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SUMMARY

The development of the gastrointestinal tract is a complex process that integrates signaling
processes with downstream transcriptional responses. Here, we discuss the regionalization of
the primitive gut and formation of the intestine and liver. Anterior–posterior position in the
primitive gut is important for establishing regions that will become functional organs. Coor-
dination of signaling between the epithelium and mesenchyme and downstream transcrip-
tional responses is required for intestinal development and homeostasis. Liver development
uses a complex transcriptional network that controls the establishment of organ domains,
cell differentiation, and adult function. Discussion of these transcriptional mechanisms gives
us insight into how the primitive gut, composed of simple endodermal cells, develops into
multiple diverse cell types that are organized into complex mature organs.
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1 INTRODUCTION

The development of the gastrointestinal tract is a complex
process. The gut is composed of multiple specialized cell
types with contributions from all three primordial germ
layers. The endoderm forms the epithelium of the stomach,
intestine, lung, liver, and pancreas. The mesoderm forms
both striated (in the esophagus) and smooth muscle that
is responsible for peristaltic movements. The neural crest,
derived from the neurectodem, is critical for the enteric
nervous system, which controls peristalsis and which is
absolutely essential for the proper functioning of the diges-
tive system.

During gastrulation, when the endoderm, mesoderm,
and ectoderm are specified, the primitive gut becomes di-
vided into regions with distinct gene expression patterns
along the anterior–posterior (AP) axis. These regions set
up the domains that give rise to each derivative endodermal
organ, leading on to the diverse developmental programs
required for each to achieve its unique adult function. The
primitive gut is divided into the foregut, midgut, and hind-
gut. The foregut forms the esophagus, lungs, thyroid, stom-
ach, liver, and pancreas. As the foregut organs are being
specified, the gut tube is further regionalized by epitheli-
al–mesenchymal interactionsthat establish gene expression
throughout the gastrointestinal tract. The midgut and hind-
gut form the small and large intestine (colon), respectively.
Even though the small and large intestine form acontinuous
tube and share similar developmental origins, their mor-
phology and final functions are unique. As tissues grow,
correct cell positioning within the gut is required for signal-
ing across the germ layer derivatives. The interplay between
multiple signals, acting between the endoderm and sur-
rounding mesenchyme, is critical in both time and space
for correct development. Close association with the meso-
derm is required for both development and adult function.

There are three different mechanisms that are continu-
ously deployed throughout gut development to maintain
regional identity (Fig. 1). The first is the use of combina-
tions of transcription factors for the coordination of gene
expression in both time and space (an example is given in
Fig. 1A). Key transcriptional regulators are required for
both the initial specification of the endoderm as well as
the appropriate coordination of downstream factors im-
portant for different stages of differentiation. Often, com-
binations of several, rather than individual, transcription
factors are required to activate the appropriate downstream
gene expression programs. This combinational control
fine-tunes the activity of selected sets of genes that execute
the function of the derivative organs. Second, extracellular
signaling factors are required at various times throughout
development (Fig. 1B,C). Interestingly, the same signaling

factor may cause different and even opposing downstream
effects at different times in ontogeny. For example, the
fibroblast growth factors (FGFs) and bone morphogenetic
proteins (BMPs), which repress liver-specific genes in the
foregut, are subsequently required in the liver primordium
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Figure 1. Molecular mechanisms guiding digestive tract develop-
ment. (A) Transcription factors are required both in specification
of the endoderm as well as for expression of genes important in
formation of the pancreas. Sox17 is required to activate transcrip-
tional programs for both initial formation of the endoderm through
FoxA2 and also later during pancreas specification through Pdx1.
(B) Extracellular signaling differentially activates the appropriate de-
velopmental programs during organ formation. During organ spec-
ification at the 7–8-somite stage, FGF signaling from the STM
promotes liver specification and suppresses the pancreas gene pro-
gram in the proximal endoderm. Ventral endoderm escapes the
inhibitory signal, and the pancreas gene expression is initiated.
(Adapted, with permission, from Zaret 2002 # Macmillan.) (C)
Interactions between endoderm (yellow) and mesoderm (black)
are required for morphological changes during intestinal develop-
ment. At embryonic day 8.0 (E8.0), tight association of these tissues
allows for gradients of Wnt, Bmp, Fgf, and RA signaling to direct
proper A-P positioning along the gut tube. (Adapted, with permis-
sion, from Spence et al. 2011 # Wiley.)
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fordifferentiation (Zaret 2002;Zorn and Wells 2009). Third,
cell positioning and morphogenetic processes are critical for
appropriate signaling between neighboring tissues during
development and homeostasis (Fig. 1C). Establishment
of the subdivisions of the primitive gut requires the activa-
tion of specific transcription factors within the endoderm.
Activation of many of these factors relies on signaling
input from neighboring tissues, especially the mesoderm.

