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Abstract
All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer
clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the
remainder are passenger mutations. The driver mutations and mutational processes operative in
breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100
tumours for somatic copy number changes and mutations in the coding exons of protein-coding
genes. The number of somatic mutations varied markedly between individual tumours. We found
strong correlations between mutation number, age at which cancer was diagnosed and cancer
histological grade, and observed multiple mutational signatures, including one present in about ten
per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver
mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8,
CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we
found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer
genes. The results highlight the substantial genetic diversity underlying this common disease.

The coding exons of 21,416 protein coding genes and 1,664 microRNAs were sequenced
and copy number changes examined in 100 primary breast cancers, 79 of which were
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oestrogen receptor positive (ER+) and 21 of which were oestrogen receptor negative (ER−)
(Supplementary Table 1). We sequenced normal DNAs from the same individuals to
exclude inherited sequence variation. We identified 7,241 somatic point mutations: 6,964
were single-base substitutions, of which 4,737 were predicted to generate missense; 422,
nonsense; 158, an essential splice site; 8, stop codon read-through; and 1,637, silent changes
in protein sequence. Two substitutions were found in microRNAs. There were 277 small
insertions or deletions (71 and 206, respectively), of which 231 introduced translational
frameshifts and 46 were in-frame (Supplementary Table 2). Analyses of copy number
yielded 1,712 homozygous deletions and 1,751 regions of increased copy number
(amplification) (Supplementary Table 3).

Somatic driver substitutions and small insertions/deletions (indels) were identified in cancer
genes previously implicated in breast cancer development, including AKT1, BRCA1,
CDH1, GATA3, PIK3CA, PTEN, RB1 and TP53 (Supplementary Table 4; see also http://
www.sanger.ac.uk/genetics/CGP/Census). Likely drivers were also found in cancer genes
involved in other cancer types, including APC, ARID1A, ARID2, ASXL1, BAP1, KRAS,
MAP2K4, MLL2, MLL3, NF1, SETD2, SF3B1, SMAD4 and STK11.

To identify new cancer genes, we searched for non-random clustering of somatic mutations
in each of the 21,416 protein-coding genes2,3 and sequenced a subset of genes highlighted
by this analysis in a followup series of 250 breast cancers (Supplementary Tables 5 and 6).
Persuasive evidence was found for nine new cancer genes (Fig. 1a and Supplementary Fig.
1). Of these ARID1B, CASP8, MAP3K1, MAP3K13, NCOR1, SMARCD1 and CDKN1B
had the truncating mutations and often biallelic inactivation characteristic of inactivated,
potentially recessive cancer genes (Supplementary Table 4). AKT2 is probably an activated,
dominantly acting cancer gene. The effects of TBX3 mutations on its function are unclear.

MAP3K1 encodes a serine/threonine protein kinase that regulates the activity of the ERK
MAP kinase (the extracellular signal-regulated mitogen-activated protein kinase), JUN
kinase and p38 signalling pathways implicated in control of cell proliferation and death4.
Somatic mutations in MAP3K1 were observed in 6% of breast cancers, predominantly in ER
+ cases. Most were protein truncating. MAP3K1 phosphorylates and activates the protein
encoded by MAP2K4, a known recessive cancer gene with inactivating mutations in breast
and other cancers5. In turn, MAP2K4 phosphorylates and activates the JUN kinases MAPK8
(also known as JNK1) and MAPK9 (also known as JNK2), which phosphorylate JUN, TP53
and other transcription factors mediating cellular responses to stress4. Truncating mutations
and other non-synonymous mutations were also found in MAP3K13, which encodes a
kinase that phosphorylates and activates MAP2K7. MAP2K7 phosphorylates and activates
MAPK8 and MAPK9 (ref. 4). Thus, in breast cancer, inactivating mutations in MAP3K1,
MAP2K4 and MAP3K13 are predicted to abrogate signalling pathways that activate JUN
kinases (Fig. 1b).

