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Dissociable Brain Systems Mediate Vicarious Learning of
Stimulus–Response and Action–Outcome Contingencies
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Two distinct strategies have been suggested to support action selection in humans and other animals on the basis of experiential learning:
a goal-directed strategy that generates decisions based on the value and causal antecedents of action outcomes, and a habitual strategy
that relies on the automatic elicitation of actions by environmental stimuli. In the present study, we investigated whether a similar
dichotomy exists for actions that are acquired vicariously, through observation of other individuals rather than through direct experi-
ence, and assessed whether these strategies are mediated by distinct brain regions. We scanned participants with functional magnetic
resonance imaging while they performed an observational learning task designed to encourage either goal-directed encoding of the
consequences of observed actions, or a mapping of observed actions to conditional discriminative cues. Activity in different parts of the
action observation network discriminated between the two conditions during observational learning and correlated with the degree of
insensitivity to outcome devaluation in subsequent performance. Our findings suggest that, in striking parallel to experiential learning,
neural systems mediating the observational acquisition of actions may be dissociated into distinct components: a goal-directed,
outcome-sensitive component and a less flexible stimulus–response component.

Introduction
The ability to acquire novel behaviors through observation of
other individuals is at the core of a vast array of human skills,
including tool-use, language, and hygiene. But what exactly is it
that we learn when we observe others perform, and reap the
rewards of, instrumental actions? Psychological theories of be-
havioral control distinguish between goal-directed learning,
characterized by representations of action– outcome contingen-
cies and outcome value, and habit formation, through which
actions come to be rigidly and automatically elicited by their
stimulus environment. Although substantial behavioral and neu-
ral evidence for this distinction has been demonstrated in rodent
and human subjects learning from direct experience (Balleine
and Dickinson, 1998; Tricomi et al., 2009), very little is known
about whether an analogous dichotomy exists for vicarious learn-
ing. In particular, it is not clear whether habits can actually be
acquired through observation. To test this hypothesis, we devel-
oped a novel observational learning task in which the structure of
the observed environment encouraged either encoding the spe-
cific consequences of alternative actions or a mapping of actions
to antecedent conditional cues.

Participants learned, through observation, how to regulate a
system of four fluid-filled beakers using a set of four instrumental
actions. The beakers were graphically represented on the screen,
as were the actions performed and any points gained or lost, by an
ostensible observee (for details, see Fig. 1A). As long as all beakers
had sufficient liquid, the system remained balanced and points
corresponding to monetary reward were continuously gained.
However, on each trial, the fluid in one of the beakers would drop
below a required threshold, and points would be continually lost
until that beaker was refilled. The below-threshold drop in a bea-
ker’s fluid was always preceded by the onset of one of four stim-
ulus patterns (i.e., cues), appearing at the center of the screen.
There were two conditions in the experiment. In the Response–
Outcome (R-O) condition, each instrumental action refilled a
particular beaker regardless of which cue was presented, so that
identification of the relevant intermediate outcome (e.g., refilling
beaker 1), combined with knowledge about specific action–out-
come contingencies (i.e., action 1 refills beaker 1), indicated
which action would restore system balance, thus yielding reward,
on any given trial. Conversely, in the Cue–Response (C-R) con-
dition, the identity of the antecedent cue determined which of the
four actions would refill the emptied beaker, regardless of which
particular beaker had lost its fluid.

Habitual control has been proposed to depend on the incre-
mental formation of stimulus–response associations, void of any
representation of specific outcome features (Dickinson et al.,
1995; Daw et al., 2005). We hypothesized that, in the C-R condi-
tion, by decorrelating actions from specific beaker outcomes,
while conditioning monetary reward on the mapping of actions
to antecedent cues, we would bias the observer toward habitual
performance following observational learning, as assessed by
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outcome devaluation. To investigate differences in neural re-
sponses across our two observational learning conditions, we
scanned participants with functional magnetic resonance imag-
ing (fMRI) as they passively viewed the instrumental regulation
of the beaker system.

Materials and Methods
Participants
Nineteen healthy normal volunteers (11 males and 8 females), recruited
locally from the city of Dublin, Ireland, participated in the study. One
participant was unsure about whether or not responding for the devalued
beaker would lead to a gain in points, and was therefore excluded. An
additional three participants (two in the C-R condition and one in the
R-O condition) failed to acquire the task after extensive observational
training, and were excluded on this basis, leaving a sample size of 15.
Written informed consent was obtained from all participants and the
study was approved by the Trinity College School of Psychology Research
Ethics Committee.

Task and procedure
Each subject participated in both the R-O and C-R condition, with a
novel set of four instrumental actions being used in each condition, and
with the order of conditions counterbalanced across subjects. Each ses-
sion (condition) included a response pretraining phase, an observational
learning phase, a probe test, a devaluation phase, and a final extinction
test, as described below (for a diagram illustrating the chronology of the
procedure, see Fig. 2). The response-training phase of the first condition
was conducted outside the scanner in a separate testing room. Once

performance in this phase reached criterion, participants were trans-
ferred to the scanner and remained there throughout all subsequent
stages of the experiment. The entire experiment lasted for �2 h, with
1.5 h being spent in the scanner, and with �60 min of active scanning
during the observational learning phases and devaluation tests in each
condition.

