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Abstract
Precisely characterizing the breakpoints of copy number variants (CNVs) is crucial for assessing
their functional impact. However, fewer than 0% of known germline CNVs have been mapped to
the single-nucleotide level. We characterized the sequence breakpoints from a dataset of all CNVs
detected in three unrelated individuals in previous array-based CNV discovery experiments. We
used targeted hybridization-based DNA capture and 454 sequencing to sequence 324 CNV
breakpoints, including 315 deletions. We observed two major breakpoint signatures: 70% of the
deletion breakpoints have 1–30 bp of microhomology, whereas 33% of deletion breakpoints
contain 1–367 bp of inserted sequence. The co-occurrence of microhomology and inserted
sequence is low (10%), suggesting that there are at least two different mutational mechanisms.
Approximately 5% of the breakpoints represent more complex rearrangements, including local
microinversions, suggesting a replication-based strand switching mechanism. Despite a rich
literature on DNA repair processes, reconstruction of the molecular events generating each of
these mutations is not yet possible.

Structural variation in the genome, in the form of deletions, duplications, inversions,
insertions and translocations, accounts for much of the difference between human genomes.
Assessing the functional impact of this class of variation requires genome-wide maps of
variants and reference sets of genotypes in diverse populations. Over the past 5 years,
successive studies have reported increasingly large datasets of CNVs. However, only a small
minority (<10%) of these has been characterized to base-pair resolution. This is despite the
broad utility of this information: base-pair-resolution CNV breakpoints are required to
determine the precise functional impact of a CNV, enable the development of new
genotyping assays and improve our understanding of the underlying mutational mechanisms.
The major barrier to high-resolution characterization of CNV breakpoints has been the lack
of a high-throughout technology for breakpoint sequencing. Most known CNV breakpoints
derive from genome-wide shotgun sequencing1,2. PCR-based sequencing has been used in
some recent studies, but is laborious and requires assumptions about the structure of the
underlying variant to enable primer design (for example, that an additional copy is tandemly
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duplicated in head-to-tail configuration). A recent study took a PCR-based sequencing
approach to characterize breakpoints for 270 CNVs in the human genome identified by
mapping paired-end 454 sequence reads3.

Our current understanding of CNV mutation processes in eukaryotes is largely based on
DNA repair studies conducted on bacteria, yeast, and avian and mammalian somatic cell
lines4,5. These have led to the reconstruction of two families of double-strand break (DSB)
repair pathways: (i) nonhomologous end joining (NHEJ) and (ii) homology-directed repair
(HDR), which includes nonallelic homologous recombination (NAHR) and single-strand
annealing (SSA). Each pathway is known to recruit a distinct set of proteins, to have
differing repair efficiencies and thus to have different capacities for mutation6,7. The relative
contribution of each pathway to both pathogenic and nonpathogenic germline CNVs in
humans has not been well characterized.

The mutational mechanism leading to the formation a CNV is typically characterized by
examining the sequence context of its break-points. NAHR is thought to require 200 bp of
homology8, whereas NHEJ is often associated with small stretches (1–4 bp) of
microhomology and can entail the addition of short stretches of nontemplated nucleotides at
the site of repair. Other end-joining processes have been suggested more recently, including
microhomology-mediated end joining (MMEJ or ‘alternative NHEJ’, which requires
microhomology), but their relationships as subclasses or alternatives to NHEJ have not been
fully established7,9. The breakpoints of retroposed DNA often contain poly(A) sequence and
flanking target site duplications, and variable number of tandem repeat (VNTR)
polymorphisms are readily identified from the repetitive structure in the reference
sequence10. More recently, analysis of large, complex pathogenic rearrangements has
identified a replication-dependent repair of DSBs called microhomology-mediated break-
induced replication11 (MMBIR), which is capable of generating complex structures through
multiple rounds of template switching. Although these events are associated with
microhomologies, the occurrence of templated inverted and/or inserted sequence at the
breakpoints cannot be readily explained by NHEJ or MMEJ.

Recently, several studies have used array-based oligonucleotide hybridization and next-
generation sequencing technologies to capture and sequence thousands of targeted genomic
regions in a single experiment12,13. We hypothesized that DNA fragments containing CNV
breakpoints could be captured using arrays targeted to the breakpoint region, allowing us to
isolate and sequence many CNV breakpoints without PCR primer design and without
requiring assumptions about the underlying structure.

The Genome Structural Variation Consortium recently used genome-wide tiling oligo–
comparative genomic hybridization (CGH) experiments to report a genome-wide map of
8,599 validated CNVs in 40 unrelated individuals, as well as reference genotypes for 4,978
of these in 450 individuals from three populations14. Here we report an attempt to sequence
breakpoints for all CNVs detected in three of these unrelated individuals. Some CNV
breakpoints in these genomes have been sequenced in several previous studies15–17,
allowing calibration and validation of our method. We used the CGH intensity data to
construct target regions for the pulldown array; DNA fragments were captured and
sequenced with ~300-bp reads, which were subsequently mined for CNV breakpoints (Fig.
1), and the sequence context of the breakpoints was analyzed to provide an expanded view
of the spectrum of CNV mutation processes.
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RESULTS
Measurement of uncertainty in breakpoint placement

