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Abstract
Trypanothione reductase (TR), an enzyme that buffers oxidative stress in trypanosomatid
parasites, was screened against commercial libraries containing approximately 134,500
compounds. After secondary screening, four chemotypes were identified as screening positives
with selectivity for TR over human glutathione reductase. Thirteen compounds from these four
chemotypes were purchased, and their in vitro activity against TR and Trypanosoma brucei are
described.

Trypanosomatid protozoan parasites cause several devastating diseases in large parts of the
developing world. The three most important are human African trypanosomiasis (sleeping
sickness) caused by Trypanosoma brucei, Chagas disease caused by T. cruzi, and
leishmaniasis caused by members of the genus Leishmania. These three diseases are
estimated to cause 113,000 deaths annually and more than 4 million disability adjusted life
years – the healthy life years lost due to disability and death.1 Currently available therapies
are inadequate due to issues involving safety, efficacy, resistance, toxicity, ease of
administration in poor conditions and cost. Despite the urgent need for new drugs, these
diseases have been neglected, largely due to market forces, by most pharmaceutical
companies.

As part of a concerted campaign to discover new treatments organized by DNDi (Drugs for
Neglected Diseases Initiative), we undertook a high-throughput screen for inhibitors of
trypanothione reductase (TR).2 Trypanosomatids use a unique biosynthetic pathway that
conjugates glutathione and spermidine to form trypanothione (1, Figure 1) to perform the
same antioxidant role as glutathione (2) in mammalian cells.3 TR, the parasite analog of
glutathione reductase (GR), plays an essential role in maintaining the intracellular redox
balance by returning trypanothione disulfide to its reduced state. Genetic knockouts have
illustrated the importance of TR for parasite viability,6 and therefore as a target for drug
development for all three diseases. Comparison of TR and human GR (hGR) crystal
structures reveals significant differences between their active sites, and these differences are
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consistent with the selectivity shown by GR and TR for their respective substrates.4 TR
possesses a more open active site with an overall negative charge to accommodate the
positively charged spermidine, while the more compact GR active site has a positive charge
to compensate the glycine carboxylate.5 These active site differences could be exploited in
the development of TR-selective inhibitors.

The HTS program utilized an assay developed by Fairlamb et al7 that measures TR activity
by coupling the formation of 1 to the reduction of 5,5′-dithiobis-(2-nitrobenzoic acid)
(DTNB), regenerating trypanothione disulfide and forming the yellow thionitrobenzoate ion
(TNB), which absorbs strongly at 405 nm. Minor alterations to the assay procedure made it
amenable to the 384-well format (see ref. 8 for details). The primary screening of
approximately 134,500 compounds from commercial libraries was performed. A Z factor of
0.71 was calculated for the entire data set. At the nominal compound concentration of 11.1
μg/mL present in the assay, 90% inhibition was used as an arbitrary cutoff point to identify
89 compounds (0.07% “hit rate”) from 24 chemotypes (based on a shared central scaffold)
as having a level of activity sufficient for further analysis. The distribution of compound
activities by percent inhibition is summarized in Figure 2.

Within the 24 chemotypes, we identified several classes of compounds, including the
maleimides represented by 3 in Figure 3. These chemotypes all had an explicit enone
functionality that could react with the free thiols present in the coupled assay (TNB, reduced
1, or TR active site cysteines). We adapted the classical assay9 for measuring TR activity to
the 384-well format (see ref. 10 for details), resulting in the elimination of 12 chemotypes
that were either inactive (i.e. reacted with TNB in the coupled assay) or weak inhibitors of
TR. Maleimides, while active in the classical assay, were eliminated due to the high
proportion of this chemotype displaying >75% inhibition during primary screening (65% of
tested compounds). Additionally, succinimide-based screening positives were represented at
a relatively high rate (20% of tested compounds gave >75% inhibition), and this chemotype
was eliminated from further consideration due to concerns regarding selectivity.