General instructions. At the start of the experiment, participants were
presented with a cover story describing the beaker system and the task.

Figure 1. Illustration of observational learning trials. A, Instrumental trial. Participants passively view the screen as an observee is ostensibly regulating the beaker system using the four different
actions. The actions performed by the observee (each a 3-press sequence) were graphically represented by a white dot moving across three gray squares in the top right corner of the screen, and any
points gained or lost by the observee were indicated by text messages. During the intertrial interval (1), the liquid in the beakers continually fluctuated but remained high, and balance checks
occurring at brief random intervals yielded points for system balance. At the trial onset (2), one of four abstract cues appeared, the liquid in one of the beakers dropped to the bottom, and balance
checks begin to indicate a loss of points due to system imbalance. After a short time interval, the observee performed the action required to refill the emptied beaker (as indicated by the response
graphics). Following completion of the observed action (3), the abstract cue disappeared, the beaker is refilled, a small fee is charged for regulating the system, and balance checks again yield points
for system balance. B, Matching trial. The intertrial interval (1) and trial-onset (2) were as in the instrumental task and were followed by a blank screen with a 700 ms duration (3). The final screen
(4) showed a matching/not matching cue (top) or set of beakers (bottom) in the C-R and R-O conditions, respectively, together with a query about the match.

Figure 2. Diagram of procedure, showing each phase in one condition of the experiment.
The entire procedure was repeated, with novel response sequences, for the alternate, within-
subjects condition.
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Briefly, participants were informed that monetary points could be earned
as long as each of four beakers were filled up with liquid but that, when-
ever one of four abstract cues appeared, one of the beakers would be
emptied and points would be lost until that beaker was refilled using one
of four instrumental actions. They were further told that they would
learn about the relationships between the cues, actions, and beakers (i.e.,
exactly how the system worked) by observing “someone else” perform
the task, and that although they would not win or lose any points during
this observational learning phase, they would eventually be given the
opportunity to regulate the system themselves, for personal monetary
gain. Finally, participants were instructed that they would be in one of
two possible conditions— one in which each instrumental action refilled
a particular beaker regardless of which cue was presented, and another in
which the identity of the cue determined which of the four actions was
required to refill an emptied beaker, regardless of the identity of that
beaker. They were told that part of their task was to determine which of
the two conditions they were in (piloting indicated that, without explicit
instructions about these two possible structures, participants were un-
able to acquire the task within the time limits of the experiment).

Response pretraining. Before the observational learning phase, partici-
pants received pretraining on the four instrumental actions (each of
which consisted of a three-press sequence). During this training, key-
press sequences were represented by a white dot moving across three gray
squares horizontally aligned at the center of the screen. Initially, partici-
pants viewed and then immediately attempted to replicate each response
sequence, with feedback (i.e., correct/incorrect) given on each trial. After
a total of five correct replications of each response sequence, they pro-
ceeded to a retrieval phase, in which they had to generate each unique
sequence at least five times without any visual aids, again with feedback
given at the completion of each three-press sequence. Participants were
allowed to repeat these two phases as many times as they wanted to,
knowing that they would have to use the actions to earn monetary reward
in a subsequent phase.

Observational learning phase. The instrumental task was as described in
the Introduction, above, and is illustrated in Figure 1 A. Note that, in
addition to the increase or decrease in monetary points based on system
balance, there was a small cost for regulating the system. This response
cost was included to ensure that, during test, participants would not
respond simply based on any reinforcement intrinsic to executing the
correct response. Critically, the stimulus materials presented in Figure
1 A were identical across the two conditions: our manipulation consisted
entirely of differences in the contingencies between cues, actions, and
beaker outcomes. Specifically, in the R-O condition, each observed in-
strumental action (i.e., response sequence) was paired, across trials, with
the refilling of a particular beaker but was decorrelated from the various
cue identities. Conversely, in the C-R condition, each instrumental ac-
tion was paired across trials with a particular antecedent cue but decor-
related from the refilling of any particular beaker. The rationale behind
this manipulation was that the R-O condition would encourage encoding
of the relationships between actions and specific outcomes, thought to
mediate goal-directed performance, while the C-R condition would force
participants to rely on the formation of stimulus-response associations
(i.e., the incremental mapping of actions to discriminative cues) fre-
quently argued to support habitual performance.

Of course, while the actual features of the visual display were identical
across conditions, the relevant features (i.e., those to which participants
were encouraged to attend) were quite different. To control for visual
processes involved in attending to the abstract cues versus the beakers, a
matching task was block-interleaved with the instrumental task (Fig. 1 B)
during observational learning. In matching blocks, the intertrial intervals
and trial onsets were exactly as in the system balance task, except that
there were no text messages indicating points for system balance and no
response-key graphics; instead, the words “Matching Trial” were contin-
uously displayed at the center of the screen. Following the appearance of
the abstract cue and emptying of the relevant beaker, a white screen was
displayed, followed by a depiction of either an abstract cue (C-R condi-
tion) or a set of beakers (R-O condition), together with a query about
whether the currently shown cue/beaker set matched that on the previous
screen. On 70% of these trials, participants were instructed to merely

observe as a yes/no response to the matching query was indicated on the
screen. However, on the remaining 30% of trials, they had to provide the
answer themselves. Critically, participants did not know whether they
would observe or provide the response until the matching query had
appeared, ensuring that the to-be-matched display (Fig. 1 B, second
screen) was attended on all matching trials. The observational learning
phase consisted of four blocks of trials, with each block being further
divided into one block of 24 instrumental trials and a second block of
eight matching trials (Fig. 1 A, B respectively). Instrumental and match-
ing blocks were separated by screens indicating the type of upcoming
block; the order of trials within each type of block was randomized.

