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Abstract
One of the key roles of the immune system is the identification of potentially dangerous pathogens
or tumour cells, and raising a wide range of mechanisms to eliminate them from the organism.
One of these mechanisms is activation and expansion of antigen-specific cytotoxic T cells, after
recognition of antigenic peptides on the surface of antigen presenting cells such as dendritic cells
(DCs). However, DCs also process and present autoantigens. Therefore, antigen presentation has
to occur in the appropriate context to either trigger immune responses or establishing
immunological tolerance. This is achieved by co-stimulation of T cells during antigen
presentation. Co-stimulation consists on the simultaneous binding of ligand-receptor molecules at
the immunological synapse which will determine the type and extent of T cell responses. In
addition, the type of cytokines/chemokines present during antigen presentation will influence the
polarisation of T cell responses, whether they lead to tolerance, antibody responses or cytotoxicity.
In this review, we will focus on approaches manipulating co-stimulation during antigen
presentation, and the role of cytokine stimulation on effective T cell responses. More specifically,
we will address the experimental strategies to interfere with negative co-stimulation such as that
mediated by PD-L1 (Programmed cell death 1 ligand 1)/PD-1 (Programmed death 1) to enhance
anti-tumour immunity.
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INTRODUCTION
A key drawback for effective immunotherapy of cancer is to stimulate effective T cell
responses against tumour antigens. This is mainly caused by the natural tolerance towards
tumour-associated antigens (TAAs), which are in most cases mutated forms of self-proteins.
Therefore, a plausible strategy leading to effective cancer immunotherapy would be to
present TAAs to antigen-specific T cells in a context that can overcome the endogenous
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tolerogenic mechanisms. TAA-specific T cells are present in physiological conditions, but
their effector activities are strongly suppressed. However, these T cells can be activated and
effectively exert therapeutic anti-tumour immune responses [1]. Therefore, cancer
immunotherapy is currently being developed in two fronts. The first one, induction of T
cells with high affinity TAA-specific T cell receptors (TCRs), and the second, the
enhancement of antigen presentation by manipulating the immunological synapse between
antigen presenting cells and T cells.

Dendritic cells and antigen presentation
DCs comprise a heterogeneous population of antigen-presenting cells (APCs), which
regulate the priming of innate and adaptive immune responses [2]. DCs derive from cluster
of differentiation (CD)34 hemapoietic progenitors, and so far, 3 main sub-populations have
been described according to the expression of characteristic surface markers [3]. Generally,
DCs are classified as myeloid (or conventional) DCs which express CD11c, or CD11c
negative plasmacytoid DCs. There is evidence that these two linages derive from myeloid or
lymphoid progenitor cells, respectively [4]. In addition, a third DC sub-population originates
from differentiated monocytes, which have lost the expression of the monocyte marker
CD14 [5].

DCs are generated in the bone marrow and remain in peripheral tissues in an immature
stage, where they phagocytize and process a wide range of antigens by proteosomal or
endosomal pathways, depending on the nature of the antigen. These antigens also include
self-proteins or innocuous substances, but several endogenous tolerogenic mechanisms are
in place to prevent autoimmune responses. However, when these DCs encounter pathogens,
“danger molecules” such as cellular heat shock proteins or inflammatory mediators, they
migrate to secondary lymphoid organs and acquire strong antigen presenting capacities (DC
maturation) [6-12]. There, DCs present antigenic peptides to either CD4 or CD8 T cells,
depending on the major histocompatibility complex (MHC) context in which these peptides
are presented. For example, intracellular antigens (such as viral and tumor antigens) are
degraded in the proteasome, and the resulting peptides are preferentially loaded into MHC
class I molecules (p-MCH) at the endoplasmic reticulum. These p-MHC I complexes are
transported and exposed on the cell membrane [9]. Antigen-specific CD8 T cells recognise
these p-MHC I molecules, followed by activation and differentation to cytotoxic T cells. On
the other hand, to activate CD4 T cells, antigenic peptides must be presented in the context
of MHC class II molecules. This is usually (but not exclusively) accomplished after antigen
internalisation by phagocytosis and degradation in endosomes. These CD4 T cells will then
differentiate into specific subsets which regulate immune responses in different ways. Thus,
these T cells are usually called “helper” (Th cells) and can either stimulate cytotoxic
responses (Th1, Th17), antibody responses (Th2), or inhibit immune responses (regulatory T
cells, or Tregs). The fate of differentiation will strongly depend on the type of cytokines and
chemokines present during antigen presentation.

