corrected bootstrap, in particular, had the greatest power of any method tested, although it also
had difficulty with excess Type I error in some conditions, again replicating previous research
(Cheung, 2007; Fritz, Taylor, & MacKinnon, 2011). Among the proposed permutation methods
for testing mediation, the noniterative and iterative permutation confidence intervals for ab
show the most promise. Although, in most cases, researchers are likely to be more interested
in a test of the null hypothesis of no mediation, in situations where estimating a confidence
interval for the mediated effect is of primary interest, these permutation confidence interval
methods are ideal. Setting aside the bias-corrected bootstrap because of its Type I error
difficulties, the permutation confidence interval for ab was found to have less difficulty with
undercoverage than any other of the most powerful methods. Specifically, although it was
noticeably less powerful than the most powerful methods, the iterative permutation confidence
interval for ab had the best coverage of any method. Therefore, we recommend that researchers
studying mediation continue to use the distribution-of-the-product test or percentile bootstrap
when a test of mediation is of primary concern, but that they use the permutation confidence
interval methods when estimating a confidence interval is the major goal. To facilitate the
application of these methods, we provide SPSS and SAS macros in Appendices B and C that
estimate the permutation confidence interval for ab and the iterative permutation confidence
interval for ab.

Limitations and future directions
Our Monte Carlo study was simplified in order to reduce the complexity of the study. For
example, the predictor and the residuals of the mediator and outcome variables were all
simulated to follow a normal distribution, and the data were simulated to have no measurement
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error. Future research should consider less optimal situations in which these simplifications
are replaced by conditions more in line with typical observed data. For example, as was studied
by Biesanz, Falk, and Savalei (2010), data might be simulated in which the assumption in
ordinary least squares regression of the normality of residuals is violated. Such situations could
actually highlight the strengths of the permutation methods introduced here, as resampling
methods often outperform classical methods when assumptions are violated, although
bootstrap methods would likely also perform similarly well, as Biesanz et al. found. Future
research might also examine the performance of permutation methods of testing for mediation
with variables having measurement error.

Appendix A
A tested confidence limit value ab(ucl) or ab(lcl) must be analyzed into two components in order
to use the iterated method of finding confidence limits for the mediated effect. For the upper
limit,

(A1)

Similarly, for the lower limit,

(A2)

Because many solutions are possible, two constraints are used to yield a unique solution. First,
the components must be equidistant from a and b, respectively, in their respective standard
error units. For the upper limit:

(A3)

For the lower limit, a(ucl) in Eq. A3 is replaced by a(lcl), and b(ucl) is replaced by b(lcl).
Second, for the upper confidence limit, the components are required to fall on the same side
of a and b, respectively:

(A4)

For the lower confidence limit, the components must fall on opposite sides of a and b:

(A5)

For the upper limit, Eq. A4 is rearranged as follows:

(A6)

The result is substituted into Eq. A1, yielding
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(A7)

Equation A7 can be rearranged into a quadratic form for b(ucl), which is the only unknown in
that equation:

(A8)

Equation A8 is then solved using the quadratic formula:

(A9)

This results in two solutions for ab(ucl) (because of the ± operator). The one that is closer to
b is chosen. Finally, b(ucl) is substituted into Eq. A1 to find a(ucl).

For the lower confidence limit, a similar series of steps starting with Eq. A5 yields the following
quadratic formula solution:

(A10)

As for the upper confidence limit, the solution for b(lcl) that places it closer to b is chosen and
substituted into Eq. A2, to yield a(lcl).

Appendix B
This SPSS macro estimates the 95% permutation confidence interval for ab and the 95%
iterative permutation confidence interval for ab. To use it, first enter and run the entire macro
so that the new command “permmed” is defined. This command will be available for the
duration of the SPSS session. To run the command on a data set, run the following line in SPSS:

permmed dataname = dataset x = predictor m = mediator y = outcome
npermute = permutations niter = iterations seed = randomseed.

