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Abstract
Cord blood (CB) transplantation has been used over the last 24 years to treat patients with
malignant and non-malignant disorders. CB has its advantages and disadvantages compared to
other sources of hematopoietic stem (HSCs) and progenitor (HPCs) cells for transplantation. More
knowledge of the cytokines, and intracellular signaling molecules regulating HSCs and HPCs
could be used to modulate these regulators for clinical benefit. This review provides brief
information on the field of CB transplantation and studies from the author’s laboratory that focus
on regulation of HSCs and HPCs by CD26/DPPIV, SDF-1/CXCL12, the Rheb2-mTOR pathway,
SIRT1, DEK, cyclin dependent kinase inhibitors, and cytokines/growth factors. It also briefly
discusses cryopreservation of CB HSCs and HPCs.
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Introduction
Cord blood (CB) has served as a transplantable source of hematopoietic stem and progenitor
cells to treat malignant and non-malignant disorders since our initial laboratory,(1–9) and
clinical studies(10–14) over 20 years ago. There have now been over 25,000 CB transplants
performed worldwide,(15) since our initial clinical report in which a child with Fanconi
anemia was successfully treated with CB from his HLA-matched sister.(10) The field has
moved rapidly, and advances in CB banking(16–22) and transplantation(23–44) have been
encouraging, but there is still much to be learned to make CB transplantation a more
efficient and efficacious procedure.(15,45)

There are advantages to using CB as a source of transplantable cells over that of other
sources of hematopoietic stem (HSCs) and progenitor (HPCs) cells. This includes that CB is
a readily available source of HLA-typed cells being stored in CB banks, they have already
been used to treat essentially all malignant and non-malignant diseases that can be treated by
bone marrow (BM) transplantation, and CB transplantation induces a lowered level of acute
and chronic graft versus host disease (GVHD) when used as a single minimally manipulated
unit. This latter characteristic of CB cells allows for more flexibility in related and unrelated
donors using partially HLA-mismatched CB, than that used in BM transplantation. There are
also disadvantages to using CB as a source of transplantable HSCs and HPCs. CB
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transplantation is associated with a slower time to neutrophil and platelet engraftment, and
to immune cell recovery than that of BM and mobilized peripheral blood (mPB), events at
least in part due to the more limiting numbers of HSCs and HPCs in CB collections
compared to that in BM and mPB. For BM and mPB one can collect many cells, but with
CB what is collected at the birth of a baby is all that is available, although, it is possible that
means to collect greater numbers of CB cells at the child’s birth may be feasible in the
future.(46) However, at present, the lesser number of HSCs and HPCs collected in single CB
units is somewhat problematic for single CB unit transplantation for adults and higher
weight pediatric recipients, and CB transplantation has been associated with enhanced graft
failure.

A number of investigators, including our own group, have worked on means to enhance the
engraftment of limiting numbers of HSCs and HPCs, in a basic science laboratory setting, in
pre-clinical animal studies, and in pilot, phase I, and other clinical studies. Examples of such
attempts to foster a more potent CB transplant have been recently reviewed by experts in the
field in very recent updates and include: double CB transplantation,(40–43, 47–50) ex vivo
expansion of HSCs and HPCs,(51–54) intrabone transplantation,(55–57) and efforts to enhance
the homing and engrafting of cells through ex vivo or in vivo inhibition of CD26, a
Dipeptidylpeptidase (DPPIV),(58–66) incubation of cells ex vivo with Prostaglandin E,(67–70)

or by fucosylation of donor cells ex vivo.(71,72)

Ultimately, a better understanding of the biology of HSCs and HPCs will allow for more
innovative means to enhance the homing and engraftment of limiting numbers of HSCs and
HPCs in CB. Our knowledge of the characteristics and functions of HSCs and HPCs is
becoming clearer. We now know much more about the phenotypic,(73) and functional(74,75)

characteristics of human HSCs and HPCs, the cytokines that regulate these cells,(76,77) and
the BM microenvironmental cells and factors that influence HSCs and HPCs in vivo.(78–80)

This review mainly focuses in on some of the more recent work from our laboratory that
evaluates intracellular and extracellular factors that influence HSC/HPC function, with the
goal to eventually utilize this information to enhance the engrafting capability of HSCs and
HPCs for clinical advantage. Through all of this work and for eventual translation of these
studies from the lab to the clinic the goal is: “The simpler, the better.” The topics of research
from our laboratory to be discussed include: inhibition of CD26/DPPIV, intracellular
molecule modulation of HSCs and HPCs, cytokine and growth factor effects on HSCs and
HPCs, and cryopreservation of cord blood HSCs and HPCs.