2 THE PRIMITIVE GUT: ESTABLISHMENT
OF ANTERIOR–POSTERIOR PATTERNING
AND REGIONALIZATION

2.1 Initial Establishment of Regional Identities

The primitive streak is the most evident morphological sign
of anterior–posterior (AP) positioning in the vertebrate
embryo. The process of the establishment of the primitive
streak has been reviewed in detail elsewhere (Rivera-Perez
and Magnuson 2005; Lee and Anderson 2008). Primitive
streak cells form the progenitors for the three germ layers—
endoderm, mesoderm, and ectoderm. Early in the process,
Mixl1, a member of the Mix/Bix family of paired-like
homeodomain proteins, is essential for the establishment
of Nodal signaling within the primitive streak (Hart et al.
2002). Subsequently, Nodal, a transforming growth factor
b (TGF-b) family member, is required for the activation of
multiple transcription factors that function in endoderm
specification such as Sox17, FoxA2, and Hhex (Shen 2007;
Zorn and Wells 2007).

During gastrulation, movement of definitive endoderm
progenitors out of the primitive streak is associated with
early anterior–posterior regionalization of the gut. Endo-
dermal cells have been traced from gastrulation to early
organogenesis using fluorescent markers, which were in-
troduced into pregastrulation embryos by electroporation
(Tam and Beddington 1992; Franklin et al. 2008). Cells that
leave the primitive streak first are specified as anterior en-
doderm, whereas cells migrating later form the posterior
endoderm (Lawson et al. 1986; Lawson and Pedersen 1987;
Tam and Beddington 1992). These different groups of cells
form anterior and posterior pockets of endoderm, also
termed the anterior and posterior intestinal portals, respec-
tively. These pockets then elongate toward both ends of the
embryo, while the intervening sheet of endoderm closes
ventrally to form a connected tube. This process requires
Wnt signaling in many organisms, although the situation is
still unclear in mice. Work in zebrafish and frog shows that
convergence and extension during gastrulation require the
redundant actions of several noncanonical Wnt ligands
including Wnt4a and Wnt11 (Matsui et al. 2005; Zerbe
et al. 2008). Only Wnt5a has been shown to be important

in mice during midgut elongation; however, many Wnt
genes are expressed throughout gut tube formation, and it
is hard to discern if lack of phenotypes is due to redundancy
(Lickert et al. 2001; Cervantes et al. 2009). Several transcrip-
tion factors such as Sox17, Foxa2, Hhex, and Cdx2 are crit-
ical for the establishment of regional identity (see below).

Initial specification of the definitive endoderm and
morphogenesis requires the transcription factor Sox17
(an SRY-related HMG factor) in multiple species (Hudson
et al. 1997; Alexander and Stainier 1999; Clements and
Woodland 2000; Kanai-Azuma et al. 2002). Sox17 expres-
sion is high in all definitive endoderm cells early on. Sox17
was shown to cooperate with Wnt signaling and to activate
Foxa2 (a member of the Forkhead transcription factor fam-
ily) (Sinner et al. 2004). Subsequently, expression of Sox17
is restricted to the posterior end of the embryo, and Sox17-
null cells are incapable of forming midgut and hindgut
(Kanai-Azuma et al. 2002). Later in gestation, Sox17 inter-
acts with another transcription factor, Pdx1 (pancreatic
and duodenal homeobox 1), which is required for the spec-
ification of the pancreas (Spence et al. 2009). Using both
loss-of-function and gain-of-function techniques in the
mouse embryo, Sox17 was shown to repress Pdx1 expres-
sion in the liver primordium, a process that is critical for
establishing organ domain boundaries between liver and
pancreas (Spence et al. 2009).

The anterior endodermal region requires two major
transcription factors, FoxA2 and Hhex. FoxA2 is the master
regulator of the anterior primitive gut. FoxA2 mutant mice
show defects in cell migration after endodermal specifica-
tion and thus loss of all foregut and midgut structures; how-
ever, hindgut development is unaffected (Weinstein et al.
1994; Dufort et al. 1998). Using tetraploid embryo comple-
mentation, it was subsequently shown that Foxa2-null cells
can form the hindgut but are never incorporated into the
developing foregut or midgut (Dufort et al. 1998). Hhex
expression is required for anterior endoderm development
and activated by both Nodal and Wnt signaling (Martinez-
Barbera et al. 2000; Smithers and Jones 2002). The promoter
of Hhex has been shown to have both activation and repres-
sion domains that are responsive to multiple signaling path-
ways including Nodal, Wnt, and BMP (Rodriguez et al.
2001; Rankin et al. 2011). Sox2 is also required in a dose-
dependent manner in the developing foregut (Que et al.
2007). All of these factors are important throughout the
morphogenesis of the anterior part of the gut.