The labels in italics must be replaced by the appropriate names and values for the analysis to
be run. Dataset is the name of the SPSS data set on which to run the analysis. If only one data
set is open, SPSS typically names it “DataSet1.” Predictor is the name of the predictor variable.
Mediator is the name of the mediating variable.Outcome is the name of the outcome variable.
Permutations is the number of permutations SPSS will use in running the analysis; a large
number should be used, to increase the reliability of the results. Iterations is the number of
iterations SPSS will use in searching for the iterative permutation confidence limits. Typically,
five iterations or fewer are sufficient. If the procedure fails to converge (the output will show
the confidence limit as missing and say “not converged”), increase this value. Increase this
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number with caution, though, as the procedure runs all requested iterations before it completes,
so large numbers can dramatically increase processing time. Randomseed is the random
number seed SPSS will use in permuting the data. If a seed is chosen (it must be a positive
integer <2,000,000,000), repeated runs of the procedure with the same data will produce the
same confidence limits. If it is set to 0, SPSS will choose the random number seed, and repeated
runs of the procedure with the same data will produce different confidence limits (because
different permuted data sets are used).

DEFINE permmed(dataname = !tokens(1) / x = !tokens(1) / m = !tokens(1)/ y = !
tokens(1)
/ npermute = !tokens(1) / niter = !tokens(1) / seed = !tokens(1) )
set mxloops = !npermute.
!if (!seed = 0) !then
set seed = random.
!else
set seed = !seed.
!ifend
* Make a listwise deleted dataset. *.
dataset activate !dataname.
dataset copy listwise window=hidden.
dataset activate listwise.
select if missing(!x) = 0 and missing(!m) = 0 and missing(!y) = 0.
compute x = !x.
compute m = !m.
compute y = !y.
exe.
* Find number of cases in listwise deleted dataset. *.
dataset declare nobs window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
/if commands = ['Descriptives'] subtypes = ['Descriptive Statistics']
/destination format = sav outfile = nobs.
dataset activate listwise.
descriptives variables = x
/statistics = mean.
exe.
omsend.
dataset activate nobs.
select if Var1 = 'x'.
compute nobs = N.
exe.
* Model 2: Regress y on x, m. *.
dataset declare model2 window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
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/if commands = ['Regression'] subtypes = ['Coefficients']
/destination format = sav outfile = model2 viewer = no.
dataset activate listwise.
regression
/dependent = y
/enter x m
/save = pred(yhat) resid(yres).
exe.
omsend.
* Model 3: Regress m on x. *.
dataset declare model3 window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
/if commands = ['Regression'] subtypes = ['Coefficients']
/destination format = sav outfile = model3.
dataset activate listwise.
regression
/dependent = m
/enter x
/save = pred(mhat) resid(mres).
exe.
omsend.
* Gather results. *.
dataset activate model2.
dataset copy model2int window=hidden.
dataset activate model2int.
select if Var2 = '(Constant)'.
compute b02 = B.
exe.
dataset activate model2.
dataset copy model2bpath window=hidden.
dataset activate model2bpath.
select if Var2 = 'm'.
* The b path is already called B, so it does not need to be made up. *.
compute seb = Std.Error.
exe.
dataset activate model2.
dataset copy model2cprimepath window=hidden.
dataset activate model2cprimepath.
select if Var2 = 'x'.
compute cprime = B.
exe.
dataset activate model3.
dataset copy model3int window=hidden.
dataset activate model3int.
select if Var2 = '(Constant)'.
compute b03 = B.
exe.
dataset activate model3.
dataset copy model3apath window=hidden.
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dataset activate model3apath.
select if Var2 = 'x'.
compute a = B.
compute sea = Std.Error.
exe.
match files
file = model2int
/rename = (B = drop1)
/file = model2bpath
/file = model2cprimepath
/file = model3int
/file = model3apath
/keep = b02 b seb cprime b03 a sea.
exe.
dataset name origresult.
compute vara = sea*sea.
compute varb = seb*seb.
compute sobelse = sqrt(a*a*varb + b*b*vara).
exe.
dataset close model2.
dataset close model2int.
dataset close model2bpath.
dataset close model2cprimepath.
dataset close model3.
dataset close model3int.
dataset close model3apath.
exe.
*** Non-iterated permutation confidence limits. ***.
* Make npermute copies of original data. *.
dataset activate listwise.