Probe test. A probe test, consisting of four trials with each action for a
total of 16 randomly ordered trials, was administered immediately fol-
lowing observational learning to assess acquisition. The probe trials were
identical to the observational learning trials, except that the participant
was now performing the actions themselves. If, on any given trial, a
participant failed to perform the action required to refill the currently
empty beaker, the system would regulate itself (i.e., a variable interval
with mean � 6000 ms). Participants were able to discern whether they
had successfully refilled the emptied beaker using the correct action, or
whether the system had regulated itself, based on the response cost indi-
cated on the screen; the cost was only incurred on trials in which the
participants action refilled the beaker. They were also informed that, just
as during observational learning, they would not be actually gaining or
losing any of the points displayed during the probe test, but that the
purpose of the test was simply to determine how well they had mastered
the task.

Devaluation phase. The distinction between goal-directed and habitual
performance is most commonly demonstrated by changing the value of a
particular action outcome. For example, in an animal conditioning par-
adigm, if rats have learned that one action results in sucrose pellets while
another results in grain, and if sucrose pellets are subsequently devalued
by pairing them with an aversive event or by feeding the animal on them
to satiety, response rates decrease for sucrose but not for grain. The
selective decrease indicates that behavior is sensitive to the subjective
value of the anticipated outcome, as well as to the action– outcome con-
tingency, and thus that performance is goal-directed. Conversely, the
persistent execution of an action after its outcome has been devalued is a
defining feature of habitual performance.

In the current study, following initial observational learning, we de-
valued one of the four beakers by degrading its relationship to the ulti-
mate goal of gaining monetary reward. If participants were indeed relying
largely on a stimulus–response strategy in the C-R condition, this change
in beaker value should have a significantly lesser influence on subsequent
instrumental performance in this condition than in the R-O condition.
Specifically, in the devaluation phase, participants were instructed that
the system had changed such that one of the beakers was no longer
relevant for system balance, which would be maintained, and continue to
yield points, even when the liquid in this beaker dropped below thresh-
old. They then observed as the system regulated itself (i.e., no actions
were performed by either the observee or the participant) across 16 trials
(4 with each beaker) to identify the devalued beaker. Again, participants
were told that they would not lose or gain any of the displayed points
during this phase.

Extinction test. Finally, having correctly identified the devalued beaker,
participants were given the opportunity to regulate the system them-
selves for personal monetary reward. During this test phase, all text mes-
sages, indicating gains or losses, system balance checks, and regulation
charges, were covered up to prevent additional learning (i.e., simulating
extinction). Participants were instructed that, despite these gray strips,
they should assume that all was exactly as they had learned before; that is,
they would still lose points whenever the system was not balanced, there
was still a cost for regulating the system, and the previously identified
irrelevant beaker was still irrelevant for system balance. Importantly,
given the small charge for regulating the system, refilling the now irrele-
vant beaker actually resulted in a net loss. The test phase consisted of 11
trials with each beaker, including the devalued one, for a total of 44 trials.
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Imaging protocol
Previous imaging studies on experientially acquired instrumental actions
have provided evidence for a dissociation between human goal-directed
and habitual performance at the level of the striatum, with anterior cau-
date contributing to goal-directed performance (Tanaka et al., 2008) and
the posterior caudate/putamen (Valentin et al., 2007; Tricomi et al.,
2009) contributing to habitual control. In addition, the inferior parietal
lobule (IPL) and ventromedial prefrontal cortex have both been impli-
cated in human goal-directed performance: most notably, respectively,
in action-outcome contingency learning (Liljeholm et al., 2011) and out-
come devaluation (Valentin et al., 2007). We predicted that these areas
would also be differentially recruited across conditions during observa-
tional learning. Since the graphics of response sequences ostensibly re-
flected the actions of another individual performing the task, we further
hypothesized that effects would emerge in areas previously found to be
active during action observation, including the premotor cortex, primary
motor cortex (M1), and inferior and superior parietal lobules (Caspers et
al., 2010).

Acquisition and preprocessing. We used a 3 tesla scanner (MAGNETOM
Trio; Siemens) to acquire structural T1-weighted images and T2*-weighted
echoplanar images (repetition time, 2.65 s; echo time, 30 ms; flip angle, 90°;
45 transverse slices; matrix, 64 � 64; field of view, 192 mm; thickness, 3 mm;
slice gap, 0 mm) with BOLD contrast. To recover signal loss from dropout in
the medial orbitofrontal cortex (O’Doherty et al., 2002), each horizontal
section was acquired at 30° to the anterior commissure—posterior commis-
sure axis.