The “three-signal” hypothesis of T cell activation
Possibly, one of the key roles of DCs is to control and direct T cell activation at the level of
antigen presentation, as they are capable of priming naïve T cells [10]. As explained above,
antigens have to be processed into peptides and presented to specific T cells in the
immunological synapse [13-16]. It is within the immunological synapse where certain
signals are delivered to the T cells resulting in their activation, expansion and acquisition of
effector activities. The first signal, or signal 1, refers to the engagement between the TCR
and p-MHC complexes on the surface of the APC (Figure 1). This engagement is a
necessary, but not sufficient, requirement for T cell activation. In fact, triggering of the TCR
alone usually leads to T cell anergy, that is, limited expansion followed by unresponsiveness
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after reencounter with antigen [17, 18]. To effectively activate T cells, further signals have
to be provided to T cells in the immunological synapse. These signals are generally called
“co-stimulation” and they are delivered by the binding of certain receptors on the T cell
surface with their ligands on the DC surface. Overall, co-stimulation is considered as a
second signal or “signal 2” (Figure 1).

Co-stimulation plays a fundamental role in regulating T cell functions at multiple levels,
particularly during antigen presentation. Antigen-presenting DCs can engage naïve T cells
and provide “positive” (activatory) or “negative” (inhibitory) co-stimulation. Ultimately,
these signals are provided by a wide panel of co-stimulatory receptors expressed by DCs.
For example, binding between CD80/CD86 in DCs and CD28/CD27 in T cells causes T cell
proliferation and acquisition of cytotoxic activities [19]. On the other hand, CD80/86 can
also engage inhibitory receptors on T cells such as the cytotoxic T-lymphocyte antigen 4
(CTLA4), and deliver inhibitory signals leading to anergic T cells or Tregs (Figure 1) [15].
As another example, programmed death-ligand 1 (PD-L1) in DCs binds to its receptor PD-1
on T cells. This binding inhibits T cell activities at multiple levels [20-22]. Thus, it is not
surprising that tolerogenic immature DCs exhibit low levels of co-stimulatory molecules and
up-regulate inhibitory molecules [23, 24]. After encounter with pathogen-derived molecules
which trigger pathogen pattern recognition receptors such as toll-like receptors (TLRs), DCs
strongly up-regulate co-stimulatory molecules and p-MHC complexes. As both “positive”
and “negative” co-stimulation takes place during antigen presentation, there is a downstream
integration of these signals, which ultimately determines the “strength” of the second signal
and controls T cell activation [19].

As discussed above, two distinct signals need to be delivered for T cell activation; signal 1
(antigen recognition) and signal 2 (co-stimulation). However, although these two signals
may activate T cells, an additional signal has to be provided which will polarise T cell
differentiation. This is particularly important for CD4 T cell activation, since they can
regulate CD8 T and B cell activities.

Signal 3 or cytokine priming
DCs amongst other cell types secrete different cytokines while undergoing antigen
presentation to T cells, depending on the particular stimuli that they encountered at the site
of infection or inflammation. These cytokines will influence the differentiation profile of T
cells activated by signals 1 and 2. This is generally referred to as the “third signal”, “signal
3”, or “cytokine priming” (Figure 1) [25-27]. When this occurs, T cells differentiate into
different effector T cells such as CD4 Th1, Th2, Th17, Treg cells or enhance CD8 T cell
responses to weakly immunogenic antigens (Figure 1) [28]. As a matter of fact, extensive T
cell proliferation can only occur if Ag levels are high in the absence of signal 3. The third
signal contributes most to T cell proliferation when Ag levels are low [28]. Moreover, these
naïve T cells that proliferate in the absence of a third signal fail to develop cytolytic effector
functions. Thus, the presence or absence of a third signal is essential in determining whether
stimulation of DCs by Ag results into tolerance or into development of effector function
[29].