The Caudal-related homeobox transcription factor
Cdx2 is required for posterior gut development. Cdx2 ex-
pression is highest at E8.5 in the hindgut, and its expression
in the intestinal epithelium defines a clear-cut boundary at
the foregut–midgut junction (Silberg et al. 2000; Beck and
Stringer 2010). Cdx2 is absolutely required in the midgut
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and hindgut for the formation of the intestine (Gao et al.
2009). Studies in Caco-2 cells, a colon cancer cell line that is
used as a model for the transition of cells from progenitor to
differentiation in the intestine, have shown the Cdx2 regu-
lates expression of both progenitor- and differentiation-
specific genes (Gao et al. 2009; Verzi et al. 2010b). Cdx2
may play a role in mediating chromatin accessibility at these
loci (Verzi et al. 2011). Cdx2 is also required for homeostasis
of mature intestinal epithelial cells, which is discussed in
detail in the section below entitled “Regional Specification
and Morphogenesis of the Intestine.”

Canonical Hox genes are also expressed in specific AP
domains in the intestine, the so-called enteric Hox code
(Pitera et al. 1999; Kawazoe et al. 2002). Misexpression of
HoxA4 in transgenic mice led to the formation of mega-
colon (Wolgemuth et al. 1989). Early studies in the chicken
hindgut showed that ectopic expression of Sonic hedgehog
in the endoderm was sufficient to induced expression of
BMP4 and Hoxd13 in the mesoderm (Roberts et al. 1995;
Roberts et al. 1998). In fact, when Hoxd13 was misex-
pressed in the primitive midgut mesoderm, this was suffi-
cient to cause transformation of the midgut into a structure
resembling the hindgut (Roberts et al. 1998). Loss-of-
function mouse models of various Hox genes have also
established their importance in intestinal maturation. For
instance, ablation of the Hoxa5 gene leads to abnormal
stomach development (Aubin et al. 2002). Importantly,
the formation of the ileoceacal valve and the anal sphincter
is dependent on the Hoxd cluster (Zakany and Duboule
1999).

2.2 Signaling across Tissues Modulates Regional
Transcription Factor Activity

Signaling from the mesoderm maintains hindgut fates and
actively represses foregut development in the posterior en-
doderm, at least in Xenopus development (Zorn and Wells
2007). Wnt signaling, well known for its role in establishing
the anterior–posterior axis of the embryo (Huelsken et al.
2000), is highly active in the hindgut and represses foregut
identity (McLin et al. 2007). Similarly, bone morphogenetic
protein (BMP) signaling is required for hindgut develop-
ment, and the naturally occurring BMP antagonists noggin
and chordin are required to allow foregut development (Sa-
sai et al. 1996; Zorn et al. 1999; Tiso et al. 2002). In addition,
BMP signaling has been shown to be important in deter-
mining cell fates in the foregut during organogenesis, which
is discussed in more detail below. Fibroblast growth factor
(FGF) seems to be expressed in a gradient, with highest
expression in the posterior gut (Fig. 1C), and it represses
anterior markers (Serls et al. 2005; Dessimoz et al. 2006).
However, varying concentrations of FGF are also required

for different lineages that arise from the ventral foregut, such
asthe liver(Jungetal. 1999;Zaret2001;Calmontetal. 2006).

Retinoic acid signaling has multiple roles in establishing
anterior–posterior regional identity. Mice deficient for ret-
inoic acid signaling in the foregut, through deletion of the
retinaldehyde dehydrogenase 2 (Raldh2) gene or treatment
with a pan-retinoic acid receptor (RAR) antagonist, show
failure to develop multiple anterior organs (Wendling et al.
2000; Molotkova et al. 2005; Wang et al. 2006). Retinoic acid
seemsto act through regulation of transcription factors with
retinoic acid–responsive enhancers including Hoxb1 and
Hoxa5 (Huang et al. 1998; Niederreither et al. 2000; Matt
et al. 2003; Grapin-Botton 2005). However, there may be
multiple additional effects of retinoic acid signaling includ-
ing activation of other signaling factors such as FGF10 and
Sonic hedgehog (Shh) (Ivins et al. 2003; Wang et al. 2006).

2.3 Combinations of Transcription Factors
Determine Organ Domains in the
Primitive Gut Tube

Extensive investigation of the expression of transcription
factors has been performed in an effort to understand the
establishment of the multiple organ domains in the gastro-
intestinal system. For example, a study of 15 transcription
factors expressed within the developing mouse foregut
identified more than a dozen unique domains that roughly
correspond with particular organs (Sherwood et al. 2009).
Endodermal organ domains were isolated during embry-
onic development, and gene expression was analyzed by
microarray. Sherwood et al. (2009) found that each organ
domain contained a unique combination of transcription
factors. For instance, the dorsal pancreas domain at em-
bryonic day 9.5 (E9.5) shows expression of Pdx1, Prox1,
and Hlxb9. Using whole-mount immunofluorescence of
the dorsal pancreas, subregions were identified with differ-
ent patterns of coexpression of these factors. The mecha-
nism behind the complex combinatorial control is organ
specific and is discussed in the following sections.