Image processing and analyses were performed using SPM5 (http://
www.fil.ion.ucl.ac.uk/spm). The first four volumes of images were
discarded to avoid T1 equilibrium effects. Remaining volumes were
corrected for differences in slice acquisition, realigned to the first vol-
ume, spatially normalized to the Montreal Neurological Institute (MNI)
echoplanar imaging template, and spatially smoothed with a Gaussian
kernel (8 mm, full-width at half-maximum). We used high-pass filter
with cutoff � 128 s.

Imaging analysis. We specified a separate linear model for each
subject, with 32 regressors, one for each instrumental action, in each
of four blocks of observational instrumental learning for each of the
two conditions (i.e., C-R and R-O). Two regressors accounting for the
matching trials in the C-R and R-O condition and six regressors
accounting for the residual effects of head motion were also included.
For instrumental regressors, we modeled the period from the onset of
the abstract cue to the final press in the response sequence performed
by the observee (Fig. 1 A). For the matching trials, we modeled the
period between the onset of the cue and the onset of the matching
screen (Fig. 1 B). All regressors were convolved with a canonical he-
modynamic response function. Group-level statistics were generated
by entering contrast estimates for each condition into between-
subjects analyses assessing the interactions [R-O � C-R (instrumen-
tal � matching)] and [C-R � R-O (instrumental � matching)].

Small volume corrections (svc) were performed on three a priori re-
gions of interest using a 10 mm sphere. We used coordinates identified in
previous studies of goal-directed [anterior caudate: �15/15, 9, 15) (Lilje-
holm et al., 2011)] and habitual [tail of caudate: �27, �36, 12 (Valentin
et al., 2007); posterior putamen: �33, �44, 0 (Tricomi et al., 2009]
learning. Unless otherwise indicated, all other effects were reported at
p � 0.05, using cluster size thresholding (cst) to adjust for multiple
comparisons (Forman et al., 1995). AlphaSim, a Monte Carlo simulation
(AFNI) was used to determine cluster size and significance. An individual
voxel probability threshold of p � 0.005 indicated that using a minimum
cluster size of 122 MNI transformed voxels resulted in an overall signif-
icance of p � 0.05. For display purposes, statistical maps in all figures are
shown at an uncorrected threshold of p � 0.005.

To eliminate nonindependence bias for plots of parameter estimates, a
leave-one-subject-out (LOSO) (Esterman et al., 2010) approach was
used, in which 19 GLMs were run with one subject left out in each, and
with each GLM defining the voxel cluster for the omitted subject. Spheres
(10 mm) centered on the LOSO peaks (identified within ROIs for small
volume corrections) were then used to extract mean beta weights for each
condition; these were averaged across subjects to plot overall effect sizes.

Results
Behavioral results
Three participants, all of whom were included in our statistical
analyses, requested and received additional observational learn-
ing trials after completing the probe test before proceeding to the
devaluation phase; one of these participants requested additional
trials in both the C-R and R-O conditions, while the remaining
two only did so in the C-R condition. No scanning was performed
during the additional observational learning trials.

There were no differences between conditions in participant’s
ability to identify the devalued beaker at the end of the devalua-
tion procedure; all participants successfully identified the deval-
ued beaker in both conditions. Performance in the final
extinction test indicated that our novel paradigm did indeed pro-
duce devaluation insensitive performance under observational
conditions: having learned through observation how to regulate
the system, and having correctly identified the devalued beaker,
participants responded on trials with the devalued beaker at a
significantly higher rate in the C-R condition (mean rate � 0.21;
SEM � 0.06) than in the R-O condition (mean rate � 0; p �
0.005). Indeed, in the R-O condition, not a single participant
refilled the irrelevant beaker, suggesting that the disadvantage of
doing so given the response cost was apparent. Mean responding
on each trial with the devalued beaker in the C-R condition is
shown in Figure 3A.

Although there was no significant interaction between train-
ing conditions and counterbalancing order in the devaluation
test (p � 0.07, F(1,13) � 3.76), there was a clear trend: the degree
of devaluation insensitivity in the C-R condition was greater
when this was the first condition (mean � 0.31, SEM � 0.1, n �
8) than when it followed the R-O condition (mean � 0.11,
SEM � 0.04, n � 7), suggesting that previous exposure to the
instrumental task or to the devaluation procedure improved de-
valuation sensitivity. Of course, a similar effect may have been
present for the R-O condition had it not been for the apparent
floor effect. Since, across participants, there was not a single re-
sponse for the devalued beaker in the R-O condition when it was
presented first, there was no room for any improvement when
this condition was presented second. More generally, we note

Figure 3. Behavioral results from the devaluation and probe tests, shown for the C-R (gray)
and R-O (black) conditions. A, Mean responding, across subjects, in the C-R condition, on each
trial with the devalued beaker. B, Mean accuracy on the probe test on the first trial with each
action (first block) and across all blocks. C, Mean response times (from cue onset to last element
in response sequence) in each block of the probe test for the C-R and R-O conditions. Error bars
are SEM.
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that this floor effect might obscure a po-
tentially even greater difference in devalu-
ation sensitivity between our two training
conditions. Regardless, the difference be-
tween conditions in devaluation sensitiv-
ity was equally significant across the two
orders of presentation; both ps � 0.02.