The detailed characterization of the polarization potential of cytokines allows the rational
design of new vaccination protocols for cancer immunotherapy (Figure 1). For example,
cytokines interleukin (IL)1 and IL-12 stimulate differentiation towards Th1 and
enhancement of CD8 cytotoxic activities [29-35]. Accordingly, CD8α DCs produce high
levels of IL12 and they are particularly effective for CD8 T cell priming [36], and
stimulation of clonal expansion via expression of Bcl-3 in proliferating T cells, an anti-
apoptotic molecule [37, 38]. In certain situations, IL1-β, IL17, IL6, IL23 and transforming
growth factor (TGF)-β can polarize T cell differentiation in a pro-inflammatory T helper
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subset named Th17 [39, 40]. These T cells express IL17, which triggers an accelerated and
strong inflammatory reaction. This subset of T cells has been implicated in the development
of autoimmune diseases since it seems to promote the loss of tolerance towards allergens
and auto-antigens [41-44]. On the other hand, IL10 and TGF-β will drive T cell
differentiation towards Th2 or immunosuppressive Tr1 or Foxp3+ Tregs [23, 24, 45-48].

Requirement of the third signal in cis during antigen presentation
The third signal can be provided by DCs to antigen presenting cells in two distinct
situations. The first one, by direct activation (activation in cis) by triggering pattern
recognition receptors such as TLRs (Figure 2). This recognition strongly activates DCs
leading to their phenotypic maturation and secretion of different cytokine patterns. The type
of expressed cytokines will depend on the particular TLR that is triggered, which will
differentially activate distinct intracellular signaling pathways. For example, TLR2
activation by yeast zymosan activates extracellularly regulated protein kinase (ERK) and
stimulates secretion of IL10 that will result in immune suppression [49, 50]. On the other
hand, TLR4 stimulation by a wide variety of ligands results in DC maturation, IL12
production and immune stimulation with anti-tumour properties [3, 51-53].

The second mechanism for providing signal 3 is indirectly in trans through the exposure to
inflammatory mediators by neighboring cells during an immune response (Figure 2). This
suggests that inflammation itself could substitute pathogen recognition for the induction
immune responses [6, 54, 55]. Although from a theoretical point of view this concept could
be effectively applied to immunotherapy, there is increasing evidence that indirectly
activated APCs after cytokine exposure behave very differently compared to cytokine-
secreting, directly activated APCs [56-58]. Indirectly activated DCs up-regulate MHC
molecules and are capable of providing co-stimulatory signals, leading to T cell clonal
expansion. However, as indirectly activated DCs do not provide the third signal in the
immunological synapse, the engaged T cells do not differentiate to particular subsets (Figure
2) [56, 59]. Therefore, inflammation can amplify immune responses, DCs have to provide
inflammatory mediators themselves to initiate effective immune responses [56, 60, 61].

These observations demonstrate the importance of developing the right adjuvants to
optimize the efficacy of vaccines for immunotherapy [59]. In fact, this could explain the
disappointing outcomes of certain cancer immunotherapy clinical trials using CpG as an
adjuvant. CpG is recognized by TLR9 and it is a potent inflammatory mediator, although it
is absent in conventional human DCs [62, 63]. In addition, CD8α DCs provide strong third
signals during antigen presentation, they express TLR3 but not TLR7 [59, 64-66].
Consequently, the right choice of adjuvants could potentiate the current formulations of
vaccines for immunotherapy by specifically targeting particular DC subsets.