CD26/DPPIV influence on SDF-1/CXCL12-CXCR4 axis and homing/
engraftment of HSCs and HPCs

Stromal cell-derived factor (SDF)-1/CXCL12 is a well-known chemokine that acts as a
chemotactic (directed cell movement) agent for HSCs and HPCs through its action on the
receptor CXCR4. SDF-1/CXCL12 has been implicated in the homing, survival, and
nurturing of HSCs and HPCs.(76,80–82) CD26/DPPIV is an enzyme that cleaves dipeptides
from the N-terminus of proteins after a proline or alanine. SDF-1/CXCL12 is an example of
a molecule that has a DPPIV cleavage site. CD26/DPPIV cleavage results in a truncated
SDF-1/CXCL12 molecule that is no longer chemotactic.(58) Moreover, the truncated SDF-1/
CXCL12 blocks the chemotactic activity of full-length SDF-1/CXCL12.(58) Since SDF-1/
CXCL12 acts as an in vivo homing molecule for HSCs and HPCs,(80,81) and a number of
cell types including HSCs and HPCs express CD26/DPPIV on their cell surface,(59) we
reasoned that inhibition of CD26/DPPIV by small peptide molecules such as diprotin A
(ILE-PRO-ILE) or VAL-PYR on the donor cells would enhance the homing and engrafting
capability of limiting numbers of donor mouse BM cells in a congenic mouse model of
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competitive and non-competitive HSC transplantation.(59) This it did, results confirmed and
extended by others.(60–62) These engraftment enhancing effects of CD26/DPPIV inhibition
were extended to pretreatment of human CD34+ donor CB(63,64) and mPB(65) cells
transplanted into mice with a NOD/SCID genotype. In vivo inhibition of CD/DPPIV in
recipient mice(65,66) was also effective in enhancing engraftment, effects also likely due to
effects of DPPIV truncation on non-chemokine growth factors. We recently found that a
number of colony stimulating factors (CSFs), such as GM-CSF, G-CSF, IL-3, and EPO
contain DPPIV truncation sites, and that DPPIV inhibitors used to pretreat target cells
expressing CD26 enhances the detectable activity of the CSFs. Also, in vivo use of DPPIV
inhibitors allows accelerated recovery of HSCs and HPCs after stress (e.g. chemotherapy
and irradiation) (Broxmeyer, et al., unpublished observations; manuscript in revision). An
FDA-approved CD26 inhibitor is currently being evaluated in a pilot clinical study at the
Indiana University School of Medicine under the direction of Sherif Farag for its effects on
enhancing the engrafting capability of single CB collections in adult patients with leukemia
and lymphoma.(66)

Intracellular modulation of HSCs/HPCs
Understanding the intracellular signals involved in HSC and HPC function may lead to
successful efforts to manipulate these signaling molecules for clinical benefit.

Effect of the Rheb2-mTOR pathway on HSC engraftment
Rheb is one member of the ras homologue enriched in the brain family of small ras-like
GTPase molecules. Rheb cycles between active GTP and inactive GDP-bound forms. Both
RHEB1 and RHEB2 are able to activate mammalian target of rapamycin (mTOR) signaling
in mammalian cells. Since Rheb2 was found to be preferentially expressed in immature
mouse HSCs compared to mature hematopoietic cells,(83) we evaluated effects of Rheb2
overexpression by means of a MIEG3 bicistronic retroviral vector, in mouse BM HSCs and
HPCs on the functioning of these cells.(84) In this study, we identified Rheb2 as a pathway
important in expansion of immature progenitor cells in vitro and in vivo. However, this
expansion was accompanied by a loss of HSC activity. We felt that regulating the activity of
the Rheb-mTOR pathway might allow for effective expansion of cells without their loss of
HSC repopulating ability. Towards this goal, we treated human CD34+ CB cells ex vivo
with a combination of HSC expansion cytokines (SCF, FL, and thrombopoietin (TPO)) in
the presence and absence of rapamycin prior to assessing the engrafting capability of these
ex vivo cultured cells in sublethally-irradiated NOD/SCID IL-2R gamma chain null (NSG)
mice.(85) Ex vivo rapamycin treatment of these cells in the presence of SCF, FL, and TPO
greatly enhanced the engrafting capability of the CD34+ CB cells. More mechanistic
evaluation of these studies are warranted, as is further preclinical analysis for enhancing CB
transplantation.