matrix.
get orig
/file = *
/variables = x, m, y, yhat, yres, mhat, mres.
compute copies = orig.
loop i = 2 to !npermute.
compute copies = {copies; orig}.
end loop.
save copies
/outfile = *
/variables = x, m, y, yhat, yres, mhat, mres.
end matrix.
dataset name origcopies.
* Get nobs into copies of original data so cases can be assinged a dataset 
copy
number. *.
dataset activate nobs.
compute key = 1.
exe.
dataset activate origcopies.
compute key = 1.
exe.
match files file = origcopies table = nobs
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/by key
/drop = Command_ Subtype_ Label_ Var1 N Mean.
exe.
dataset name origcopiesbycopy.
dataset close origcopies.
* Assign shuffle numbers and shuffling variables to permute the residuals yres 
and
mres. *.
dataset activate origcopiesbycopy.
compute copynum = trunc(($casenum-1)/nobs) + 1.
compute shufflevaryres = rv.uniform(0,1).
compute shufflevarmres = rv.uniform(0,1).
exe.
* Make a dataset with yres shuffled within each dataset copy. *.
dataset activate origcopiesbycopy.
dataset copy shuffleyres window=hidden.
dataset activate shuffleyres.
sort cases by copynum shufflevaryres.
exe.
* Make a dataset with mres shuffled within each dataset copy. *.
dataset activate origcopiesbycopy.
dataset copy shufflemres window=hidden.
dataset activate shufflemres.
sort cases by copynum shufflevarmres.
exe.
* Merge shuffled residuals yres and mres with original data in each dataset 
copy. *.
match files
file = origcopiesbycopy
/rename (yres mres = drop1 to drop2)
/file = shuffleyres
/rename (x m y yhat mhat mres = drop3 to drop8)
/file = shufflemres
/rename (x m y yhat yres mhat = drop9 to drop14)
/keep = copynum x m y yhat yres mhat mres.
exe.
dataset name shuffled.
dataset close shuffleyres.
dataset close shufflemres.
* Calculate ystar and mstar, the new values of y and m based on shuffling the
residuals. *.
dataset activate shuffled.
compute ystar = yhat + yres.
compute mstar = mhat + mres.
exe.
* Prepare to run regressions separately within each dataset copy. *.
dataset activate shuffled.
split file by copynum.
exe.
* Model 2: Regress ystar on x, m. *.
dataset declare model2shuf window=hidden.
oms
/select all
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/destination viewer = no.
oms
/select tables
/if commands = ['Regression'] subtypes = ['Coefficients']
/destination format = sav outfile = model2shuf.
dataset activate shuffled.
regression
/dependent = ystar
/enter x m.
exe.
omsend.
* Model 3: Regress mstar on x. *.
dataset declare model3shuf window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
/if commands = ['Regression'] subtypes = ['Coefficients']
/destination format = sav outfile = model3shuf.
dataset activate shuffled.
regression
/dependent = mstar
/enter x.
exe.
omsend.
* Gather results. *.
dataset close shuffled.
dataset activate model2shuf.
select if Var3 = 'm'.
compute bperm = B.
exe.
dataset activate model3shuf.
select if Var3 = 'x'.
compute aperm = B.
exe.
match files
file = model2shuf
/file = model3shuf
/keep = aperm bperm.
exe.
dataset name shufresult.
dataset close model2shuf.
dataset close model3shuf.
exe.
* Include results for original data. *.
add files
file = origresult
/rename = (a,b = aperm,bperm)
/file = shufresult.
exe.
dataset name origshufresult.
compute abperm = aperm*bperm.
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exe.
dataset close shufresult.
* Get confidence limits. *.
dataset declare freqout window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
/if commands = ['Frequencies'] subtypes = ['Statistics']
/destination format = sav outfile = freqout.
dataset activate origshufresult.
frequencies
variables = abperm
/percentiles = 2.5 97.5.
exe.
omsend.
dataset close origshufresult.
* Combine results for both confidence limits. *.
dataset activate freqout.
dataset copy lower window=hidden.
dataset activate lower.
select if Var2 = '2.5'.
compute permlcl = Var4.
exe.
dataset activate freqout.
dataset copy upper window=hidden.
dataset activate upper.
select if Var2 = '97.5'.
compute permucl = Var4.
exe.
match files
file = lower
/file = upper
/keep = permlcl permucl.
exe.
dataset name permcl.
formats permlcl permucl (f8.4).
dataset close freqout.
dataset close lower.
dataset close upper.
*** Iterated permutation confidence limits. ***.
* Iterate twice: 1 = lower confidence limit, 2 = upper confidence limit *.
!do !direction = 1 !to 2.
* Get initial guess as +/− 1.96 Sobel standard errors. *.
dataset activate origresult.
dataset copy clguess window=hidden.
dataset activate clguess.
!if (!direction = 1) !then
compute clab = a*b − 1.96*sobelse.