3 FORMATION OF THE INTESTINE:
COORDINATION OF TRANSCRIPTION
FACTOR NETWORKS ACROSS MIDGUT
AND HINDGUT DOMAINS

3.1 Regional Specification and Morphogenesis
of the Intestine

Cdx2 is one of the earliest transcription factors expressed in
the primitive gut tube and is required for defining both
midgut and hindgut regions that contribute to the entire
intestine. Cdx2 is expressed most highly in the hindgut, but
its expression extends all the way to the foregut–midgut
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boundary (Silberg et al. 2000). In fact, although the very
first duodenal epithelial cell is Cdx2-positive, all cells of the
stomach and esophagus lack Cdx2. Cdx2 expression is fre-
quently used as a marker of intestinal metaplasia, a precur-
sor to cancer (Bai et al. 2002). Specification of the colon and
expression of many intestine-specific genes require Cdx2
(Gao et al. 2009; Gao and Kaestner 2010; Verzi et al. 2010a,
2011). Regulation of Hox gene expression along the A–P
axis further specifies the intestine and defines areas of ma-
jor anatomical constrictions (Kawazoe et al. 2002; Grapin-
Botton 2005; Hanamura et al. 2006). A subset of the pos-
terior enteric Hox code is dependent on the presence of
Cdx2, indicative of a transcriptional network in the estab-
lishment of regional identity in the gut (Gao et al. 2009).

Multiple signaling pathways converge on Cdx2 to reg-
ulate intestinal development. Persistent Wnt signaling in
the hindgut regulates the expression of Cdx2. In mice null
for the transcriptional effectors of Wnt signaling Tcf1 and
Tcf4, the severely posteriorly truncated embryos lack a
hindgut altogether, similar to what is seen in Cdx2-null
mice (Gregorieff et al. 2004). Importantly, expression of
Cdx2 in the remaining gut tube is severely decreased,
with apparent transformation into gastric epithelia (Gre-
gorieff et al. 2004; Cervantes et al. 2009). Interestingly,
partial ablation of Wnt signaling in Wnt5a-null mice, al-
though resulting in a dramatically shortened gut tube, did
not affect Cdx2 expression (Cervantes et al. 2009). Wnt
signaling is required transiently between E7.5 and E8.5,
and dosage activates different intestinal programs through

Cdx2 (Sherwood et al. 2011). FGF signaling also plays a role
in the establishment of the Cdx boundary at the duodenal–
pyloric junction (Dessimoz et al. 2006; Rubin 2007; Benah-
med et al. 2008).

Hedgehog signaling from the endoderm is also impor-
tant for interactions between the mesenchyme and en-
doderm for intestinal specification and regionalization.
Mutants in both Sonic hedgehog (Shh) and Indian hedge-
hog (Ihh) show defects in the gastrointestinal tract, includ-
ing intestinal transformation of the stomach (Ramalho-
Santos et al. 2000; van den Brink 2007; Saqui-Salces and
Merchant 2010). In addition, ectopic expression of Shh
causes transformation of pancreas into intestine (Apelqvist
et al. 1999).

At the closure of the midgut on day 9.5 of gestation in
the mouse, the gut tube consists of a central lumen sur-
rounded by the polarized epithelium derived from endo-
derm. During the next few days, the epithelium increases in
thickness, until there is a dramatic remodeling, or “epithe-
lial transition,” during which the smooth luminal surface
acquires villi, or finger-like projections, with mesenchymal
cores (Fig. 2). A recent careful morphometric analysis by
Grosse and colleagues showed that the intestinal epitheli-
um on day 12.5 is, indeed, pseudostratified (Grosse et al.
2011). In this epithelium, proliferation is accompanied by
interkinetic nuclear migration, which is the movement of
nuclei from the basal side of the cell in S phase to the apical
surface in M phase (Fig. 2A). Villi are projections into the
lumen that are morphologically different but contiguous
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Figure 2. Intestinal morphology changes during development. (A) At E10.5, the pseudostratified epithelium (yel-
low) and mesoderm (black) are tightly associated. (B) Polarized folds of epithelium form at E15 because of signaling
between the prospective villus regions through BMPand Hh. (C) At E16.5, villi have been fully formed through BMP
signaling. (D) Prospective crypt regions require Foxl1 and Wnt signaling from the mesoderm to maintain proper
proliferative areas. (Adapted, with permission, from Spence et al. 2011 # Wiley.)

Transcriptional Networks in Gut Development

Cite this article as Cold Spring Harb Perspect Biol 2012;4:a008284 5



with the crypts, which are invaginations into the support-
ing mesenchyme. Villi are formed from initially polyclonal
polarized folds of endoderm that are the beginnings of
crypt formation (Fig. 2B–D) (Abud and Heath 2004;
Abud et al. 2005). Genetic lineage tracing has recently
been used to show that although initially polyclonal, intes-
tinal crypts resolve into monoclonality through a process
called “neutral drift” (Lopez-Garcia et al. 2010). In this
process, random loss of a stem cell within the crypt is
compensated by increased replication of another stem
cell, until eventually the entire crypt is dependent on a
single clone of stem cells.