Tip110/p110nrb/SART3/p110 regulation of hematopoiesis
Tip110 is a Tat-interacting protein of 110 KDa that has been implicated in RNA metabolism
and tumor-antigen presentation. Tip110 was found to regulate the transcription of HIV-1 and
cellular genes.(86,87) It also functions as a general pre-mRNA splicing factor.(88) The various
effects of Tip110 that impinged on transcription factors and cellular gene expression enticed
us to evaluate a possible role for Tip110 in the regulation of hematopoiesis. Using Tip110-
overexpressing transgenic mice, haploinsufficient (Tip110+/−) mice, and means to up- and
downregulate Tip110 expression in human cells through lentiviral gene transduction, we
were able to demonstrate that Tip110 transgenic expression increased the numbers, cell
cycling status, and survival of HPCs, while Tip110+/− mice manifested opposite effects to
the Tip110 transgenic mice in terms of HPC function.(89) Also, Tip110+/− BM HPCs
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responded better, and Tip110 transgenic BM HPCs worse than control mice to recovery
from the cytotoxic effects of 5-flurouracil.(89) Mechanistically, Tip110 regulated expression
of CMYC and GATA2 expression, with Tip110 and CMYC regulating the expression of
each other, thus linking Tip110 hematopoietic regulation to Tip110 reciprocal regulation of
CMYC.(89) We also found that Tip110 was expressed in human embryonic stem (hES) cells,
and that it was important for maintenance of expression of pluripotency factors such as
NANOG, Oct4, and SOX2, and pluripotency of hES cells.(90) How these Tip110 effects in
hES cells are mediated, and its role in induced pluripotent stem (iPS) cells remains to be
investigated.

SIRT1 effects on hematopoiesis
SIRT1 is a member of the sirtuin family encompassing seven proteins and histone
deacytelases, that has been conserved from bacteria to humans.(91) Mammalian sirtuins have
been implicated in numerous cell functions, some with disease relevance.(92) SIRT1 is a
human homologue close to the Sir2 yeast protein. We had shown that SIRT1 is involved in
regulating apoptosis and Nanog expression in mouse ES cells when in the presence of LIF,
at least in part by controlling the subcellular localization of the tumor suppressor p53
protein.(93) We followed up on that study by demonstrating the need for SIRT1 for
differentiation of mouse ESCs in the absence of LIF, but presence of 2 mercaptoethanol.(94)

A mouse ES cell line deficient in SIRT1 formed few mature blast cell colonies, and the
replated cells from these colonies were defective in hematopoietic potential. There was
decreased primitive and definitive hematopoiesis associated with LIF removal-induced
differentiation of the SIRT1−/− mouse ES cell line, and this corresponded to a delayed
capacity to turn off expression of Oct4, nanog, and Fgr5, and to decrease expression of β-H1
globin, β-major globin, and Scl genes. SIRT1−/− mice had fewer yolk sac primitive erythroid
precursors, and manifested decreased embryogenesis. In adult mice, both SIRT1−/− and
SIRT1+/− BM cells had decreased numbers and cycling status of HPCs, an effect most
apparent when cells were cultured in vitro under lowered (5%), compared to normal (~20%)
oxygen tension. Thus, these results linked oxygen tension and SIRT1 activity. Most
recently, others have suggested that cell-autonomous SIRT1 intracellular signaling may be
dispensable for adult HSC functional maintenance in mice.(95) How this above information
on adult HSCs and HPCs may be used to modulate and influence engrafting capability
remains to be determined. Of interest in this context is that deficiency of SIRT1 in mouse ES
cells causes a downregulation of the PTEN-JNK-FOXO1 pathway with a concomitant block
in reactive oxygen species (ROS)-induction of apoptosis.(96) Thus, at least in mouse ES
cells, SIRT1 appears to play an important role in adjusting the PTEN/JNK/FOXO1 pathway
for response to cellular ROS. Mitochondria and mitochondrial-generated ROS are important
for hematopoiesis,(97,98) and it is possible that SIRT1 may still play a role in asymmetric
divisions of HSCs and self-renewal,(99) especially in cases of heavy stress-induced
hematopoiesis. In this regard, energy metabolism is likely crucial to normal, and especially
stress-induced hematopoiesis.