!else
compute clab = a*b + 1.96*sobelse.
!ifend
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exe.
* Search for confidence limit. *.
* Set number of iterations. *.
!do !i = 1 !to !niter.
* Analyze confidence limit into its components. *.
dataset activate clguess.
compute seaoverseb = sea/seb.
compute term1 = (−1)*(a− (b*seaoverseb)).
compute term2 = (a− (b*seaoverseb))**2.
compute term3 = 4*seaoverseb*clab.
compute term4 = 2*seaoverseb.
compute term5 = (a+(b*seaoverseb)).
compute term6 = (a+(b*seaoverseb))**2.
* Find the two possible solutions for clb. *.
!if (!direction = 1) !then
compute clb1 = (term5+sqrt(term6−term3))/term4.
compute clb2 = (term5−sqrt(term6−term3))/term4.
!else
compute clb1 = (term1+sqrt(term2+term3))/term4.
compute clb2 = (term1−sqrt(term2+term3))/term4.
!ifend
* Pick the solution that puts clb closer to b. *.
compute clb1dist = abs(clb1−b).
compute clb2dist = abs(clb2−b).
do if clb1dist < clb2dist.
compute clb = clb1.
else.
compute clb = clb2.
end if.
* Get cla from clb and clab. *.
compute cla = clab/clb.
* Make merging variable so clguess can be merged with copies of
original data. *.
compute key = 1.
exe.
* Merge confidence limit components with copies of original data created
above. *.
* This will allow for new predicted values and residuals to be made based
on *.
* using the confidence limit components rather than the sample values. *.
match files file = origcopiesbycopy table = clguess
/by key
/keep = copynum x m y b02 b03 cprime cla clb yhat mhat.
exe.
dataset name origcopiesbycopyi.
* Make new residuals based on cla and clb, and sample values of other
coefficients *.
* (cprime, b02, and b03). *.
dataset activate origcopiesbycopyi.
compute yhati = b02 + clb*m + cprime*x.
compute yresi = y − yhati.
compute mhati = b03 + cla*x.
compute mresi = m − mhati.
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exe.
* On the first loop, make variables for later shuffling of yresi and
mresi. *.
!if (!i = 1) !then
dataset activate origcopiesbycopyi.
compute shufflevaryresi = rv.uniform(0,1).
compute shufflevarmresi = rv.uniform(0,1).
exe.
* Save the datset for use on later loops. *.
dataset copy shufvars window=hidden.
* On subsequent loops, get back same shuffling variables made up on the
first loop. *.
!else
oms
/select all
/destination viewer = no.
match files
file = origcopiesbycopyi
/file = shufvars
/rename (x m y yhat yresi mhat mroe drop) drop1 t
/keep = copynum x m y yhat mhat shufflevarmresi
shufflevarmresi.
exe.
dataset name origcopiesbycopyi.
omsend.
!ifend
* Make a dataset with yresi shuffled within each dataset copy. *.
dataset activate origcopiesbycopyi.
dataset copy shuffleyresi window=hidden.
dataset activate shuffleyresi.
sort cases by copynum shufflevaryresi.
exe.
* Make a dataset with mresi shuffled within each dataset copy. *.
dataset activate origcopiesbycopyi.
dataset copy shufflemresi window=hidden.
dataset activate shufflemresi.
sort cases by copynum shufflevarmresi.
exe.
* Merge shuffled residuals yresi and mresi with original data in each
dataset copy. *.
match files
file = origcopiesbycopyi
/rename (yresi mresi = drop1 to drop2)
/file = shuffleyresi
/rename (x m y yhat mhat mresi = drop3 to drop8)
/file = shufflemresi
/rename (x m y yhat yresi mhat = drop9 to drop14)
/keep = copynum x m y mhat yhat mresi yresi.
exe.
dataset name shuffledi.
dataset close origcopiesbycopyi.
dataset close shufflemresi.
dataset close shuffleyresi.
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* Calculate ystari and mstari, the new values of y and m based on
shuffling the residuals. *.
dataset activate shuffledi.
compute ystari = yhat + yresi.
compute mstari = mhat + mresi.
exe.
* Prepare to run regressions separately within each dataset copy. *.
dataset activate shuffledi.
split file by copynum.
exe.
* Model 2: Regress ystari on x, m. *.
dataset declare model2shufi window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
/if commands = ['Regression'] subtypes = ['Coefficients']
/destination format = sav outfile = model2shufi.
dataset activate shuffledi.
regression
/dependent = ystari
/enter x m.
exe.
omsend.
* Model 3: Regress mstari on x. *.
dataset declare model3shufi window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
/if commands = ['Regression'] subtypes = ['Coefficients']
/destination format = sav outfile = model3shufi.
dataset activate shuffledi.
regression
/dependent = mstari
/enter x.
exe.
omsend.
* Gather results. *.
dataset close shuffledi.
dataset activate model2shufi.
select if Var3 = 'm'.
compute bpermi = B.
exe.
dataset activate model3shufi.
