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Identification of the phosphoinositide-3-kinase–protein
kinase B/Akt (PI3K-PKB/Akt) pathway and activating
receptor tyrosine kinases (RTKs) began in earnest in the
early 1980s through vigorous attempts to characterize
insulin receptor signaling (for review, see Alessi 2001; Bra-
zil and Hemmings 2001). These humble beginnings led to
the identification of the components and mechanism of in-
sulin receptor signaling via insulin receptor substrate (IRS)
proteins to PI3K and consequent PKB/Akt-mediated acti-
vation by 3-phosphoinositide-dependent protein kinase 1
(PDK1). With the discovery of the potent contribution of
PI3K and PKB/Akt activation to tumorigenesis, intense
research into the regulation of this pathway led to the dis-
covery of the negative regulators, the protein phosphatase
2 (PP2A), phosphatase and tensin homolog (PTEN), and
the PH-domain leucine-rich-repeat-containing protein
phosphatases (PHLPP1/2). More recently, the elusive PKB/

Akt hydrophobic motif kinases—i.e., the mammalian
target of rapamycin (mTOR), when associated with the
mTOR complex 2 (mTORC2), and the DNA-dependent
protein kinase (DNA-PK)—were identified, as was the abil-
ity of Ras to affect the PI3K-PKB/Akt pathway via PI3K,
completing our current model of the PI3K-PKB/Akt
pathway.

The PI3K-PKB/Akt pathway is highly conserved, and
its activation is tightly controlled via a multistep process
(as shown in Fig. 1) Activated receptors directly stimulate
class 1A PI3Ks bound via their regulatory subunit or adapt-
er molecules such as the insulin receptor substrate (IRS)
proteins. This triggers activation of PI3K and conversion
by its catalytic domain of phosphatidylinositol (3,4)-bis-
phosphate (PIP2) lipids to phosphatidylinositol (3,4,5)-tris-
phosphate (PIP3). PKB/Akt binds to PIP3 at the plasma
membrane, allowing PDK1 to access and phosphorylate
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Figure 1. PKB/Akt activation downstream of RTKs via the P13K pathway.
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T308 in the “activation loop,” leading to partial PKB/Akt
activation (Alessi et al. 1997). This PKB/Akt modification
is sufficient to activate mTORC1 by directly phosphorylat-
ing and inactivating proline-rich Akt substrate of 40 kDa
(PRAS40) and tuberous sclerosis protein 2 (TSC2) (Vander
Haar et al. 2007). mTORC1 substrates include the eukaryotic
translation initiation factor 4E binding protein 1 (4EBP1),

and ribosomal protein S6 kinase, 70 kDa, polypeptide 1
(S6K1), which, in turn, phosphorylates the ribosomal protein
S6 (S6/RPS6), promoting protein synthesis and cellular pro-
liferation.Figure 1.

Phosphorylation of Akt at S473 in the carboxy-terminal
hydrophobic motif, either by mTOR (Sarbassov et al. 2005)
or by DNA-PK (Feng et al. 2004), stimulates full Akt activity.
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Figure 2. Signalling events activating PKB/Akt and cellular functions regulated by PKB/Akt.
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Full activation of Akt leads to additional substrate-specific
phosphorylation events in both the cytoplasm and nucleus,
including inhibitory phosphorylation of the pro-apoptotic
FOXO proteins (Guertin et al. 2006). Fully active PKB/Akt
mediates numerous cellular functions including angiogene-
sis, metabolism, growth, proliferation, survival, protein syn-
thesis, transcription, and apoptosis (as shown in Fig. 2).
Dephosphorylation of T308 by PP2A (Andjelković et al.
1996), and S473 by PHLPP1/2 (Brognard et al. 2007), and
the conversion of PIP3 to PIP2 by PTEN (Stambolic et al.
1998) antagonize Akt signaling.Figure 2.

Figures adapted, with kind permission, from Cell Signaling Technology
(http://www.cellsignal.com.)
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