Modulation of co-stimulation to enhance immunotherapy
The manipulation of the immunological synapsis opens attractive possibilities to control T
cell activation and differentiation for the treatment of cancer and autoimmune disorders. To
manipulate co-stimulation, the expression levels of co-stimulatory molecules in DCs can be
modified. An effective way to achieve this is to specifically activate intracellular signalling
pathways in DCs belonging to the TLR signal transduction pathways. The main pathways
involved in DC maturation are the nuclear factor (NF)-κB and mitogen activated protein
kinases (MAPKs) ERK, p38 and JNK1 [67-73]. This strategy ensures the up-regulation of
co-stimulatory, adhesion and major histocompatibility molecules together with cytokine
expression, which will provide strong signals 1, 2 and 3.

Liechtenstein et al. Page 4

Immunol Endocr Metab Agents Med Chem. Author manuscript; available in PMC 2013 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Most pro-inflammatory genes are controlled by promoters responding to NF-κB dimmers,
and thus, this pathway is one of the main controllers of pro-inflammatory responses [8,
74-76]. Its activation is required for up-regulation of co-stimulatory molecules, MHC and
pro-inflammatory cytokines, particularly IL6, IL12, tumour necrosis factor (TNF)-α [74,
77-81]. There is also a considerable body of evidence linking MAPKs to enhancement of
DC function by up-regulation of co-stimulatory molecules and secretion of pro-
inflammatory mediators, although most of these studies use chemical inhibitors rather than
specific activators. The p38 MAPK is activated in virtually all cell types by cellular stress
and TLR signalling [82-84]. The inactivation of MKK3 in mice, one of the upstream kinases
of p38, resulted in a complete lack of IL12 production by macrophages and DCs, and in
general a decrease in pro-inflammatory responses [85]. Both p38 and NF-κB contribute of
up-regulation of co-stimulatory and MHC molecules in monocyte-derived DCs as shown
after LPS treatment in the presence of phosphatidyl inositol 3 kinase (PI3K), p38 and NF-
κB inhibitors [8]. In fact, p38 activation induces histone phosphorylation, leading to opening
of the chromatin structure allowing NF-κB dimmers to bind to promoters controlling
transcriptional up-regulation of pro-inflammatory genes [75]. Actually, p38 activation rather
than the JNK pathway seems to be critical for human DC maturation after a wide variety of
pro-inflammatory stimuli including cytokines, TLRs and other immunostimulatory agents
[69]. However, JNK may act in cooperation with the other MAPKs to induce pro-
inflammatory responses and immune activation [86-88]. MAPK p38 has been clearly shown
to be critical for anti-viral CD8 T cell responses after CD83 up-regulation in human DCs
stimulated via CD40-CD40L. CD40 ligation results is strong secretion of pro-inflammatory
cytokines such as IL6 and IL12 [80], which could lead to Th1 and Th17 responses.
However, there are still some studies using chemical inhibitors in human DCs that may
challenge the absolute requirement of p38 over JNK regarding DC maturation [71].

In the case of the MAPK ERK, most of the evidence points out to a regulatory rather than a
stimulatory role, which includes inhibition of DC maturation in mouse and human cells [70].
Chemical inhibition of ERK results in up-regulation of co-stimulatory makers and MHC
molecules, accompanied by increased expression of pro-inflammatory cytokines such as
TNF-α and IL-12 [70]. ERK inhibition also results in p38 activation, which overcomes
ERK-mediated immunosuppressive activities, at least in macrophages [89]. However, some
evidence suggests that ERK activation is also required for production of some pro-
inflammatory cytokines such as TNF-α [90], IL23 and augmentation of natural killer (NK)
responses [86, 91]. This could explain why ERK is in most cases phosphorylated after TLR
activation. The timing/kinetics of ERK activation in combination with other signal
transduction pathways may influence its role either in immune suppression of immune
activation [92-95].