We very recently assessed whether cellular energy homeostasis took part in the maintenance
of pluripotency and self-renewal in mouse ES cells.(100) AMP-activated protein kinase
(AMPK), one regulator for the control of energy metabolism, is activated during stress that
induces exhaustion of ATP. We used 5-aminoimidazole-4-carboxyamide ribonucleoside
(AICAR) and AMPK activator to demonstrate: activation of the p53-p21cip1 pathway,
decreased mouse ES cell proliferation, a G1/S-phase cell cycle block, and decreased
expression of the pluripotency markers NANOG and SSEA-1, without effects on Oct4
expression. This was associated with enhanced differentiation of erythroid cells from mES
cells.
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DEK regulation of hematopoiesis
DEK is a relatively newly-defined molecule involved in a number of cellular activities, such
as transcriptional repression and activation, processing of mRNA, and chromatin
remodeling.(101,102) DEK is a unique molecule in that it can be found in the nuclear, yet it
can also be secreted outside of the cell and influence other cell types.(101) It can act as a
chemoattractant for specific mature blood cells (CD8+ T cells and natural killer cells) after
being released from macrophages. (103) We identified a role for DEK in hematopoiesis.(104)

There were increased numbers of HPCs in BM and spleen of DEK−/− mice, and purified
recombinant DEK protein suppressed in vitro colony formation by normal mouse BM and
human CB HPC colony formation in vitro. This negative effect of DEK on HPC
proliferation in vitro and in vivo was associated with decreased long-term competitive and
secondary mouse HSC repopulating capacity, suggesting a positive role for DEK in HSC
functions such as engraftment. What these hematopoietic effects of DEK are due to requires
further investigation, but this information may be of potential clinical relevance.

Role for cyclin-dependent kinase inhibitors in hematopoiesis
A number of cyclin-dependent kinase inhibitors (CDKIs) have been implicated in HSC and
HPC function.(76,105–108) These include p21cip1/waf1 (p21), p27kip1 (p27), and p18INK4c

(p18). However, other than a paper demonstrating that p18−/− counters the exhaustion of
p21−/− HSCs after serial transplantation,(109) there is nothing else in the literature that links
the different CDKIs and their networking interactions for HSC and HPC function. We noted
that CDKIs had different effects on HPC proliferation, and that they differentially modulated
the responsiveness of HPCs to synergistic combinations of cytokines such as a CSF plus
SCF.(110) Deletion of p18 resulted in decreased numbers and proliferation of HPCs, effects
similar to that previously reported by us for p21−/− mice.(77) These positive effects of p18
dominated over the negative effects of p27 where p27−/− was associated with enhanced HPC
proliferation. The responsiveness of HPCs to suppression by certain chemokine family
members was directly related to the ability of HPCs to respond to synergistic stimulation,
and cycling HPCs. Deletion of the p18 gene rescued the loss of chemokine suppression of
synergistic cell proliferation associated with deletion of the p21 gene. Thus, there is
interplay of cell cycle regulators on HPC proliferation, and loss of one CDKI can sometimes
be compensated for by another missing CDKI.

Cytokine/growth factor regulation of hematopoiesis
Numerous cytokines are known to regulate the proliferation and survival of HPCs.(76,77,108)

Role of immune cells in the regulation of hematopoiesis
T lymphocytes play a role in the proliferation of HPCs and their homeostasis,(111–113) in part
through the transcription factors STAT4, STAT6, BCL-6, and BAZF, and the growth factor
oncostatin M. We recently reported a role for STAT3-dependent IL-21 production from
helper T cells in maintenance of HPC homeostasis.(114) There was decreased activity of
HPC proliferation in mice with a specific deficiency of STAT3 in T cells, and STAT3
expression was required for production of IL-21. Neutralization of IL-21, but not IL-22,
resulted in a decrease in HPC number and cycling, similar to that seen in STAT3-deficient T
cell mice. Moreover, exogenous administration of IL-21 was able to rescue suppressed HPC
proliferation in mice with STAT3−/− T cells.

Angiopoietin-like molecules -2 and -3 enhance survival of HPCs in CB
Angiopoietin-lilke (ANGPLT) molecules have been implicated in regulation of mouse fetal
liver and BM HSCs and human CB NOD/SCID repopulating cells,(115–117) but no
information was available on effects of ANGPTL molecules on HPCs. We identified the
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actions of ANGPTL-2 and -3 molecules on enhancement of the survival and replating ability
of HPCs from human CB.(118) These activities of ANGPTL-2 and -3 were manifested
through the coiled-coil domains of these proteins. We did not detect functional activities of
ANGPTL-4, -5, -6, or -7 on HPC survival or replating capacity, and none of the ANGPTL
molecules tested influenced the proliferation of CB HPCs. The survival and replating effects
of ANGPTL-2 and -3 on HPCs(118) and that of such ANGPTL molecules on expanding
NOD/SCID repopulating human HPCs(116) may be of future relevance to CB
transplantation.