In the serine/threonine kinase gene AKT2, we identified a single somatic missense mutation,
Glu 17 Lys, that is identical to the recurrent, activating mutation in AKT1 previously
reported in breast cancer6. Thus, AKT2 is also probably a cancer gene, albeit one
infrequently implicated in breast cancer development. Because AKT phosphorylates and
inhibits MAP2K4 (ref. 7) and mutations in PIK3CA and PTEN can result in AKT
activation8, about half of breast cancers may have abrogation of JUN kinase signalling (Fig.
1b). The biological consequences of the reduction in JUN kinase activity are likely to be
diverse and complex, but may include destabilization and consequent inactivation of TP53
with disruption of pro-apoptotic cellular signalling in response to stress9.
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We observed truncating mutations and homozygous deletions of NCOR1. In addition to
mediating repression of thyroid-hormone and retinoic-acid receptors by promoting
chromatin condensation and preventing access of the transcription machinery10, NCOR1
participates in ligand-dependent transcriptional repression by oestrogen receptor alpha11.
We also identified inactivating mutations in SMARCD1 and ARID1B, further implicating
aberrant chromatin regulation. The encoded proteins of both are components of the SWI/
SNF chromatin modelling complex, which incorporates the products of several established
recessive cancer genes, including PBRM1, ARID1A, SMARCB1 and SMARCA4 (refs 3,
12-14).

We found three truncating mutations and a missense mutation in CDKN1B. Two truncating
mutations in CDKN1B in cancer have previously been reported15,16, and collectively the
results confirm that CDKN1B is a cancer gene. CDKN1B (also known as p27 or KIP1)
normally inhibits activation of cyclin E/CDK2 and cyclin D/CDK4 complexes, thus
preventing cell cycle progression at phase G117.

Three truncating mutations were observed in CASP8. CASP8 is a member of the cysteine/
aspartic acid protease family that forms a complex with the FAS cell surface receptor to
promote programmed cell death. Inactivation of CASP8 in these cancers is therefore
predicted to abrogate apoptosis in response to a variety of signals.

Six tumours had mutations in TBX3, which encodes a T-box transcription factor that
regulates stem cell pluripotency-associated and reprogramming factors and is involved in
normal breast development18,19. Constitutional inactivating mutations in TBX3 cause ulnar-
mammary syndrome, in which there is failure of breast and apocrine development coupled
with abnormalities of limb morphogenesis20. Three breast cancers had in-frame deletions,
one of Thr 210 and the other two of Asn 212, a residue through which the T-box domain
binds to DNA. Despite the presence of truncating mutations in three further cases, the
recurrent and clustered in-frame deletions and the finding that all mutations were
heterozygous suggests that they may not simply result in loss of function. Indeed, recent
reports suggest that increased activity of TBX3 is likely to contribute to oncogenesis. The
proportion of stem-like cells in breast cancers is increased by oestrogen-dependent
activation of the TBX3 pathway21. Moreover, TBX3 overexpression increases the efficiency
of the derivation of induced pluripotent stem cells18 and the ability of cancer cells to form
tumours21.

Further supporting their role in oncogenesis, three of the nine newly identified somatically
mutated cancer genes, MAP3K1, CASP8 and TBX3, carry inherited common variants,
identified by genome-wide association studies, that confer small increased risks of breast
cancer22,23. Several additional genes showed truncating mutations and are biologically
plausible candidate cancer genes contributing infrequently to breast cancer development.
Some, including ASXL2, ARID5B, KDM3A, SETD1A, CHD1, NCOR2, HDAC9 and
CTCF, encode proteins that regulate chromatin structure, whereas others, including FANCA
and ATR, are involved in DNA repair.