The difference between conditions was
reliable on the very first trial with the de-
valued beaker (C-R condition mean �
0.4; SEM � 0.13; p � 0.01), suggesting
that it cannot be attributed to differential
learning occurring during the test phase.
Nor can the difference in outcome deval-
uation sensitivity between conditions be
attributed to differences in difficulty lev-
els. In the probe test (data shown in Fig.
3B,C) conducted immediately after the
observational learning phase, mean accu-
racy did not differ significantly between
the C-R and R-O conditions on the first
trial of performing each action (p � 0.55)
nor across all probe trials (p � 0.29).
Probe test response times (RTs), mea-
sured from the onset of the cue to the last
element of the response sequence differed
only in the first block of four probe trials
(1 with each action, block randomized),
such that RTs were slightly longer in the
R-O than in the C-R condition in this
block, p � 0.05. When collapsing across
all probe trials, there was no difference
between conditions on this measure (p
� 0.49). There was no influence of coun-
terbalancing order on the probe test mea-
sures in either condition (all ps � 0.2).
Finally, there was no significant correla-
tion between the degree of insensitivity to
devaluation in the extinction test and the
level of accuracy during the probe test
(r � �0.03, p � 0.89).

Imaging results
Experimental versus control conditions
A hallmark feature of goal-directed per-
formance is that it typically dominates during early learning, with
what is commonly referred to as undertraining (Dickinson et al.,
1995; Balleine and Dickinson, 1998). In addition, several imaging
studies on instrumental reward learning have reported training-
dependent decreases in neural activity in the inferior parietal
lobule, medial frontal gyrus, and caudate nucleus (Delgado et al.,
2005; Koch et al., 2008), areas commonly associated with goal-
directed instrumental performance (Tanaka et al., 2008; Lilje-
holm et al., 2011). To accommodate these potential temporal
dynamics, we begin our imaging analyses with assessing differ-
ences between conditions during the earliest block of observa-
tional learning, specifically the first quartile of trials (Fig. 4A). For
the test of activity that was greater in the R-O than the C-R con-
dition, we found effects in the supramarginal gyrus of the left IPL
(x, y, z � �48, �42, 33; cst), the M1 (x, y, z � 36, �15, 36; cst),
and in the dorsal anterior caudate (aCN; x, y, z � 15, 6, 18; svc).
The test for activity that was greater in the C-R than the R-O
condition revealed significant effects only in the right posterior

caudate (pCN; x, y, z � 24, �30, 6; svc). In contrast, when neural
effects were assessed across all training blocks (Fig. 4B), the [R-
O � C-R] test only yielded effects in the aCN (x, y, z � 18, 9, 24;
svc), while the reverse [C-R � R-O] test revealed extensive effects
in the extrastriate cortex (x, y, z � 45, �72, 9; cst) and lingual
gyrus (LG; x, y, z � 12, �69, 0; cst), as well as in the dorsomedial
frontal cortex (DMFC; x, y, z � 9, 49, 32; cst) and, again, in the
pCN (x, y, z � 21, �30, 9; svc).

As the difference between corresponding matching control
conditions was subtracted from each of the contrasts reported
above, it is unlikely that the effects reflected differences in visual
attention. Instead, we attribute these results to the differential
recruitment of areas involved in representing the goals of ob-
served actions and those that support the mapping of observed
actions to eliciting stimuli. As can be seen in Figure 4, contrast
values for the two control conditions did not differ at all, or
differed in a direction opposite to that observed for experimental
conditions. When looking only at the difference between match-

Figure 4. fMRI results for interaction contrasts assessing differences between the R-O and C-R conditions across the instrumen-
tal task and the control (matching) task. A, Maps of the t statistics for tests of neural activity during the first block (25%) of
observational learning trials, showing effects for the [R-O � C-R] contrast in M1, the IPL, and the aCN, and for the [C-R � R-O]
contrast in the pCN. B, Map of the t statistics for tests assessed across all trials of observational learning, with the [C-R � R-O]
contrast revealing effects in the LG, the extrastriate cortex, and the pCN, and with the [R-O � C-R] contrast yielding effects in the
aCN. Bar graphs show contrast values at LOSO coordinates; error bars are SEM.
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ing control conditions, activity in the cuneus was greater for the
R-O (i.e., beaker) match than for the C-R (i.e., cue) match (x, y,
z � 9, �81, 21; cst). No effects were found for the reversed con-
trast (i.e., C-R match � R-O match) at our criteria of signifi-
cance, although weak effects emerged at an uncorrected
threshold of p � 0.001 in the dorsolateral prefrontal cortex (x,
y, z � 39, 18, 21; Z � 3.21).

Training-dependent changes in neural activity
The source of the asymmetries between tests of early learning
versus tests including all training trials is apparent in contrast
values estimated for each training block in the two conditions
(Fig. 5), which reveal decreasing activity across blocks of trials in
the R-O but not the C-R condition (presumably attenuating the
effects in IPL, M1, and aCN, while enhancing of those in the LG
and extrastriate cortex). To further explore training-dependent
changes in neural activity, we specified a factorial model with
training block as a factor, and added linear weights to the blocks.
A conjunction test, assessing neural activity that decreased lin-
early across training blocks in both the R-O and C-R condition,
revealed effects in the supplementary motor area (SMA) and the
left precentral and postcentral gyrus (Fig. 6A). We then per-
formed a disjunction test for activity that decreased in the R-O,
but not the C-R, condition and found significant effects through-
out the frontoparietal network, including the left superior and
right inferior parietal lobules, anterior cingulate, and DMFC, as
well as bilateral thalamus extending into dorsal aCN (Table 1).