select if Var3 = 'x'.
compute apermi = B.
exe.
match files
file = model2shufi
/file = model3shufi
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/keep = apermi bpermi.
exe.
dataset name shufresulti.
compute abpermi = apermi*bpermi.
exe.
dataset close model2shufi.
dataset close model3shufi.
* Include current clab guess value. *.
add files
file = clguess
/rename = (clab = abpermi)
/file = shufresulti
/keep = abpermi.
exe.
dataset name origshufresulti.
formats abpermi (f8.4).
dataset close shufresulti.
* Make a frequency table with cumulative frequencies (percentile ranks)
of abpermi. *.
dataset declare freqtable window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
/if commands = ['Frequencies'] subtypes = ['Frequencies']
/destination format = sav outfile = freqtable.
dataset activate origshufresulti.
frequencies
variables = abpermi.
exe.
omsend.
* Merge current confidence limit guess, clab, with frequency table. *.
dataset activate freqtable.
compute key = 1.
exe.
match files file = freqtable table = clguess
/by key.
exe.
dataset name getptilerank.
dataset close freqtable.
* Find percentile rank of current confidence limit guess, clab in the
distribution. *.
* Do this by choosing the nearest value of abpermi (they should be equal
within *.
* rounding) and getting its percentile rank. *.
dataset activate getptilerank.
select if char.substr(Var2,1,5) ne 'Total'.
compute diff = abs(clab - number(Var2,f8.4)).
sort cases by diff.
select if $casenum = 1.
compute prankclab = CumulativePercent.
exe.
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* Save results across loops. *.
!if (!i = 1) !then
dataset activate getptilerank.
dataset copy saveptilerank.
!else
oms
/select all
/destination viewer = no.
add files
file = saveptilerank
/file = getptilerank
/keep = clab prankclab.
exe.
dataset name saveptilerank.
omsend.
!ifend
dataset close getptilerank.
* Choose as the next guess for the value of the confidence limit *.
* the value of abpermi at the target percentile rank *.
dataset declare freqout window=hidden.
oms
/select all
/destination viewer = no.
oms
/select tables
/if commands = ['Frequencies'] subtypes = ['Statistics']
/destination format = sav outfile = freqout.
dataset activate origshufresulti.
!if (!direction = 1) !then
frequencies
variables = abpermi
/percentiles = 2.5.
exe.
omsend.
dataset activate freqout.
select if Var2 = '2.5'.
compute clab = Var4.
exe.
!else
frequencies
variables = abpermi
/percentiles = 97.5.
exe.
omsend.
dataset activate freqout.
select if Var2 = '97.5'.
compute clab = Var4.
exe.
!ifend
dataset close origshufresulti.
* Merge the next guess of clab back into the clguess dataset to be *.
* read at the top of the loop. *.
oms
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/select all
/destination viewer = no.
match files
file = clguess
/rename (clab = drop1)
/file = freqout
/keep = a sea b seb cprime b02 b03 clab.
exe.
dataset name clguess.
dataset close freqout.
omsend.
!doend
dataset close clguess.
* Find clab that gave closest percentile rank to the target. *.
dataset activate saveptilerank.
!if (!direction = 1) !then
dataset copy loweri.
dataset activate loweri.
compute abserror = abs(prankclab - 2.5).
sort cases by abserror.
select if $casenum = 1.
compute ipermlcl = clab.
string ilowerstatus (a15).
do if abserror le 0.5.
compute ilowerstatus = '(converged)'.
else.
compute ipermlcl = number(' ',f1.0).
compute ilowerstatus = '(not converged)'.
end if.
exe.
!else
dataset copy upperi.
dataset activate upperi.
compute abserror = abs(prankclab - 97.5).
sort cases by abserror.
select if $casenum = 1.
compute ipermucl = clab.
string iupperstatus (a15).
do if abserror le 0.5.
compute iupperstatus = '(converged)'.
else.
compute ipermucl = number(' ',f1.0).
compute iupperstatus = '(not converged)'.
end if.
exe.
!ifend
dataset close saveptilerank.
!doend
dataset close origresult.
* Merge lower and upper iterated confidence limits with non-iterated 
confidence
limits. *.
match files
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file = permcl
/file = loweri
/file = upperi
/keep = permlcl permucl ipermlcl ipermucl ilowerstatus iupperstatus.
exe.
dataset name allresult.
dataset close permcl.
dataset close loweri.
dataset close upperi.
dataset close origcopiesbycopy.
dataset activate allresult.
print
/'Permutation 95% confidence limits'
/'Lower:' permlcl (f8.3)
/'Upper:' permucl (f8.3)
/'Iterated permutation 95% confidence limits'
/'Lower:' ipermlcl (f8.3,3x) ilowerstatus *
/'Upper:' ipermucl (f8.3,3x) iupperstatus *.
exe.
dataset activate !dataname.
dataset close allresult.
exe.
!ENDDEFINE.