Cancers arise through successive waves of clonal expansion dependent on the sequential
acquisition of driver mutations. A central parameter of cancer development is therefore the
number of driver mutations required for conversion of a normal cell into a symptomatic
cancer. Estimates based on cancer age–incidence curves have indicated that approximately
five rate-limiting steps underlie the development of common adult solid tumours24.
Experimental studies have similarly indicated that a limited number of key genetic changes
are required for neoplastic transformation of human cells25. Our systematic genome analysis
now provides a direct survey of the landscape of driver mutations in breast cancer.
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Somatic driver point mutations and/or copy number changes in at least 40 cancer genes were
implicated in the development of the 100 breast cancers (Fig. 2, Supplementary Tables 3 and
4, and Supplementary Methods). The maximum number of mutated cancer genes in an
individual cancer was 6, but 28 cases only showed a single driver. Thus, there seems to be
substantial variation in the number of drivers. In some cases, the presence of multiple
drivers was associated with subclonal evolution of the cancer (Supplementary Statistical
Analyses). However, in others multiple drivers were in the root cancer clone. Seven of the
40 cancer genes (TP53, PIK3CA, ERBB2, MYC, FGFR1/ZNF703, GATA3 and CCND1)
were mutated in more than 10% of cases. Collectively these contributed 58% of driver
mutations (144 of 250). Therefore, 33 mutated cancer genes, each contributing relatively
infrequently, were responsible for the remaining 42% of driving genetic events. We
observed 73 different combinations of mutated cancer genes. Thus, most breast cancers
differed from all others (Fig. 2 and Supplementary Fig. 2). This assessment of the genetic
diversity of breast cancer is probably conservative because, for several reasons, it
underestimates the number of mutated cancer genes in each case.

At present, we know little about the mutational processes responsible for the generation of
somatic mutations in breast and other cancers. In the 100 breast cancers analysed here, there
was substantial variation in the total numbers of base substitutions and indels between
individual cases (Fig. 3a). There was also considerable diversity of mutational pattern,
ranging from cases in which C•G → T•A transitions predominated to cases in which all
transitions and transversions made equal contributions (Fig. 3b and Supplementary Fig. 3).
Taken together, the results suggest that multiple distinct mutational processes are operative.
For most of these processes, the underlying mechanism is unknown.

To illustrate one mutational signature in detail, we selected the ER+ breast cancer with the
largest number of base substitutions in the series, PD4120 (Fig. 3a, asterisk; Fig. 4). The
mutation spectrum of this case was distinctive, featuring C•G → T•A, C•G → G•C and C•G
→ A•T mutations and very few mutations at A•T base pairs (Fig. 4a). To characterize this
process further, we examined the sequence context in which the mutations occurred (in the
following discussion, mutations at C•G base pairs are represented as the change at the C
base) and found pronounced overrepresentation of thymine immediately 5′ to the mutated
cytosines. Thus, in PD4120 the large majority of mutations were of cytosine at TpC
dinucleotides (Fig. 4b).

To obtain further insight into the underlying mechanism in this case, we looked for
differences in mutation prevalence between the transcribed and untranscribed strands of the
21,416 genes analysed (‘strand bias’) and found a higher prevalence of C→T, C→G and
C→A mutations on transcribed strands (P = 0.02) (Fig. 4c and Supplementary Table 7).
This strand bias raises the possibility that transcription-coupled nucleotide excision repair
(NER) has been operative. NER removes bulky DNA adducts that distort the DNA double
helix, notably pyrimidine dimers due to ultraviolet light exposure or adducts due to
mutagens in tobacco smoke26. There is a form of NER, recruited by RNA polymerase II,
that is operative only on the transcribed strand of each gene and thus introduces a strand bias
for mutations27. Therefore, one hypothesis to account for the strand bias in PD4120 is past
involvement of NER, in turn implicating exposure to a bulky DNA-damaging agent, either
of endogenous or exogenous origin. However, we cannot exclude the possibility that other
DNA damage or repair processes generate a strand bias. At least eight additional cancers in
this series had a very similar mutational spectrum, sequence context and strand bias
(Supplementary Fig. 4 and Supplementary Statistical Analysis). None had been treated
before excision of the cancer.
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The somatic mutations in a cancer genome accumulate over a patient’s lifetime, during the
lineage of mitotic divisions from the fertilized egg to the cancer cell. Some are acquired
while cells in the lineage are biologically normal, whereas others are acquired after
acquisition of the neoplastic phenotype. However, the relative proportions accumulated in
these two phases are unknown. To explore this question, we examined the relationship
between the total numbers of somatic base substitutions and the age at diagnosis in the 100
tumours (Fig. 5). In both ER+ and ER− cancers, no correlation was observed (P = 0.33 and
0.14 respectively). If most somatic mutations in a cancer genome are acquired in normal
tissues before neoplastic transformation, the later the onset of the cancer the longer this part
of the lineage is likely to have been and, consequently, the higher the number of mutations.
The absence of a correlation there fore suggests that most mutations in breast cancer
genomes occur after the initiating driver event.