The morphological changes that accompany the epithe-
lial transition require tight interactions between the epithe-
lium and underlying mesenchyme. This was shown, for
instance, by a delay in epithelialization in the absence of
the mesenchymal transcription factor FoxL1 (Kaestner
et al. 1997). Reciprocal communication between these tis-
sues requires Hh, Wnt, and BMP signaling to establish the
crypt–villus axis (Fig. 2D) (Li et al. 2007; Madison et al.
2009). Intervillus regions require active Wnt signaling in
the epithelium to initiate proliferation and subsequent in-
vasion of the submucosa to form crypts (Korinek et al.
1998; Kim et al. 2007). Hh expression in the epithelium
and BMP expression in the underlying mesenchyme sup-
press Wnt signaling in villus regions and are required for
proper villi formation (Karlsson et al. 2000; Ramalho-San-
tos et al. 2000; Sukegawa et al. 2000; He et al. 2004). Trans-
genic mice that express Hh-interacting protein (Hhip), a
pan-Hedgehog inhibitor, in the developing intestinal en-
doderm show mislocalization of myofibroblast cells under-
lying the epithelium that are a source of Wnt and regulate
crypt size and location (Madison et al. 2005). Misexpres-
sion of the BMP antagonist Noggin causes ectopic crypt
formation due to activation of Wnt signaling (Haramis
et al. 2004; Batts et al. 2006). Several studies have suggested
that BMP expression is directly induced by Hh signaling;
however, this has not been shown in vivo in the mammalian
intestine (Sukegawa et al. 2000; Ishizuya-Oka et al. 2006;
Ishizuya-Oka and Hasebe 2008).

4 FORMATION OF ORGANS ASSOCIATED
WITH THE GUT: A CASCADE OF
TRANSCRIPTIONAL REGULATORS

All gut-associated organs (also called the para-alimentary
tract) use signals from adjacent tissues to invade the local
mesenchyme adjacent to the primitive gut tube to form an
organ bud. At this point, all gut-associated organs follow
unique programs that allow for proliferation and differen-
tiation. The lung depends on endoderm–mesenchymal in-
teractionsto direct its branching structure and generation of

several functional cell types, with major contributions from
FGF and TGF-b signaling (Maeda et al. 2007). The pancreas
forms polarized microlumina that eventually coalesce to
form the final ductal tree (Gittes 2009; Villasenor et al.
2010). The liver has a close association with the vasculature
and generates bipotential progenitors that differentiate into
a homogeneous population of functional cells (Zaret and
Grompe 2008; Nagaoka and Duncan 2010). Here we outline
the development of the liver as an example of the transcrip-
tional regulation of endoderm organ formation.

4.1 Setting Up Transcription Factor Networks
in the Hepatic Primordium

As mentioned above, transcription factors are required not
only for initial specification of the endoderm at gastrula-
tion, but also are continually involved throughout liver
development. FoxA1 and FoxA2, which also play impor-
tant roles in gastrulation, act in concert to enable the sub-
sequent induction of the hepatic gene program (Lee et al.
2005). These transcription factors are thought to function
as pioneer factors by facilitating the opening of chromatin
at several important liver-specific genes, including albumin
and a-fetoprotein (Gualdi et al. 1996; Zaret 1996; Cirillo
et al. 1998; Crowe et al. 1999). The GATA family of zinc
finger transcription factors, GATA 4 and 6, also acts togeth-
er in hepatic gene induction, including the activation of the
albumin locus (Bossard and Zaret 1998; Cirillo et al. 1998),
and subsequent liver development requires the presence of
at least one of them (Holtzinger and Evans 2005; Zhao et al.
2005).

The choice of hepatic cell fate is further influenced by
signals from the surrounding mesenchyme. FGF signaling
from the cardiac mesoderm activates MAPK signaling that
induces hepatic gene induction (Rossi et al. 2001; Chen et al.
2003; Zhang et al. 2004; Serls et al. 2005; Calmont et al. 2006;
Shin et al. 2007). BMP 2 and 4 signals from the septum
transversum mesoderm enhance the hepatic competence
of the endoderm (Jones et al. 1991; Smith and Harland
1992; Furuta et al. 1997). TGF-b acts as a developmental
timer to maintain hepatocyte competency while restricting
differentiation until endodermal cells are positioned cor-
rectly (Wandzioch and Zaret 2009). Wnt signaling is re-
quired for liver bud development and hepatic growth
through the activation of transcription factors such as
Hhex (Finley et al. 2003; Monga et al. 2003; Suksaweang
et al. 2004).

4.2 Tissue Patterning and Morphogenesis

Liver bud formation takes place on the ventral wall of the
foregut endoderm and requires several morphological
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changes. Cells positioned near the developing heart receive
signals that are critical for epithelial thickening and for-
mation of the liver bud outgrowth from the endoderm
(Douarin 1975). This signal is mediated, at least in part,
by FGF, as shown through in vitro culture studies (Gualdi
et al. 1996). These endodermal cells then delaminate and
invade the septum transversum mesenchyme (STM) to
begin the formation of the final organ. Hepatoblasts sub-
sequently differentiate fully into two functional cell types
that are discussed below.