Thus, as TLR activation leads to activation of NF-κB, MAPKs and several other signalling
pathways, TLR agonists are currently being used in clinical trials for the treatment of
infectious diseases and cancer [96-99]. For example, TLR agonists can be combined with
inhibitors of immunosuppressive signalling pathways such as PI3K to enhance
differentiation of polyfunctional T cells [100]. The advantage of using synthetic TLR
agonists for immunotherapy is the control of the exact composition of the adjuvant in the
vaccine [101, 102]. This simplifies vaccine design and prediction of therapeutic outcomes.
Concluding, all this body of evidence indicates that activation of NF-κB, p38 and possibly
JNK, combined with inhibition of suppressive pathways such as PI3K and ERK, would
increase anti-tumour capacities possibly by enhancing signals 1, 2 and 3.

Instead of using TLR agonists as vaccine adjuvants, selective activation/inhibition of
signalling pathways can also be applied using gene therapy approaches. Thus, DC activation
has been achieved by expression of constitutive activators of signalling pathways in human
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and mouse DCs [103]. Constitutive activation of NF-κB by expression of Kaposi’s sarcoma-
associated human herpesvirus (KSHV) vFLIP protein using lentivectors, or by over-
expression of the NF-κB inducing kinase (NIK) using adenoviral vectors effectively up-
regulates CD80, CD86, CD83, CD40, ICAM I, MHC class I and II [77, 79]. In addition, this
is accompanied by strong secretion of the Th1 polarising cytokines IL12, TNFα and other
chemokines, ensuring the delivery of a strong signal 3. In fact, constitutive NF-κB activation
in mouse DCs was particularly efficient to stimulate Th1 immune responses [79]. As
expected, vFLIP expression clearly enhanced anti-tumour immune responses in a mouse
lymphoma model and anti-parasitic immunity in a leishmaniasis model [77, 78]. Similarly,
activation of p38 and JNK1 pathways in mouse and human DCs by expression of
constitutively active mutants of MAPK kinase kinase (MKK)6 (the upstream p38 kinase) or
a fusion protein between MKK7-JNK1 produced similar results [24]. These included up-
regulation of CD80, CD40 and ICAM-I, although without significant expression of Th1
cytokines IL12 or TNFα. Nevertheless, these DC activators proved to be effective in
immunisation, and exhibit anti-tumour activities at least for the p38 activator [22, 24]. In this
case, the lentivector preparation could have directly provided adjuvant activities in vivo
through TLR3 and TLR7 engagement, at least in mouse models of vaccination [12]. On the
other hand, activation of the ERK pathway in mouse and human DCs by expression of a
constitutively active MEK1 mutant effectively down-modulated co-stimulatory molecules,
particularly CD40 and MHC molecules [23, 24]. This ensures that “positive” co-stimulation
does not take place. Moreover, ERK activation in mouse DCs stimulated the production of
bioactive TGF-β. This effect was particularly effective in human DCs, for which this third
signal drove T cell differentiation towards immunosuppressive Foxp3 Treg cells [23].
Therefore, signals 1, 2 and 3 can also be modulated to achieve immune suppression and
tolerance with therapeutic applications towards autoimmune diseases such as inflammatory
arthritis [23].

B7 co-stimulatory molecules as targets for immunotherapy
Recently, much attention has been paid to blocking negative co-stimulation during antigen
presentation to enhance immunotherapy for cancer and chronic infectious diseases. More
specifically, inhibition of the B7 co-stimulatory family with T cell inhibitory properties
[104-112]. One of such inhibitory interactions takes place between either PD-L1 or PD-L2
on the surface of DCs with PD-1 on the T cell surface. PD-L1 is a member of the B7 family
of co-stimulatory/co-inhibitory molecules widely expressed by many cell types including T
cells and DCs [20, 21, 113]. PD-1 is up regulated in activated T cells during antigen
presentation and its binding to PD-L1 recruits SHP1 and SHP2 phosphatases to its
cytoplasmic domain, which terminate TCR signalling [114-116]. As a matter of fact, PD-L1
expression rather than PD-L2 in peripheral tissues is critical to keep immune tolerance [20,
21].