We then considered separately the subset of somatic mutations constituted by C•G → T•A
substitutions at CpG dinucleotides, because this mutational pattern is observed in non-
diseased tissues, manifesting prominently in normal germline variation. This subset showed
a strong positive correlation with the age at cancer diagnosis in ER− cancers (P = 1.2 ×
10−7), supporting the proposition that it is enriched in mutations occurring in normal tissues
and that, overall, other mutation classes occur later. By contrast, ER+ cancers showed no
correlation between C•G → T•A substitutions at CpG dinucleotides and age at diagnosis (P
= 0.27). The basis for this pronounced difference is unclear, but potentially highlights a
profound divergence in the dynamics of mutation acquisition between these two major
subclasses of breast cancer.

In clinical practice, breast cancers are graded microscopically on the basis of mitotic counts,
pleomorphism of cancer cell nuclei and extent of tubule formation, which are then collected
into an overall grade score. High scores indicate large numbers of mitoses, substantial
tumour cell pleomorphism and little tubule formation, and are generally associated with
more rapid progression. Significant correlations were not observed between numbers of
driver mutations and grade scores (Supplementary Statistical Analysis). However, there
were strong positive correlations between the total number of substitutions (that is, drivers
and passengers) and mitosis and tubule scores (P = 0.0002 and 0.002 respectively), which
remained significant after multiple testing corrections. The causal relationships between
these features are unclear. However, because most substitutions are likely to be biologically
inert passengers, it is possible that the biological state of high-grade breast cancers may be
responsible for generating increased numbers of mutations, rather than the converse.

The panorama of mutated cancer genes and mutational processes in breast cancer is
becoming clearer, and a sobering perspective on the complexity and diversity of the disease
is emerging. Driver mutations are operative in many cancer genes. A few are commonly
mutated, but many infrequently mutated genes collectively make a substantial contribution
in myriad different combinations. Multiple somatic mutational processes have been
operative. Ultimately, characterization of the genomes of breast cancer, and others, will
provide a robust and biologically meaningful classification generating insights into the
clinical heterogeneity of the disease and influencing strategies to find new modes of
prevention and treatment.

METHODS
Patient samples

Informed consent was obtained from all subjects and ethical approval obtained from
Cambridgeshire 3 Research Ethics Committee (ref 09/H0306/36). Collection and use of
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patient samples were approved by the appropriate IRB of each Institution. In addition, this
study and usage of its collective materials had specific IRB approval.

Exome enrichment and sequencing
Genomic libraries were prepared using the Illumina Paired End Sample Prep Kit following
the manufacturer’s instructions. Enrichment was performed as described previously31, using
the Agilent SureSelect Human All Exon 50Mb kit following the manufacturer’s
recommended protocol but excluding pre-enrichment PCR amplification. Each exome was
sequenced using the 75 or 76-bp paired-end protocol, on an Illumina GAII or HiSeq DNA
Analyser, to produce approximately 10 Gb of sequence per exome. Sequencing reads were
aligned to the human genome (NCBI build 37) using the BWA algorithm on default
settings32. Reads which were unmapped, PCR-derived duplicates or outside the targeted
region of the genome were excluded from the analysis. The remaining uniquely mapping
reads (~60%) provided 60–80% coverage over the targeted exons at a minimum depth of
×30.

Sequencing of pooled PCR amplimers
Selected genes were targeted for followup investigations in 250 additional breast cancers by
sequencing of pooled PCR products. An 8-bp index was introduced during amplification to
enable sequence data from individual tumours to be identified in downstream analyses.

For each amplimer, a primary PCR was performed using gene-specific primers modified
with the inclusion of a common upstream adaptor sequence. A secondary PCR was
performed using primers complementary to the common adaptor sequences. The reverse
secondary primer contained the internal index, and 96 different indexed primers were used
to enable 96 different DNAs to be pooled before sequencing. The primary and secondary
PCR amplifications were performed as a simultaneous multiplex reaction. Primer sequences
are available on request.