No effects were found at our criteria of significance for the
reversed disjunction of decreasing activity in the C-R but not the
R-O condition, nor for a test of increasing activity in the C-R but
not the R-O condition. Notably, under normal training condi-

tions, habits have been shown to control performance only with
extensive training (Tricomi et al., 2009), suggesting that one
might perhaps expect to see an increase in neural activity across
training blocks in the C-R condition. However, our task was de-
signed specifically to encourage dependence on stimulus–re-
sponse associations from the onset of learning in this condition
(see Introduction and Materials and Methods, above); it is not
surprising therefore, that activity in areas responding preferen-
tially to the C-R condition appears to have remained relatively
stable throughout observational learning. Nevertheless, we did
find significant effects for a test of activity that increased across
blocks in the C-R condition while also decreasing across blocks in
the R-O condition in the posterior cingulate and DMPFC (Fig.
6B). We conjecture that this result, reflecting opposite changes in
training-dependent neural activity across conditions, may be re-
lated to the dynamic competition between goal-directed and ha-
bitual learning systems.

Neural correlates of devaluation performance
To relate the neuroimaging data to our behavioral effects, we
tested whether a difference in neural activity between the C-R and
R-O conditions during observational learning correlated with the
degree of subsequent devaluation insensitivity. This was indeed
the case. On a participant level, those with stronger activation of
the dorsal premotor cortex (dPMC; x, y, z � 30, 3, 57; cst) and
superior parietal lobule (SPL; x, y, z � 21, �54, 60; cst] in the
C-R, relative to the R-O, condition responded on a greater pro-
portion of devalued trials in the subsequent test (Fig. 7). In con-
trast, tests correlating differences in neural activity during
observational learning with differences in accuracy or RT on the

Figure 5. Contrast values in each of the four blocks of observational training (B1–B4), in the
R-O (black) and C-R (gray) conditions, estimated at LOSO coordinates based on the statistical
maps shown in Figure 4, A and B, for A and B, respectively. Error bars are SEM.

Figure 6. Neural activations for tests of changes across blocks of observational learning
trials. A, Map of the statistics for the conjunction test of linearly decreasing activity across
training blocks in both conditions, showing effects in the supplementary motor area (SMA), left
M1, and left postcentral gyrus. B, A test for decreasing activity across blocks in the R-O condition
and increasing activity across blocks in the C-R condition revealed effects in the DMFC and
posterior cingulate (PC).

Table 1. Peak coordinates for the disjunction analysis of decreasing activity across
training blocks in the R-O but not in the C-R condition

Region

MNI coordinates

Zx y z

Supplementary motor area �9 �0 51 4.43
Anterior cingulate cortex 9 30 24 4.26
DMFC �3 24 42 3.82
Right inferior frontal gyrus 48 12 21 3.88
Left M1 �39 �18 60 4.62
Right somatosensory cortex 48 �24 45 3.56
Right IPL 30 �45 45 4.74
Left IPL �45 �33 27 3.88
Left transverse temporal gyrus �33 �33 12 4.01
Cuneus 15 �90 6 3.52
Right ventral lateral nucleus (thalamus) 12 �9 12 3.81
Left anterior nucleus (thalamus) �9 �6 15 3.82
Right aCN 12 12 9 3.20
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probe test, or with probe test accuracy averaged across condi-
tions, did not yield any effects at our criteria for significance,
perhaps because accuracy was generally very high, with very small
differences between conditions and very low variability across
individuals.

Discussion
In this study, we explored whether goal-directed and habitual
behavioral control strategies, frequently studied in the experien-
tial domain, might also govern vicarious learning of instrumental
actions. Specifically, we sought to determine whether outcome
insensitivity of actions could be established through observation,
and to elucidate the neural substrates mediating this process.
Using a novel observational learning paradigm we found that, in
subsequent performance, participants were more likely to re-
spond for a devalued outcome when each observed action had
been uniquely signaled by one of several discriminative cues
than when each action had obtained a unique outcome. At the
neural level, we found that activity in premotor and parietal
areas during observational learning correlated with the degree
of subsequent insensitivity to outcome devaluation. In addi-
tion, distinct areas of the action observation network (AON)
and of the striatum discriminated between our two observa-
tional learning conditions.

Importantly, while our two training conditions differed sig-
nificantly in the degree to which they supported sensitivity to
outcome devaluation, this difference was relative rather than ab-
solute, such that a fairly high level of devaluation sensitivity was
observed even in the C-R condition. However, current models of
action selection generally assume that goal-directed and habitual
systems interact to control performance (Daw et al., 2005), so
that it is only under extreme conditions that an action would be
entirely insensitive to devaluation. Consequently, we interpret
the relative insensitivity to outcome devaluation in the C-R con-
dition as reflecting an increased, albeit not complete, dependence
on habitual control.