A role for neuronally-active molecules on hematopoiesis
The nervous system has been implicated in microenvironmental control of
hematopoiesis.(79) This opened up the possibility that other neuronally-associated proteins
and their receptors could play a role in hematopoiesis. We identified such a role for
neurexophilin1.(119) Neurexophilins bind neurexin1α. neurexin1α, and dystroglycan are
membrane receptors. They serve as mutual ligands within the neuronal system. We found
that neurexophilin1 was able to suppress the proliferation of HPCs, and it acted through
neurexin1α, an effect that could be counter-modulated by dystroglycan. The suppressive
effect of neurexophilin1 on HPCs was direct-acting on the HPCs and inhibition was
apparent both in vitro on human CB and mouse BM HPCs, and in vivo after injection of
recombinant neurexophilin1 into mice. Thus, a signaling axis in the hematopoietic system
centered on neurexin1α and its modulation by neurexophilin1 and dystroglycan. Additional
information on links between the nervous and hematopoietic systems may offer the
opportunity to modulate one for the benefit of the other in a transplant setting.

Potential for modulation of intracellular signals by cytokines and growth
factors and other means for enhanced CB transplantation

There are many transcription factors and other intracellular signaling molecules that impinge
on HSC and HPC numbers and functions.(76,108) How all these different intracellular factors
may interact with each other if at all, will need to be better elucidated if they are to be
modulated for clinical advantage with minimal side-effects. Interconnected with these
intracellular molecules are numerous cytokines and growth factors that can trigger/activate
these intracellular molecules.(76,77) While much is known regarding cytokines and growth
factor effects on HPC function, we still know very little of how these cytokines/growth
factors influence HSC functions such as self-renewal, survival, and engraftment. Future
information in these areas will likely have a positive influence on how we might be able to
enhance HSC transplantation, especially with CB cells.

Cryopreservation of CB HSCs, HPCs, and other cells
CB transplantation is critically-dependent on CB banking, which in turn is dependent on the
capacity to adequately cryopreserve the HSCs and HPCs in CB, and maintain these cells in a
frozen state. Many banks, both public and private, have been formed in order to supply
cryopreserved CBs for transplantation purposes. However, how long such frozen CB units
can be stored and then thawed for efficient recovery of HSCs and HPCs is critical
information for the success of CB banking and CB transplantation. Over the last 23 plus
years we have reported on the cryopreservation and subsequent recovery of thawed
cells.(1,7,120,121) Most recently, we demonstrated that we could recover functionally-intact
HPCs at high efficiency from cryopreserved CB after thawing of cells stored frozen for up to
21–23.5 years.(122) While there was a range of recoveries of HPCs from different CB units,
80–100% recovery was apparent for most samples, with maintenance of high proliferative
and replating capability. Moreover, CB cryopreserved for up to 21 years could be thawed,
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the CD34+ cells isolated, and these cells could be used to long-term repopulate primary and
secondary immune-deficient mice suggesting that long-term marrow repopulating and self-
renewing HSCs had been adequately cryopreserved and could be retrieved after thawing
with excellent intact functional capabilities. From the long-term cryopreserved cells, we
were also able to retrieve functionally responsive CD4+ and CD8+ T cells, and high
proliferative potential endothelial colony forming cells (=endothelial progenitor cells), and
we were able to generate from the thawed and subsequently purified CD34+ cell population,
iPS cells that could be differentiated into all three germ cell lineages in vitro and in
vivo. (122) Subsequent studies with these iPS cells found that only a percentage of these cells
were fully reprogrammed. Efforts are underway to enhance the full reprogramming capacity
of a larger percent of these iPS cells by modulating expression of the micro RNA 302 cluster
and its downstream targets. However, how effective these generated iPS cells may be for
future regenerative medicine possibilities remains to be determined.

Concluding remarks
The intent of this article was to focus mainly on laboratory and translational research in the
author’s laboratory. There are many outstanding laboratories working on means to gain a
better mechanistic insight into optimizing the functional activities of HSCs and HPCs. It is
hoped that together this work will translate into clinical utility for health benefit, with one
such benefit being enhanced efficacy of cord blood HSC/HPC transplantation.
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