Therefore, interference of PD-L1/PD-1 using either systemic administration of blocking
antibodies or silencing PD-L1 has been applied to enhance positive co-stimulation and
improve immunotherapy, both in mouse models or in human DCs [105, 106, 111, 117, 118].
Interestingly, blockade or silencing of PD-L1 significantly enhances recruitment and
association between CD8 T cells to DCs in vivo and in vitro in mouse models [22, 119,
120]. This stronger and prolonged association suggests that signal 1 and signal 2 provided to
T cells in the immunological synapse are significantly reinforced. Interestingly, PD-L1
silencing in antigen presenting myeloid mouse DCs with a PD-L1-specific short hairpin
(sh)RNA decreased TCR down-modulation in activated T cells after antigen presentation
[22, 121, 122]. This lack of TCR down-modulation most likely ensured TCR signal
transduction to T cells with a concomitant stronger signal 1. In addition, the elimination of
negative co-stimulation would in principle increase positive co-stimulation provided by
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CD80/CD86 and CD40. Therefore, a stronger activatory signal 2. Accordingly, PD-L1
silencing in antigen presenting DCs induced the expansion of a population of hyper
activated pro-inflammatory TCRhigh CD8 T cells, with increased levels of interferon (IFN)γ
and IL17 [22]. This is particularly interesting for antitumor immunotherapy, considering the
key role of cytotoxic CD8 T cells against cancer cells. Cellular vaccination with these PD-
L1-silenced DCs inhibited tumour growth in a mouse lymphoma model and prolonged
survival. Surprisingly, overall long-term cure rates did not improve in comparison with
vaccination using unmodified DCs [22, 121]. This suggested that PD-L1 inhibition
accelerated tumour-specific T cell responses, although additional co-stimulatory signals
might be needed to enhance T cell cytotoxic activities. We propose that additional
manipulation of signal 3 during antigen presentation could improve the results obtained by
interference with PD-L1/PD-1 blocking. This strategy could be particularly important to
overcome immunosuppressive tumour microenvironments. Removal of PD-L1-based
regulation combined with a potent signal 3 provided by cytokine secretion could generate
enhanced T cell immunity in a therapeutic setting. While elimination of the PD-L1/PD-1
inhibitory interaction hyperactivates T cells and accelerates their expansion, specific
cytokine combinations could potentially modify the type of immune response to be achieved
as long as there are provided in cis by antigen presenting DCs.

Expression of other B7 family members by APCs or cancer cells has also been associated to
inhibition of T cell responses and poor prognostic in cancer patients. Therefore, their
blockade in many instances may be also used to enhance co-stimulation and manipulate T
cell differentiation. The B7-H2 co-stimulatory molecule, or inducible T cell co-stimulator
(ICOS) ligand (ICOS-L), is expressed in physiological conditions amongst others by
immature human DCs [123], human airway epithelial cells [124]. B7-H2/ICOS co-
stimulation is required for T cell activation and recall of T and B cell responses [125-127].
However, it has been recently demonstrated that B7-H2 is also a ligand for both CD28 and
CTLA-4, involved in activatory and inhibitory signalling in T cells, respectively [128].
Therefore, it could be possible that depending on the context of co-stimulation, B7-H2 may
enhance or inhibit immune responses. Thus, B7-H2 expression is up-regulated in a number
of cancer cells such as in leukaemia [129] and myeloma cells [130], although possibly
linked to increased tumour cell proliferation and survival rather than immune evasion.
Finally, the involvement of ICOS-L/ICOS co-stimulation on T cell differentiation is unclear.
While some reports suggest that it enhances human Th1/Th17 responses with anti-tumour
activities [131], other reports suggest that it is required for Th2 but not Th1 or Th17
differentiation [132, 133].