For each amplimer, PCR was performed in batches of 96 DNA samples. Following
amplification, the 96 PCR products were pooled, purified using a QiaQuick column
(Qiagen) and quantified on a Bioanalyser (Agilent). Pooled reactions from different
amplimers (up to 50) were normalized for concentration and subsequently also pooled to
produce the final template used for sequencing on a single lane of an Illumina GAII DNA
Analyser (~5,000 amplimers per lane). Amplimers which failed PCR were excluded from
the pooling experiments. The subsequent sequence reads were aligned with BWA and
resulted in coverage typically exceeding ×500 per individual sample amplimer.

Variant detection
The CaVEMan (cancer variants through expectation maximization) algorithm was used to
call single nucleotide substitutions31. This uses a naive Bayesian classifier to estimate the
posterior probability of each possible genotype (wild type, germline, somatic mutation) at
each base. We applied several post-processing filters to the set of initial CaVEMan mutation
calls to remove variants reported in poor-quality sequence and increase the specificity of the
output.

To call insertions and deletions, we used split-read mapping implemented as a modification
of the Pindel algorithm33. This algorithm searches for reads where one end is anchored on
the genome and the other end can be mapped with high confidence in two (split) portions,
spanning a putative indel. Post-processing filters were applied to the output to improve
specificity.
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Mutations were annotated to Ensembl version 58.

Variant validation
Validation of all 7,241 putative somatic variants in the primary screen of 100 tumours and
all variants found in the follow-up of 250 cases was attempted by either capillary
resequencing or 454 pyrosequencing of PCR products spanning the mutation in the tumour
and the normal pair. Where independent validation failed (approximately 20%) variants
were reported to be somatic if manual inspection of the aligned sequence reads provided
strong evidence to support their validity.

Identification of likely driver base substitutions and indels
A subset of the 7,241 substitution and indel somatic mutations identified in the exome
screen were classified as ‘likely driver mutations’ using conservative criteria. To do this, we
identified the established cancer genes from the Cancer Gene Census (http://
www.sanger.ac.uk/genetics/CGP/Census/) that are known to be mutated by base
substitutions and indels to contribute to cancer development. We then classified as likely
driver mutations those that conformed to the known patterns of cancer-causing mutation for
each cancer gene. Thus, for recessive cancer genes truncating mutations, essential splice site
mutations and homozygous deletions were included. Missense mutations were also included
where they had been seen previously or conformed to the known pattern of missense
mutation in each gene (COSMIC database; http://www.sanger.ac.uk/genetics/CGP/cosmic/).
For established, dominantly acting cancer genes, we included mutations that had been
previously registered in COSMIC. For the new cancer genes established in this study, we
applied essentially the same rules. However, for the recessive cancergenes, to be
conservative we did not include missense variants (other than the single variant in MAP3K1,
which is almost certainly disruptive to the function of the protein). We included the variant
in AKT2 because it is identical in nature to the recurrent variant in AKT1, and we included
all TBX3 mutations. As indicated in the main text, we may have both underestimated and
overcalled some somatic variants as drivers using this approach. However, the number of
erroneous calls is likely to be small and overall we have probably underestimated the
number of driver mutations. For the calling procedure for likely driver copy number
variants, see below.

Detection of copy number variation
Single nucleotide polymorphism (SNP) array hybridization on the SNP6.0 platform was
done according to Affymetrix Protocols and as described at http://www.sanger.ac.uk/cgi-
bin/genetics/CGP/cghviewer/CghHome.cgi.

Copy number analysis was performed using ASCAT (version 2.1) taking into account non-
neoplastic cell infiltration and tumour aneuploidy34, and resulted in integral allele-specific
copy number profiles for the tumour cells. Amplifications in the 100 samples analysed were
called if copy number was ≥5 (for diploid tumours, with ASCAT ploidy <2.7 n) or ≥9 (for
tumours with evidence of a whole-genome duplication, with ASCAT ploidy ≥2.7 n).
Homozygous deletions were called if there were zero copies in the tumour cells.