It is important, however, to consider alternative sources of the
observed difference in devaluation sensitivity. As noted previ-
ously, although the stimulus materials actually presented on the
screen were identical across our two conditions, the features to
which participants were required to pay attention to successfully
regulate the system—the abstract cues versus the set of beakers—
differed in nature as well as complexity. With respect to the im-
aging data, our matching control conditions should account for
any differences in neural activity due to differences in relevant

stimulus properties. However, we cannot rule out the possibility
that the behavioral devaluation effect is attributable to such dif-
ferences. For example, it is possible that the complex visual fea-
tures making up the antecedent cues are more likely to generate
reflexive, outcome-insensitive response strategies than the rela-
tively simple display of the set of beakers does. It should be noted,
however, that the fluid in all of the beakers were constantly fluc-
tuating, so that detection of a below-threshold drop in a particu-
lar beaker was not trivial. Another possibility is that the spatial
nature of the beaker stimuli facilitated outcome-sensitive re-
sponding; further research is needed to evaluate the contribution
of perceptual stimulus properties to the arbitration between
outcome-sensitive and -insensitive instrumental action selection.

We have suggested that, whereas the R-O condition involves
learning about the relationship between an action and a subgoal,
a much simpler, stimulus–response association is learned in the
C-R condition. It is important to note, however, that the filling up
of emptied beakers was an explicitly stated subgoal in both con-
ditions (see Materials and Methods, above); that is, in both con-
ditions, participants were instructed that an emptied beaker
caused system imbalance and that their task was to keep the
system balanced by filling up any emptied beakers using the
different actions. This general emphasis on the beakers might
have prompted participants in the C-R condition to attempt to
generate a complex, hierarchical, conditional rule, entailing rep-
resentations of both cues and beakers (i.e., if beaker 1 is empty
and cue 1 is present then action 1 will fill up beaker 1) rather than
a simple stimulus–response rule. In contrast, in the R-O condi-
tion, participants could focus on the direct link between actions
and outcomes, ignoring all other aspects of the stimulus environ-
ment. Previous work has shown that direct links and higher-level
hierarchical action representations recruit dissociable areas of
premotor and prefrontal cortex, indicating a rostrocaudal gradi-
ent (Badre et al., 2010). However, to our knowledge, there is no
theoretical or empirical basis for predicting differences between
the two types of decision strategies in sensitivity to outcome
devaluation. Nonetheless, a clear direction for future work is
to assess correspondence between the direct versus hierarchi-
cal distinction and between goal-directed and habitual instru-
mental performance.

Alternative explanations for our behavioral effect notwith-
standing, the neural data seems to indicate the use of distinct
strategies during the observational phase, consistent with the ob-
served difference during subsequent performance. The bulk of
evidence for a neural distinction between strategies of experien-
tial learning comes from rodent lesion studies demonstrating the
respective involvement of the dorsomedial and dorsolateral stria-
tum in goal-directed and habitual control (Yin et al., 2005a,b).
More recently, human neuroimaging studies have implicated the
human dorsomedial striatum (i.e., aCN) in goal-directed learn-
ing (Tanaka et al., 2008; Liljeholm et al., 2011), while the pCN
and posterior putamen have been associated with behavioral in-
sensitivity to outcome value, indicative of habits (Valentin et al.,
2007; Tricomi et al., 2009). Our results suggest that these striatal
dissociations, which appear to be relatively preserved across spe-
cies (Balleine and O’Doherty, 2010), also underlie analogous
strategies of observational learning. This finding is consistent
with a recent study showing reward prediction errors in the aCN
when human participants observed a confederate perform in-
strumental actions to obtain juice reward, as well as when the
participant performed the actions and obtained the rewards
themselves (Cooper et al., 2012).

We found effects in several areas previously implicated in ac-

Figure 7. Correlation between the difference in devaluation insensitive performance (i.e.,
responding to fill up the devalued beaker) across the C-R and R-O conditions and the BOLD
response to the [C-R � R-O] contrast during observational learning. Effects were found in the
SPL and dorsal premotor (dPM) cortex (left). Scatter plot (right) shows devaluation insensitive
performance in the C-R condition as a function of [C-R � R-O] contrast values in the SPL (blue
triangles) and dPMC (red circles), estimated at LOSO coordinates.
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tion observation and execution, including the IPL, LG, extrastri-
ate cortex, and M1 (Hari et al., 1998; Astafiev et al., 2004;
Järveläinen et al., 2004; Williams et al., 2006). The dissociation
demonstrated here between the IPL and M1 on the one hand, and
the LG and extrastriate cortex on the other, based on whether
observed actions obtain distinct goals or are signaled by distinct
cues, suggests that a functional separation of action– outcome
and stimulus–response learning exists in the AON. This finding
can be related to previous studies aimed at separating object in-
formation from action kinematics. For example, Järveläinen et al.
(2004) reported that M1 activity discriminated between videos in
which chopsticks were used to transfer items from one plate to
another, based on whether the items were actually touched and
moved or the act was simply pantomimed. Using a similar com-
parison of pantomimed and object-oriented observed actions,
Buccino et al. (2001) found that, whereas both types of actions
activated the premotor cortex, object-oriented actions selectively
increased activity in the IPL. Here, we relate such results, which
suggest that the IPL and M1 encode the physical consequences of
actions to strategies governing action selection.