Cell migration is dependent on two homeobox tran-
scription factors, Hhex and Prox1. Hhex is a transcriptional
repressor and required for hepatoblast proliferation, but
not their initial specification (Keng et al. 2000; Martinez
Barbera et al. 2000). Hhex is also required for liver in-
duction by positioning the ventral endoderm within the
cardiogenic field (Martinez Barbera et al. 2000; Bort et al.
2004; Hunter et al. 2007). Interestingly, loss of Prox1, a
prospero-related homeobox transcription factor, has no
effect on liver-specific gene expression; however, the levels
of the cell adhesion molecule E-cadherin are increased
dramatically in Prox1-mutant embryos, preventing hepa-
toblasts to delaminate from the ventral foregut (Sosa-Pine-
da et al. 2000). Thus, it is apparent that transient migratory
behavior is required for liver development.

4.3 Diversification and Specification of Cell
Types in the Liver

A complex transcriptional network is required for liver
development. These factors include HNF-1a, HNF-1b,
FoxA1, FoxA2, FoxA3, HNF-4, COUP-TFII, LRH-1,
FXRa, PXR, C/EBPa, and HNF-6 (Cereghini 1996; Costa
et al. 2003). Multiple transcription factors bind to hepatic
gene promoters to induce robust expression (Fig. 3A). For
instance, promoters of active hepatic genes that were bound
with HNF-1 or HNF-6 are also often occupied by HNF-4a

(Odom et al. 2004). These factors also have reciprocal reg-
ulation in which expression of one factor depends on an-
other factor in the same cell (Fig. 3B) (Kuo et al. 1992; Bulla
1997; Bailly et al. 1998). Investigation of the promoter oc-
cupancy and expression patterns of these transcription fac-
tors during liver development revealed that an increased
number of interactions are correlated with hepatocyte dif-
ferentiation. In essence, although there are only a few con-
nections between the different transcription factors early in
liver development, later on multiple, often reciprocal acti-
vating interactions stabilize the transcriptional network
(Kyrmizi et al. 2006).

Hepatoblasts are the earliest differentiated liver cell
type. Expression of albumin (Alb), transthyretin (Ttr)
and a-fetoprotein (Afp) is the earliest marker of hepato-
blasts (Gualdi et al. 1996; Jung et al. 1999). Hepatoblasts are
bipotential cells that further differentiate into mature epi-
thelial cell types, the hepatocytes that form the main func-
tional cell of the liver and the cholangiocytes that form the
biliary tree. Interestingly, the liver is not homogeneous in
function despite its appearance, displaying a distinct re-
gional distribution, or “zonation,” of metabolic functions.
Remarkably, this differential transcriptional program be-
tween the pericentral and periportal hepatocytes is depen-
dent on pericentral Wnt/b-catenin signaling, a striking
example of the “reuse” of the same signaling system at
various stages of ontogeny (Torre et al. 2010).

Hepatocytes make up �78% of the total liver volume
(Blouin et al. 1977). They are a polarized epithelial cell type
that has many functions including controlling the levels of
metabolites and serum proteins in the blood (Stamatoglou
and Hughes 1994). HNF-4a is critical for terminal hepa-
tocyte differentiation and epithelialization of the liver, al-
though it is not required for early liver specification (Spath
and Weiss 1998; Li et al. 2000; Battle et al. 2006; Hayhurst
et al. 2008). Direct activation of target transcription may be
through regulation of chromatin accessibility by HNF-4a

BA

HNF1α HNF4α HNF6

HNMT PLGL C8B AMBP

HNF1α

HNF4αHNF1α

HNF4α7

Figure 3. Regulation of liver-specific gene expression using transcriptional networks. (A) Activation of liver-specific
genes is dependent on combinations of transcription factors. HNF1a, HNF4a, and HNF6 binding is required for
expression of hepatocyte-specific genes such as HNMT, PLGL, C8B, and AMBP. (B) Coexpression of transcription
factors is required for maintenance of expression levels for both factors. Binding of HNF1a and HNF4a proteins to
the promoters of the HNF4a and HNF1a genes, respectively, is required for robust expression of both factors.
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(Li et al. 2000; Soutoglou and Talianidis 2002). HNF-4a
also targets genes indirectly through the activation of the
transcriptional regulators Hnf1a and PXR, which are cru-
cial for expression of subsets of hepatocyte-specific genes
(Tian and Schibler 1991; Kuo et al. 1992; Holewa et al.
1996). Differentiation of human embryonic stem cells
into hepatocyte-like cells requires HNF-4a for activation
and maintenance of expression for several key transcription
hepatic progenitor factors including FoxA2, GATA4, GATA6,
HNF1B, and HNF1A (DeLaForest et al. 2011). These data
show that HNF-4a functions as a master regulator of he-
patocyte differentiation through transcriptional regulation
at multiple levels.

Cholangiocytes are cells that line the bile ducts and
function in synthesizing and secreting components of
bile; they make up a small percentage of the liver. Hnf6,
hepatic nuclear factor 6, is required for the formation of
biliary ducts (Clotman et al. 2002). In the liver, Hnf6 trans-
activates the promoter of another transcription factor,
Hnf1b, which is required generally for the development
of tubules during organogenesis (Clotman et al. 2002;
Coffinier et al. 2002). The exact mechanism of this tran-
scriptional cascade is still being studied but most likely is
regulated by signals from the septum transversum mesen-
chyme (Kalinichenko et al. 2002).