Appendix C
This SAS macro estimates the permutation confidence interval for ab and the iterative
permutation confidence interval for ab. To use it, first enter and run the entire macro so that
the new command “permmed” is defined. This command will be available for the duration of
the SAS session. To run the command on a data set, run the following line in SAS:

%permmed(dataset, predictor, mediator, outcome, permutations, iterations,
randomseed);

The labels in italics must be replaced by the appropriate names and values for the analysis to
be run. Dataset is the name of the SAS data set on which to run the analysis. Predictor is the
name of the predictor variable. Mediator is the name of the mediating variable. Outcome is the
name of the outcome variable. Permutations is the number of permutations SAS will use in
running the analysis. A large number should be used to increase the reliability of the results.
Iterations is the number of iterations SAS will use in searching for the iterative permutation
confidence limits. Typically, five iterations or fewer are sufficient. If the procedure fails to
converge (the output will show the confidence limit as missing and say “not converged”),
increase this value. Randomseed is the random number seed SAS will use in permuting the
data. If a seed is chosen (it must be a positive integer <231 – 1), repeated runs of the procedure
with the same data will produce the same confidence limits. If it is set to 0, SAS will choose
the random number seed, and repeated runs of the procedure with the same data will produce
different confidence limits (because different permuted data sets are used).