It should be noted, however, that the present study adopts a
very different experimental approach to that which has featured
in fMRI studies of action observation to date. Whereas the typical
study on action observation measures neural responses during
the observation of physical limb movements with or without a
visually depicted object target, in the present study we test for the
neural underpinning of learning associations between different
components of a decision task (i.e., between discriminative stim-
uli, actions, and outcomes) in the absence of overt depictions of
physical motor performance. Our approach yields unique in-
sights into the nature of the associative processes being imple-
mented within parts of the action observation network. For
example, while Buccino et al. (2001) found activity in response to
object-related, but not pantomimed, observed actions in the su-
perior parietal lobule, in the current study we found this region to
be correlated with the degree of devaluation insensitive action
replication, suggesting that at the level of associative encoding,
this region is in fact involved in stimulus–response and not goal-
directed processing. Likewise, contrasting conditions in which
to-be-imitated finger movements reached toward a location that
was either marked or unmarked, and that was either parallel or
diagonal (i.e., contralateral) to the initial finger position, Koski et
al. (2002) found that activity in the dPMC was selective for the
marked and contralateral movements. They interpreted these re-
sults as evidence for goal-related encoding by dPMC. In contrast,
as with the SPL, the current results suggest that this area may
contribute to habit formation, a finding that is more in line with
its previously demonstrated role in conditional action selection
(Grafton et al., 1998).

A possible explanation for the discrepancies between our find-
ings and the action observation studies discussed in the previous
paragraph is the fact that, although goal-directed evaluation
likely entails object representations, an object-oriented action is
not necessarily goal-directed. Specifically, it is difficult to deter-
mine whether, in the above studies, object features were pro-
cessed by participants as action outcomes or as habit-eliciting
discriminative stimuli. Indeed, grasp selection in actual interac-
tions with everyday objects has been shown to depend on both
habitual and goal-directed systems (Herbort and Butz, 2011),
and evidence from animal conditioning studies suggests that the
sensory features of action outcomes may trigger actions through
habitual, stimulus–response associations (Ostlund and Balleine,
2007). In the current study, the use of a devaluation procedure

overcomes this issue by providing a direct test of the nature of the
associations underlying performance in a given task condition.

We found decreasing activity across blocks of observational
learning throughout the frontoparietal network, including the
IPL and dorsomedial frontal cortex, in the R-O, but not the C-R,
condition. These effects may reflect a gradual disengagement of
executive control processes due to increased automaticity (Pol-
drack et al., 2005). However, training-dependent decreases in
neural activity specific to the R-O condition could also be due to
a cumulative suppression of areas supporting habit formation.
More generally, we note that, although the distinction between
goal-directed and habitual learning is likely related to that made
between declarative and procedural memory (Poldrack et al.,
2001), a strong resistance to dual task interference [the behavioral
paradigm commonly used to distinguish multiple memory sys-
tems (Foerde et al., 2006)] does not necessarily imply a decreased
ability to suppress responding for devalued goals (for related
findings on automaticity and response inhibition, see Cohen and
Poldrack, 2008). Future work is needed to determine the rela-
tionship between instrumental control systems and multiple
memory systems.

The distinction between habitual and goal-directed instru-
mental performance is similar to that made by theories of social
learning, between imitation—merely copying observed ac-
tions—and emulation—learning about the causal relationships
between objects (Horner and Whiten, 2005). Although behav-
ioral evidence for such a dichotomy in observational learning has
been found in human children and adults, as well as in a range of
other animals (Tennie et al., 2006; Miller et al., 2009; McGuigan
et al., 2011), very little is known about the distinct associative
structures that respectively support emulative versus imitative
strategies. According to a recent proposal (Seymour et al., 2009),
imitative and habitual actions are associatively the same, in the
sense that both are detached from the probability and value of
their consequences and simply mapped to the stimuli making up
the environment in which they occur. Despite this potential rep-
resentational similarity, the relationship between the two learn-
ing strategies has not been empirically assessed. Specifically,
previous tests of imitative versus emulative learning have not
used the assays necessary to determine whether subsequent in-
strumental performance is in fact habitual. Our use of a devalu-
ation procedure allowed a direct test of, and yielded positive
evidence for, the idea that experiential and observational learning
strategies depend on similar associative structures.

In the experiential domain, it has been suggested that goal-
directed action selection can be accounted for in terms of a
specific type of computational process termed model-based rein-
forcement learning (RL). According to this theory, goal-directed
learners use an internal model of the environment to generate
decisions based on state transition probabilities and outcome
utilities. In contrast, habitual performance has been explained as
model-free RL, in which actions are selected on the basis of
cached values that contain no information about the identity
or current utility of contingent outcome states (Doya et al.,
2002; Daw et al., 2005). The results of the present study suggest
that this framework might be extendable to observational
learning, leading to a more general formal theory of the bases
for behavioral control. The most striking implication of this
extension is that behavioral automaticity might come about
through the mere observation of other individuals. The cur-
rent findings provide an initial step toward characterizing the
computational and neural bases of such vicarious transmis-
sion of habits.
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