5 HOMEOSTASIS IN THE INTESTINAL
EPITHELIUM AND THE LIVER

5.1 Regulation of Cellular Turnover in the Intestine

The adult intestinal epithelium is one of several epithelial
tissues in the body that maintain its function by constant
production of several types of short-lived cells. The intesti-
nal epithelium is composed of a single layer of cells that
perform the essential role of digestion and absorption of
nutrients into the bloodstream. Epithelial cells migrate
from the crypt region to the villus, changing from a progen-
itor state to fully differentiated cell in the process. Once cells
reach the tip of the villus, they are shed into the gut lumen.
This entire process takes �3–5 d in mice and human. Four
major differentiated cell types are required to maintain
small intestinal function. Ninety percent of all epithelial
cells are enterocytes that function as absorptive cells. The
remainder of the cells is composed of enteroendocrine,
goblet, and Paneth cells, collectively referred to as the secre-
tory cell lineage. These cells secrete hormones that regulate
digestion and signal to the body, elaborate mucous that
protects the epithelium, and produce defensins to protect
against infections, respectively. The mature epithelial cell
types must be maintained in the appropriate ratio or there
are severe consequences for intestinal function. Interestingly,

the relative representation of the four differentiated cell
types also varies across the anterior–posterior axis, with
the duodenum, the most anterior section of the intestine,
elaborating far fewer goblet cells than the colon, whereas
Paneth cells are found in the small intestine but are missing
from the large bowel. Thus, positional cues must maintain
differences in progenitor cell differentiation even in the
adult.

The intestinal epithelium maintains its self-renewal
capacity by maintaining a multipotent stem cell niche
(Fig. 4). The intestinal epithelium is constantly repopulat-
ed by the coordinated division of stem cells into faster
cycling transit–amplifying cells that divide to produce all
differentiated cells (Sancho et al. 2004). Intestinal stem cells
are found in the bottom of the crypts and divide symmetri-
cally to produce both stem cells and transit-amplifying cells
(Snippert et al. 2010). These cells are bona fide stem cells
and are sufficient to form new crypts in culture (Sato et al.
2009). Intestinal stem cells also express general stem cell
markers such as Lgr5 (Barker et al. 2010), Bmi-1 (Sangiorgi
and Capecchi 2008), Prominin/CD133 (Zhu et al. 2009;
Snippert et al. 2010), DCMKL-1 (May et al. 2009), and
HopX (Takeda et al. 2011); however, little is known con-
cerning how or if these markers themselves contribute to
maintenance of self-renewal. Intestinal stem cells may be
maintained in two distinct pools with expression of distinct
markers (Bmi-1/HopX vs. Lgr5) and different cycling dy-
namics (Takeda et al. 2011; Tian et al. 2011; Yan et al. 2012).
Ablation of Lgr5-expressing stem cells shows little effect on
maintenance of the epithelium because of expansion and
compensation of the Bmi-1 population (Tian et al. 2011).
However, the Lgr5 relative, Lgr4, is expressed in the crypt
epithelium as well as the surrounding mesenchyme and was
shown using ex vivo culture techniques to be required with-
in the epithelium for maintenance of the crypts (Mustata
et al. 2011). How these two populations of stem cells inter-
act to maintain self-renewal is still under investigation.

Wnt signaling is required for maintenance of undiffer-
entiated cells. There is a gradient of Wnt expression, with
the highest levels found at the bottom of the crypt, that
gradually decreases as cells transit up (van de Wetering et al.
2002; Pinto et al. 2003; Ireland et al. 2004; Sansom et al.
2004). Many Wnt-responsive genes also show highest acti-
vation in the crypt region (Van der Flier et al. 2007). Mu-
tations that cause excessive activation of Wnt signaling in
the intestinal epithelium, such as those found in the ad-
enomatos polyposis coli (APC) gene, cause massive growth
in the epithelium and proliferation into cancerous polyps
(Fearon 2011).

Multiple signaling pathways are critical regulators of
differentiation that occurs in the crypt region. Active Notch
and BMP signaling promotes differentiation into specific
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intestinal cell types. Underlying the epithelium is mesen-
chymal tissue that serves as both structural support and
signaling center. Expression of Hedgehog (epithelial) and
BMP (mesenchymal) ligands serves as a way for mesen-
chyme and epithelium to communicate through recipro-
cal signaling, and disruption of either causes defects in

proliferation (Crosnier et al. 2006; Madison et al. 2009).
These interactions between cells are important because
support cells such as myofibroblasts enhance survival and
growth of intestinal epithelium in vitro culture (Ootani
et al. 2009). It is unclear how signaling pathways interact
to regulate gene expression as cells transition from stem to