%macro permmed(dataname,x,m,y,npermute,maxiter,seed);
%* Make a listwise deleted dataset. ;
data listwise; set &dataname;
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if (&x ne .) and (&m ne .) and (&y ne .);
rename
&x = x &m = m &y = y;
run;
%* Find number of cases in listwise deleted dataset. ;
proc means data=listwise noprint;
output out=meanout n(x) = nobs;
run;
data _NULL_; set meanout;
call symput('nobs',nobs);
run;
%* Model 2: Regress y on x, m ;
proc reg data=listwise outest=model2 tableout noprint;
model y = x m;
%* Save predicted values and residuals, which are needed for permutation 
tests. ;
output out=predres2 p=yhat r=yres;
run;
%* Model 3: Regress m on x;
proc reg data=listwise outest=model3 tableout noprint;
model m = x;
%* Save predicted values and residuals, which are needed for permutation 
tests. ;
output out=predres3 p=mhat r=mres;
run;
%* Gather results. ;
data parm2; set model2;
if _TYPE_='PARMS';
b = m; cprime = x; b02 = intercept; keep b cprime b02;
run;
data se2; set model2;
if _TYPE_='STDERR';
seb = m; keep seb;
run;
data parm3; set model3;
if _TYPE_='PARMS';
a = x; b03 = intercept; keep a b03;
run;
data se3; set model3;
if _TYPE_='STDERR';
sea = x; keep sea;
run;
data origresult; merge parm2 se2 parm3 se3;
vara = sea*sea;
varb = seb*seb;
sobelse = sqrt(a*a*varb + b*b*vara);
run;
%* Merge predicted values and residuals for models 2 and 3. ;
data predres; merge predres2 predres3;
run;
%*** Non-iterated permutation confidence limits *** ;
%* Make npermute copies of the original data. ;
proc iml;
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use predres;
read all var{x m y yhat yres mhat mres} into orig;
copies = orig;
do i = 2 to &npermute;
copies = copies//orig;
end;
varnames = {'x' 'm' 'y' 'yhat' 'yres' 'mhat' 'mres '};
create origcopies from copies[colname = varnames];
append from copies;
quit;
%* Make shuffling variables to permute the residuals mres and yres. ;
data origcopiesbycopy; set origcopies;
copynum = ceil(_N_/&nobs);
shufflevaryres = ranuni(&seed);
shufflevarmres = ranuni(0);
run;
%* Make a dataset with yres shuffled within each dataset copy. ;
proc sort data=origcopiesbycopy out=shuffleyres;
by copynum shufflevaryres;
run;
%* Make a dataset with mres shuffled within each dataset copy. ;
proc sort data=origcopiesbycopy out=shufflemres;
by copynum shufflevarmres;
run;
%* Merge shuffled residual mres and yres with original data in each dataset 
copy. ;
data shuffled; merge origcopiesbycopy(keep=copynum x m y mhat yhat)
shuffleyres(keep=yres) shufflemres(keep=mres);
%* Find mstar and ystar, the new values of m and y based on shuffling the 
residuals. ;
mstar = mhat + mres;
ystar = yhat + yres;
run;
%* Model 2: Regress ystar on x, m. ;
proc reg data=shuffled noprint outest=model2shuf;
by copynum;
model ystar = x m;
run;
%* Model 3: Regress mstar on x. ;
proc reg data=shuffled noprint outest=model3shuf;
by copynum;
model mstar = x;
run;
%* Gather results. ;
data model2shuf; set model2shuf;
if _TYPE_ = 'PARMS';
bperm = m; keep bperm;
run;
data model3shuf; set model3shuf;
if _TYPE_ = 'PARMS';
aperm = x; keep aperm;
run;
data shufresult; merge model2shuf model3shuf;
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run;
%* Include results for original data. ;
data origshufresult; set origresult(rename=(a=aperm b=bperm)) shufresult;
abperm = aperm*bperm;
run;
%* Get confidence limits. ;
proc univariate data=origshufresult noprint;
var abperm;
output out=permcl pctlpts = 2.5 97.5 pctlpre = perm pctlname = lcl ucl;
run;
%*** Iterated permutation confidence limits *** ;
%* Iterate twice: 1 = lower confidence limit, 2 = upper confidence limit ;
%do direction = 1 %to 2;
data clguess; set origresult;
%if &direction = 1 %then %do;
clab = a*b − 1.96*sobelse;
%end;
%else %do;
clab = a*b + 1.96*sobelse;
%end;
run;
%* Initialize loop counter and break checker. ;
%let loop = 0;
%let break = 0;
%* Search for confidence limit. ;
%do %until ((&break = 1) or (&loop = &maxiter));
%* Increment loop counter. ;
%let loop = %eval(&loop+1);
%* Analyze confidence limit into its components. ;
data clguess; set clguess;
%* Make up terms for quadratic equation solutions. ;
seaoverseb = sea/seb;
term1 = (−1)*(a− (b*seaoverseb));
term2 = (a− (b*seaoverseb))**2;
term3 = 4*seaoverseb*clab;
term4 = 2*seaoverseb;
term5 = (a+(b*seaoverseb));
term6 = (a+(b*seaoverseb))**2;
%* Find the two possible solutions for clb. ;
%if &direction = 1 %then %do;
clb1=(term5+sqrt(term6−term3))/term4;
clb2=(term5−sqrt(term6−term3))/term4;
%end;
%else %do;
clb1=(term1+sqrt(term2+term3))/term4;
clb2=(term1−sqrt(term2+term3))/term4;
%end;
%* Pick the solution that puts clb closer to b. ;
clb1dist = abs(clb1−b);
clb2dist = abs(clb2−b);
if clb1dist < clb2dist then clb = clb1;
else clb = clb2;
%* Make cla ;
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cla = clab/clb;
%* Make clab into a macro parameter for easier reference ;
call symput('clab',clab);
run;