Identification of likely driver copy number variants
To identify likely driver copy number variants, we derived a conservatively generated list of
frequently amplified regions in breast cancer from a previous study35. From the amplified
regions in breast cancer obtained by GISTIC analysis of that study, those with a GISTIC Q-
value of less than 10−5 were selected. Regions within 40 Mb of amplified regions with more
significant Q-values were excluded, as many of these probably point to the same amplified
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target gene. This process generated seven focal, highly significantly amplified regions.
These regions were annotated with their putative target genes where additional biological
studies have indicated that they are the likely targets (ERBB2, CCND1, MYC, FGFR1/
ZNF703, ZNF217, MDM2). Only the amplified region on chromosome 15 was not
annotatable. Driver amplification of these seven focal regions in the 100 samples was called
using the criteria above. Driver homozygous deletions were called if part or all of a
homozygous deletion overlapped with a known recessive cancer gene from the Cancer Gene
Census36 or a newly discovered gene from this study.

Estimation of the number of mutated copies
Allele-specific copy number estimates for point mutations and indels were obtained by
integrating copy number and sequencing data. In a sample containing only tumour cells, the
number of reads, r, with a mutation can be expressed as

1

In equation (1), nlocus is the copy number of the locus, nmut is the number of mutated copies
and R is the total number of reads from that locus. In case of a tumour sample consisting of
a fraction of tumour cells ρ, infiltrated with a fraction of normal cells 1–ρ (assumed to have
two copies), equation (1) becomes

Hence, allele-specific copy number estimates for point mutations and indels can be obtained
as

2

In equation (2), fs = r/R is the frequency of mutated reads observed in the sequencing data,
and ρ and nlocus can be obtained from the ASCAT copy number analysis.

These copy number estimates of mutations were used to determine which mutations are
likely subclonal: if nmut ≥ 0.8, the mutation is called likely clonal and if nmut < 0.8, the
mutation is called likely subclonal.

In the case of indels, reads with an insertion or deletion may not map as well as reads
without insertions and deletions. Therefore, a procedure was followed to estimate fs for
indels that was independent of ease of mapping. Reads were obtained by matching flanking
sequence (10 bp on each side) around the indel, further filtered to exclude spurious matches.
The mutated read frequency was subsequently calculated, accounting for the difference in
sequence lengths with and without the indel:

3
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In equation (3), rindel and rnormal are the respective numbers of reads with and without the
indel, ls is the read length (76 bp), and lindel and lnormal are the respective lengths of the
matching fragment in sequences with and without the indel.

Detection of selection and oncogenicity in protein-coding genes
The overall significance of an excess of non-silent mutations was determined using the
methods previously described37. The ranking of gene significances was determined using

the following model. We let  denote the number of silent mutations, where k indexes
mutation type (C•G → A•T, C•G → T•A, C•G → G•C, T•A → A•T, T•A → C•G or T•A
→ G•C) in gene g, where i = 1 for the primary screen and i = 2 for the follow-up screen. We

also have counts  and  of missense and nonsense mutations, respectively. Finally we

have counts  of indels. The numbers of screened bases, ,  and , in each gene for

each mutation type were also calculated. The total number of screened bases was . We let
ρk represent the per-base passenger mutation prevalence and use γ to denote the per-base
passenger rate of indels.

Next we assume that genes can be neutral to cancer, oncogenically triggered by missense
mutations or inactivated by truncating mutations. Genes are not precluded from belonging to
both of the last two categories. We assume that proportions α and β of genes belong to the
missense group and truncating group, respectively. Genes that belong to these groups have
mutation rates that increase by factors λ and μ, respectively. These terms quantify the
selection pressure for missense and truncating variants, respectively. This results in a
mixture model with the following likelihood:

Here α1 = 1–α, α2 = α, β1 = 1–β, β2 = β, λ1 = 1, λ2 = l, μ1 = 1 and μ2 = μ, and Poc(r)
indicates the Poisson probability of obtaining value c from a Poisson process with rate
parameter r. GF denotes the set of genes in the follow-up study. The parameters for this
model were then estimated with the expectation-maximization algorithm. Confidence
intervals for these parameters were obtained using parametric bootstrapping. Conditional on
these parameter estimates, we can then use Bayes’ law to calculate the probability that each

gene belongs to the neutral, the missense or the truncating group. Specifically, if g, ψg 
{1, 2} index whether the gene g does or does not belong to the missense or truncating group,
respectively, we have
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The probability of belonging to either the missense or the truncating group, 1–Pr( g = 1, ψg
= 1), was then used to rank the genes.