B7-H3 is preferentially a negative regulator of T cell responses that is expressed by a wide
range of cells including DC, monocytes [134-137], T cells [138] and tumour cells [139,
140]. Its up-regulation by cancerous cells confers a mechanism to escape immune responses
[139, 141-144]. Therefore, B7-H3 blockade may also enhance tumour immunotherapy by
preventing cancer cell escape. However, the role of B7-H3 as an inhibitor of immune
responses is still unclear, as many studies also link B7-H3 co-stimulation with increased T
cell responses, Th2 differentiation and anti-tumour immunity [145-149]. However, many of
these discrepancies might be due to the different experimental systems (most of them
murine), as B7-H3 co-stimulation of human T cells seems to be inhibitory, and its
expression by tumour cells shows a poor prognosis [150]. Nevertheless, the precise role of
B7-H3 in immune activation or inhibition remains highly controversial, and its therapeutic
exploitation unclear [147, 151-154].

B7-H4 is another member of the B7 family of co-stimulatory molecules [155] with
immunosuppressive activities, similarly to PD-L1. B7-H4 is also expressed by a wide range
of cell types including DCs, macrophages, endothelial and mesenchimal cells, and it plays a
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key homeostatic role by inhibiting T cell functions to maintain immunological tolerance
[156-158]. Its expression by tumour cells inhibits T cell cytotoxic activities and provides a
means for immune escape [159-163]. Similar strategies as those used for inhibiting PD-L1
co-stimulation could also be applied for B7-H4 to enhance anti-tumour activities, and
blocking antibodies are being developed for this purpose [164].

CTLA-4 blockade for tumour immunotherapy
CTLA-4 is a well-known T cell inhibitory B7-receptor that is expressed by activated T cells
and particularly by Tregs [165-168]. This receptor constantly traffics between endosomes
and the T cell surface [169], and it has a higher affinity than CD28 for their common ligand,
CD80 [170]. Several mechanisms of action have been proposed to explain its potent
immunosuppressive activities, ranging from competition with CD28 for CD80, delivery of
an inhibitory intracellular signal or by CD80/CD86 transendocytosis from the membrane of
antigen-presenting cells [171-174]. Nevertheless, independently of its mechanism of action,
antibody-mediated CTLA-4 blockade has been largely successful in animal models of
cancer. Its blockade clearly enhances T cell cytotoxic responses, inhibits Treg activities and
induces differentiation of cytotoxic CD4 T cells [175-177].

Interestingly, CTLA-4 blockade can also be combined with other immunotherapy
approaches such as inhibition of inhibitory co-stimulation [178], enhancement of activatory
co-stimulation [179, 180], cytokine treatments [181] or superantigens [182]. These
approaches turn the balance towards effector T cell activities instead of Tregs [183]. More
important, clinical activity is evident and CTLA4 blocking shifts the T cell differentiation
balance towards Th1/Th17 in human cancer patients [184]. Clinical efficacy with an
approved blocking antibody (ipilimumab) has been reported in a wide range of cancers such
as melanoma [185, 186], prostate cancer [187], non-small cell lung cancer [188] amongst
others [189]. However, although clinical efficacy might not be apparent after single use,
such as in pancreatic adenocarcinoma, significant clinical responses are obtained in
combination with other immunotherapeituc strategies, both in mouse models and in humans
[190, 191].

This last case on blocking negative co-stimulation, or inhibitory interactions with blocking
antibodies is the demonstration and immunotherapy can actually work, with significant
clinical efficacy for a wide range of cancers [192]. Immunotherapy will surely be
fundamental for the treatment of advanced cancers, due to the capacity of the immune
system to detect, reach and eliminate microscopic metastasis.