%* Merge confidence limit components with copies of original data created
above. ;
%* This will allow for new predicted values and residuals to be made
based on ;
%* using the confidence limit components rather than the sample values. ;
data origcopiesbycopyi; if _N_=1 then set clguess (keep=cla clb cprime b02
b03); set origcopiesbycopy;
%* Make new residuals based on cla and clb and sample values of 
other coefficients ;
%* (cprime, b02, and b03). ;
yhati = b02 + clb*m + cprime*x;
yresi = y − yhati;
mhati = b03 + cla*x;
mresi = m − mhati;
run;
%* On the first loop, make variables for later shuffling of yresi and
mresi. ;
%if &loop = 1 %then %do;
data shufvars;
do i = 1 to &nobs*&npermute;
shufflevaryresi = ranuni(&seed);
shufflevarmresi = ranuni(0);
output;
end;
run;
%end;
%* On subsequent loops, re-use same shuffling variables made up on the
first loop. ;
%* Make a dataset with yresi shuffled within each dataset copy. ;
data shuffleyresi; merge origcopiesbycopyi
shufvars(keep=shufflevaryresi);
run;
proc sort data=shuffleyresi;
by copynum shufflevaryresi;
run;
%* Make a dataset with mresi shuffled within each dataset copy. ;
data shufflemresi; merge origcopiesbycopyi
shufvars(keep=shufflevarmresi);
run;
proc sort data=shufflemresi;
by copynum shufflevarmresi;
run;
%* Merge shuffled residuals yresi and mresi with original data in each dataset 
copy. ;
data shuffledi; merge origcopiesbycopyi shuffleyresi(keep=yresi)
shufflemresi(keep=mresi);
%* Calculate ystari and mstari, the new values of y and m based on shuffling 
the residuals. ;
ystari = yhat + yresi;
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mstari = mhat + mresi;
run;
%* Model 2: Regress ystari on x, m. ;
proc reg data=shuffledi noprint outest=model2shufi;
by copynum;
model ystari = x m;
run;
%* Model 3: Regress mstari on x. ;
proc reg data=shuffledi noprint outest=model3shufi;
by copynum;
model mstari = x;
run;
%* Gather results. ;
data model2shufi; set model2shufi;
if _TYPE_ = 'PARMS';
bpermi = m; keep bpermi;
run;
data model3shufi; set model3shufi;
if _TYPE_ = 'PARMS';
apermi = x; keep apermi;
run;
data shufresulti; merge model2shufi model3shufi;
abpermi = apermi*bpermi;
run;
%* Include current clab guess value. ;
data origshufresulti; set clguess(rename=(clab=abpermi)) shufresulti;
run;
%* Make a frequency table with cumulative frequencies (percentile ranks) ;
%* of abpermi. ;
proc freq data=origshufresulti noprint;
tables abpermi /out=freqtable outcum;
run;
%* Merge current confidence limit guess, clab, with frequency table. ;
%* Find percentile rank of current confidence limit guess, clab, ;
%* in the distribution. ;
%* Do this by choosing the nearest value of abpermi (they should be equal ;
%* within rounding) and getting its percentile rank. ;
data freqtable; set freqtable;
clab = &clab;
diff = abs(clab - abpermi);
run;
proc sort data=freqtable;
by diff;
run;
data getptilerank; set freqtable;
if _N_ = 1;
prankclab = CUM_PCT;
%* Check if error is small enough to exit the loop. ;
%if &direction = 1 %then %do;
abserror = abs(prankclab - 2.5);
%end;
%else %do;
abserror = abs(prankclab - 97.5);
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%end;
if abserror le 0.5 then break = 1;
else break = 0;
%* Save break as a macro variable so the loop can check its value. ;
call symput('break',break);
run;
%* If looping continutes, choose as the next guess for the value of the
confidence ;
%* limit the value of abpermi at the target percentile rank. ;
proc univariate data=origshufresulti noprint;
var abpermi;
output out=univout pctlpts = 2.5 97.5 pctlpre = clab pctlname =
lower upper;
run;
%* Merge the next guess of clab back into the clguess dataset to be ;
%* read at the top of the loop. ;
data clguess; merge clguess(drop=clab) univout;
%if &direction = 1 %then %do;
clab = clablower;
%end;
%else %do;
clab = clabupper;
%end;
run;
%end;
%* Save the confidence limit that was just found. ;
%if &direction = 1 %then %do;
data loweri; length ilowerstatus $ 15; set getptilerank;
if abserror le 0.5 then do;
ipermlcl = clab;
ilowerstatus = '(converged)';
end;
else do;
ipermlcl = .;
ilowerstatus = '(not converged)';
end;
run;
%end;
%else %do;
data upperi; length iupperstatus $ 15; set getptilerank;
if abserror le 0.5 then do;
ipermucl = clab;
iupperstatus = '(converged)';
end;
else do;
ipermucl = .;
iupperstatus = '(not converged)';
end;
run;
%end;
%end;
%* Merge lower and upper iterated confidence limits with non-iterated 
confidence limits. ;
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data allresult; merge permcl loweri upperi;
file print;
put 'Permutation 95% confidence limits'
/'Lower: ' permlcl
/'Upper: ' permucl
/'Iterated permutation 95% confidence limits'
/'Lower: ' ipermlcl ' ' ilowerstatus
/'Upper: ' ipermucl ' ' iupperstatus;
run;
%mend permmed;
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Fig. 1.
Path diagram for the single-mediator model
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