Generalized linear models
Generalized linear models (GLMs) are extensions to ordinary linear regression that model
underlying distributions using members of the exponential family38. The response variable
is related to the linear model by a link function using maximum-likelihood estimates of the
parameters. Because they are not restricted to modelling normally distributed data, GLMs
have particular utility in modelling count data such as, in this manuscript, the number of
mutations.

If mutations were generated by a random process, with a constant probability of occurring at
any point throughout an individual’s life, we would expect the number of mutations to have
a Poisson distribution, dependent only on the (unknown) rate of mutation and the age of the
individual. Where goodness-of-fit tests indicated that the Poisson distribution was an
appropriate model for the number of mutations, we used this distribution. However, in the
models where goodness-of-fit tests indicated that mutation numbers were overdispersed, we
used negative binomial distributions in place of Poisson distributions, as the negative
binomial distribution incorporates an additional parameter that allows the adjustment of the
variance of the distribution independently of its mean.

GLMs were implemented using the glm and glm.nb functions in R. The predictor variables
were {age, tumour grade, tubule score, pleomorphism score, mitotic score, mitotic count},
each of which was used within a two-factor model, with oestrogen receptor status as the
second predictor variable. The response variable was the number of mutations of a particular
type, from the set {substitutions 1 indels, substitutions, indels, copy number amplifications,
C → T at CpG mutations, all driver mutations}.

Evaluation of strand bias in tumours displaying the mutator phenotype
To assess whether there was a strand bias of C → X (C → T, C → G and C → A)
mutations in PD4120 and the other tumours showing the mutator phenotype, we first
estimated the expected ratio of cytosines found in transcribed and untranscribed strands, by
random sampling of 20,000 CCDS exons from Ensembl version 61. A χ-squared test was
then used to examine whether the C → X mutations observed in each sample differed
significantly from this ratio. Similar tests were conducted on the combined mutations from
all mutator phenotype samples and on all mutator phenotype samples except PD4120.
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Figure 1. New cancer genes established in this study and involvement of the JUN kinase
signalling pathway
a, Representations of the protein-coding sequences and major domains in cancer genes
established in this study. Somatic mutations are shown as circles: truncating (red), essential
splice site (blue), missense (green) and in-frame indel (yellow). The red lines indicate the
positions of large homozygous deletions. aa, amino acids. b, Pathways regulating the JUN
kinases MAP2K7 and MAP2K8, indicating genes with mutations in this series. Genes in
green are activated by mutations, whereas genes in red are inactivated.
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Figure 2. The landscape of driver mutations in breast cancer
Each of the 40 cancer genes in which a driver mutation or copy number change has been
identified is listed down the left-hand side. The number of mutations in each gene in the 100
tumours is shown (rows), as is the number of driver mutations in each breast cancer
(columns). Point mutations and copy number changes are coloured red and blue,
respectively.
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Figure 3. The variation in numbers and types of mutation between individual breast cancers
a, Numbers of small indels and base substitutions in the protein-coding exons of each of the
100 breast cancers studied. The cases are ranked according to the number of base
substitutions. *Breast cancer PD4120 (see main text). b, Mutation spectrum of four primary
tumours with diverse mutational patterns.
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Figure 4. The mutational signature of ER1 breast cancer PD4120
a, The mutational spectrum. b, The sequence context of C → T, C → G and C → A
mutations. The central blue bar indicates the position of the mutated cytosine and the bases
5′ and 3′ are numbered on the horizontal axis. c, Strand bias of mutations showing
substitutions at C bases and at T bases according to whether they are on the transcribed (T)
or untranscribed (U) strands of the genes screened.
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Figure 5. The relationship between age at breast cancer diagnosis and all substitutions, and for C
→ T substitutions at CpG sites
a, b, Data from the 79 ER+ breast cancers. c, d, Data from the 21 ER− breast cancers.
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