CONCLUSIONS
The three-signal hypothesis of T cell activation is a convenient mechanistical model that
explains the requirements needed for T cell activation and the initiation of immune
responses. Thus, T cells require at least three “types” of signals to expand and exert their
effector activities. The first one is direct antigen recognition. The second one, co-
stimulation, is provided after integration of activatory and inhibitory interactions between
receptors and ligands within the immunological synapse. The outcome of these interactions
will determine the “activation” status and effector capacities of T cells. However, a third
signal is also required to modulate T cell differentiation into different subsets that will
control the type of immune responses. This ensures that immune responses are adequate to
fight the particular type of pathogen, including cancer. This third signal is provided by a
combination of cytokines, chemokines and other inflammatory mediators. Interestingly,
there is evidence suggesting that for efficient immune responses, the three signals have to be
given to T cells in cis, that is, by the APC directly associated to the T cell. This is a critical
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observation for designing adequate vaccination regimes, as many adjuvants used for
vaccination protocols provide the “third signal” mainly in trans.

Nowadays, it is relatively straightforward to modify DCs to efficiently provide the three
signals to T cells, and even modulate co-stimulation to control the strength and type of
immune response [3, 103]. It is also possible to induce immune suppression and tolerance
[23]. Manipulation of signals 1 and 2 is relatively simple by the co-expression in DCs of
antigens, activators/inhibitors of maturation pathways or blocking antibodies that interfere
with negative co-stimulation. It is rather more complicated to manipulate signal 3 so that
DCs giving the first two signals to T cells can also produce the desired cytokine/chemokine
profiles in the immunological synapse. The modulation of the three signals in a directed,
targeted way would allow a fine-tuned control of immune responses leading to better
immunotherapy treatments.

Blocking antibodies targeted to inhibit negative co-stimulation to T cells are promising for
the future of cancer immunotherapy. There are several of these antibodies already approved
for human therapy, which are showing clinical efficacy. However, these will probably have
to be combined with other immunotherapeutic approaches, most likely because of the
necessity of strengthening co-stimulatory signalling and cytokine priming.
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LIST OF ABBREVIATIONS

APC Antigen presenting cell

CD Cluster of differentiation

CTLA4 cytotoxic T-lymphocyte antigen 4

DC Dendritic cell

ERK extracellularly regulated protein kinase

ICOS Inducible T cell co-stimulator

IFN Interferon

IL Interleukin

KSHV Kaposi’s sarcoma-associated human herpesvirus

MAPK mitogen activated protein kinases

MKK MAPK kinase kinase

MHC major histocompatibility complex

NF Nuclear factor

NK Natural killer

PD-L1 Programmed cell death 1 ligand 1

PD-1 Programmed death 1

PI3K phosphatidyl inositol 3 kinase

p-MHC peptide-MHC complex
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TAA tumour-associated antigen

TCR T cell receptor

TGF Transforming growth factor

Th T helper cell

TLR Toll-like receptor

TNF Tumour necrosis factor
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Figure 1. Antigen presentation in the immunological sypnase
The scheme depicts a DC (left) presenting antigen in the context of MHC molecules to a
CD4 T cells. The peptide-MHC engages to the T cell TCR delivering signal 1 as shown
within the T cells. Simultaneously, co-stimulatory or co-inhibitory ligands on the DC
surface (CD80/86, or CD80/PDL1) engage with their receptors on the T cell, leading to
either positive stimulation or negative stimulation. The resulting signal from the integration
of these co-stimulatory interactions will provide a second signal to T cells. In this scheme,
the DC produces cytokines within the immunological synapse, giving a third T cell
polarising signal. On the right, the most representative T helper subtypes are shown, and the
cytokines promoting these T cell subtypes are also indicated.
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Figure 2. Effects of directly or indirectly activated DCs on antigen presentation and T cell
polarisation
On top, a directly activated DC through TLR engagement (left) presents antigen to T cells
and provide the three activatory signals to the T cells (right). In this case, cytokine priming
occurs in cis, leading to T cell proliferation and acquisition of effector activities. On the
bottom, an indirectly activated DC through cytokine priming in trans (i.e. cytokines
produced by neighbouring cells within an inflammatory environment, left of the scheme). In
this situation, cytokines are not produced within the immunological synapse and the
resulting T cell proliferates, but does not acquire significant effector activities or a distinct
differentiation profile.
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