ChemBank11 was used to perform substructure similarity searches on the screening positives
from the remaining 10 chemotypes (represented by the general structures 4-13 in Figure 4)
that displayed TR inhibition in the classical assay. Between 6 and 19 compounds from each
chemotype were selected on the basis of structural similarity‡ and percent TR inhibition
generated during primary screening, and then selected from the compound library stock
plates for additional assays. These 115 compounds were tested in the DTNB-coupled assay
in a concentration range of 1.91 ng/mL to 31.2 μg/mL, and IC50 values were determined.

Data analysis revealed that chemotypes 10-13, which had few representatives, were false
positives, and were therefore eliminated from future consideration (data not shown). The
remaining six chemotypes had selected examples reselected, which were tested for activity
against hGR. Compound classes 4 and 9 did not display any selectivity for TR over hGR,
and were not investigated further (data not shown).

Solid samples of selected compounds from the remaining chemotypes (5-8), which
displayed selective inhibition of TR over hGR, were purchased to confirm their activity
(Table 1). Purity was determined by LCMS and 1H NMR, and by these methods all
compounds were ≥95% pure. In general, the nitrobenzenes 6a-e gave the greatest selectivity
for TR over hGR, and they afforded the most potent inhibitor tested (6a, IC50 = 0.34 μM).
Replacing the dimethylamino group of 6a with an arylamino group lowered activity,
although 6b-e still gave an IC50 <10 μM. The trisubstituted phenols 7a and 7b displayed

‡The screening positive itself gives a similarity score of 1.0, and only compounds with a score 0.7 were considered.
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moderate selectivity for TR, and activity decreased with the incorporation of an N-
homopiperidyl group into 7c. Replacement of the dimethylamino moiety possessed by the
phenylketone 8a with a bulkier group led to a substantial loss of activity. For all four
chemotypes, the most potent compound in each class was the hydrochloride salt. Three of
these compounds possess the dimethylamino functionality found in previously described TR
inhibitors, such as clomipramine.2

All compounds in Table 1 were then tested for their ability to restrict Trypanosoma brucei
proliferation using an in vitro assay that determines a compound’s activity via the
conversion of a redox sensitive dye to a fluorescent product by viable cells12,13. Six
compounds (5a-b, 6a-b, 6e, 8b) gave submicromolar EC50 values, and with the exception of
6a, these values were moderately lower than their IC50 against TR. Compounds 7c and 8b-c
were noticeably more active against the parasite than TR, perhaps indicating some off-target
effects. The presence of a dimethylamino group at R2 of 7b, and conversion of the R1 group
from tert-butyl to iso-propyl, resulted in a substantial loss of activity compared to 7a and 7c.

It should be noted that all of the compounds that emerged from this set of screens have the
potential to eliminate an amine to generate a compound that could undergo a conjugate
addition. In the case of 5, 6, and 8, an α,β-unsaturated ketone could be formed, and in the
case of 7, a para-quinone methide could be formed. Conversely, amino groups could be
selected because they mimic the positively charged central amine in trypanothione’s
spermidine moiety, increasing an inhibitors affinity for the negatively charged binding site
of TR. In any case, the compounds all show selectivity for TR over hGR and activity in a
whole organism assay. A ChemBank search for compounds that possessed the 3-
(dimethylamino)-1-arylpropan-1-one motif shared by 5a, 6a and 8a found ten compounds,
of which five showed negligible (<15%) TR inhibition.

In conclusion, we have performed a HTS program against TR to identify novel inhibitors.
Secondary screening revealed four chemotypes that displayed selectivity for TR over hGR,
and selected representatives all displayed activity against T. brucei in a whole organism
assay. Focused library synthesis of some of these compound classes will be undertaken.
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Figure 1.
Structures of trypanothione (1) and glutathione (2).
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Figure 2.
Distribution of compounds from primary screen by percent inhibition.
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Figure 3.
Representative structure of maleimide Michael acceptors.
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Figure 4.
Representative structures 4-13 of cherry-picked chemotypes, split into active chemotypes
and false positives.
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