Stem cells

Paneth cells

Transit-amplifying
cells

Absorptive cells

Goblet cells

Enteroendocrine
cells

Mouth
of crypt

Crypt
~250 cells Transit-amplifying cells

Stem cells and Paneth
cells

Villus
~3500 cells

Figure 4. Intestinal homeostasis: Stem cells are located in the bottom of the crypt interspersed with Paneth cells.
Stem cells give rise to transit-amplifying (progenitor) cells that rapidly move up the villus and differentiate into
functional absorptive, goblet, and enteroendocrine cells. Once cells reach the top of the villus, they are shed into the
lumen. (Reprinted, with permission, from Crosnier et al. 2006 # Macmillan.)
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differentiated states within the epithelium, because the
concentrations of the various ligands have to be modulated
across the very small distances that separate stem, progen-
itor, and differentiated cells.

Positioning within the crypt/villus axis and cell migra-
tion is essential for regulation of proliferation and differ-
entiation. EphB and Ephrin-B levels vary with position
along the crypt/villus axis (Batlle et al. 2002). The migra-
tory behavior of the cell is tightly correlated with its differ-
entiation status (Wimmer-Kleikamp et al. 2004; Pasquale
2005; Vearing and Lackmann 2005). Components of the
Eph–ephrin signaling pathway are targets of Wnt/b-cat-
enin signaling (Batlle et al. 2002). Recent evidence has
shown that Eph–ephrin signaling is also dependent on
Notch and TGF-b signaling; however, this may be due in-
directly through modulation of Wnt/b-catenin (Koo et al.
2009; Furukawa et al. 2011). Compound EphB2/EphB3
mutant mice show differentiated cells occupying positions
in the proliferative zone and a reduced proliferative zone,
suggesting that the EphB receptors play a role in repel-
ling the downward migration of differentiated cells (Batlle
et al. 2002). A comprehensive investigation of the transcrip-
tional profile of Eph receptors by Genander et al. (2009)
showed that EphB controls proliferation and cell position-
ing through Cyclin D1 and phosphatidylinositol 3-kinase
(PI3K), respectively.

As mentioned above, intestinal epithelial cells are clas-
sified as either absorptive enterocytes (termed “colono-
cytes” in the colon) or secretory cells (goblet, Paneth, and
enteroendocrine cells). Notch signaling activates Hes1,
which antagonizes enterocyte fate. Notch works by lateral
inhibition to prevent adjacent cells from adopting the same
fate as the signal-emitting cell, thus controlling the final
composition of differentiated cell types (Artavanis-Tsako-
nas et al. 1999; Gaiano et al. 2000). Secretory cells depend
on Math1 expression in progenitor cells (Yang et al. 2001;
Shroyer et al. 2007; VanDussen and Samuelson 2010).
Math1 then activates the expression of Sox9, Klf4, and
NeuroD/Ngn3 to direct full differentiation into Paneth,
goblet, and enteroendocrine cells, respectively (Naya et al.
1997; Jenny et al. 2002; Katz et al. 2002; Lee et al. 2002;
Mori-Akiyama et al. 2007). More detail on intestinal epi-
thelial differentiation can be found in a recent review (May
and Kaestner 2010).

5.2 Homeostasis in the Liver

Much work has been done to investigate the ability of the
adult liver to regenerate, because this process is important
in liver transplantation. The liver can fully regenerate after
an acute injury, for instance, the surgical removal of 70% of
the liver mass (partial hepatectomy). However, the ability

for the liver to recover after chronic injury is often com-
promised. Multiple signaling pathways including FGF,
BMP, Wnt, and Notch have been shown to be involved in
this recovery process of the liver (Bohm et al. 2010). This
rapid growth process is largely due to hepatocyte replica-
tion (Evarts et al. 1987, 1989). However, in situations in
which hepatocyte replication is blocked, facultative hepatic
progenitors, often referred to as “oval cells,” are thought to
contribute to liver repopulation. Recently, results of genetic
lineage tracing experiments provided strong evidence for
this epithelial bipotential adult progenitor cell. The Foxl1-
Cre transgene, which is normally silent in the liver, was
activated in cells near the portal triad following toxic liver
injury. In Foxl1-Cre, Rosa26R double transgenic mice, blue
cells appeared regardless of the nature of liver injury (Sack-
ett et al. 2009). Many of these cells were proliferative and
were shown over time to develop into cholangiocytes or
hepatocytes. Thus, by these stringent in vivo criteria, Foxl1-
Cre expression marks a bipotential progenitor of both ep-
ithelial lineages in the liver. In fact, when Foxl1-Cre-labeled
cells were isolated and placed in culture, they proved to be
clonogenic, and these clonal cell lines could be differenti-
ated toward the hepatocyte and cholangiocyte lineage in
vitro (Shin et al. 2011). A similar population of bipotential
and clonogenic liver progenitor cells was also isolated based
solely on the expression of specific cell surface antigens
from biliary cells following liver injury (Dorrell et al.
2011). One can envision that in the future the isolation
and ex vivo expansion and differentiation of these hepatic
progenitors might be put to therapeutic use.
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