We previously constructed a high-resolution CNV map of 8,599 deletions and duplications
in 41 individuals (20 from the CEU HapMap population, 20 from the YRI HapMap
population and 1 Polymorphism Discovery Resource individual, NA15510) by applying the
GADA segmentation algorithm to intensity data generated from array-CGH experiments
with 42 million oligonucleotides tiling the genome14. The GADA algorithm provides a point
estimate for the location of each breakpoint of a CNV, but does not provide a confidence
interval18. To maximize the efficiency of our array design we developed two distinct but
related methods for using the CGH intensity data to estimate a 95% confidence interval on
the location of each CNV breakpoint (we refer to these methods as m1 and m2; see Online
Methods, Supplementary Fig. 1 and Supplementary Note). We estimated confidence
intervals for breakpoints of all 1,174 CNVs detected in the CGH experiment comparing two
CEU individuals (NA12878 and NA10851; 2,348 confidence intervals in total) and for
breakpoints of all 1,304 CNVs detected in the CGH experiment comparing NA15510 and
NA10851 (2,608 confidence intervals), using both m1 and m2. To assess the accuracy of
these confidence intervals, we compiled published sequenced breakpoints for 300 of our
targeted CNVs present in either NA12878, NA15510 or both (Online Methods). We
measured the accuracy of each method using these sequenced CNVs by counting the
proportion of confidence intervals containing the true breakpoint location.

The two methods for estimating confidence intervals perform similarly well, with m1
perhaps slightly more efficient in terms of break-points per base pair (Supplementary Note).
Each method produced confidence intervals at the combined set of 700 breakpoints that
were correlated with the precision of the GADA breakpoint estimates (Fig. 2a,b) and
covered the true location of the breakpoint 70% of the time. We evaluated m1, the most
efficient confidence interval algorithm, using permutations in which the confidence intervals
are randomly assigned to CNVs. The number of true breakpoints covered with the correctly
assigned confidence intervals was 13 s.d. greater than the mean from the randomly assigned
permutations (Fig. 2c). We found the magnitude of copy number difference between target
and reference to be a good predictor of our ability to estimate the true location of a
breakpoint (Fig. 2d), whereas the size of the event and the extent of sequence homology at
the breakpoints were not good predictors (data not shown).

Capture and sequencing of targeted regions
We designed a NimbleGen 385k array with oligonucleotides complementary to the 3,712
target regions constructed from the confidence intervals described above. These initial target
regions corresponded to 2,049 unique CNVs (>400 bp long), but several factors lowered the
number of assayable CNVs. We were able to design oligonucleotide probes for 3,263 (88%)
of the target regions, corresponding to 1,785 CNVs (Online Methods). We know that
approximately 15% of the targeted CNVs are false positives14, and about 9% of CNVs will
not have a target region containing a breakpoint (assuming that the confidence intervals
cover a breakpoint 70% of the time, (1 – 0.7)2 = 0.09). Furthermore, 25% of loci are
VNTRs, at which we cannot expect to observe unique break-point sequences. Combining
these figures and accounting for overlap among categories, we estimate the number of
CNVs for which we could potentially sequence a breakpoint to be 1,067.

We combined genomic DNA in equimolar amounts from each of the three genomes
containing the CNVs used to construct the target regions, hybridized it to the array, washed
the array and eluted captured molecules. This capture eluate was then prepared for 454
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sequencing (Online Methods). The data produced from 454 pyrose-quencing were generated
as single reads approximately 300 bp long.

Before mapping these sequences, we devised a coding system to comprehensively
categorize reads that do not align contiguously to the reference genome and thus potentially
span CNV breakpoints. The system may be generally applicable in sequencing-based CNV
analyses (Supplementary Note). We term these reads with discontinuous mappings ‘split
reads’ if both ends of the reads are mapped to the reference; otherwise they are ‘partially
aligned’. To assess the general properties of the sequence reads we generated, we created an
exploratory pipeline to map sequence reads with SSAHA2 and to identify and categorize all
split reads using the ontology just mentioned (Online Methods, Supplementary Fig. 2 and
Supplementary Note). This pipeline can identify any class of split-read mapping to two
genomic locations, irrespective of the location or orientation of the two mappings, thus
allowing us to identify the full range of possible split reads. Of the 342,406 reads generated,
290,808 nonredundant reads (84.93%) mapped successfully to the genome for a total of
301,112 mappings (Fig. 3a,b). Of these mapped reads, 33% (99,826) were on target, and
91% of target regions contained mapped reads (median of 12 reads per target). A full 13.2%
of mappings involved reads that were discontinuously aligned and thus potentially split;
31% of these are reads mapping to two genomic locations and thus are split reads, with the
remainder annotated as partial reads. Some of these partial reads might represent breakpoint-
spanning split reads in which the breakpoint falls close to the end of the read, preventing
robust mapping of sequence from one side of the breakpoint.

Roughly 60% more deletion-compatible split reads (2,833) were found than duplication-
compatible split reads (1,721). To permit the identification of unexpected rearrangement
structures, we mined the remaining split reads for patterns indicative of a sequenced
breakpoint. Notably, there were 922 split reads whose best mapping was the top strand for
one end and the bottom strand (of the same chromosome) for the second end on the same
chromosome, and 42 of our targeted regions contained one or more of these. These
unexpected ‘between-strand’ mappings could indicate an inversion of sequence with respect
to the reference genome; they are discussed in more detail below.

Across all split reads, we identified 194 nonredundant deletions and 3 nonredundant
duplications, 142 of these supported by two or more split reads. We also identified 6
potential interchromosomal duplications, one of which has been described previously19 and
represents our sole positive control for this class of variant. The repetitive sequence context
of these interchromosomal breakpoints makes PCR-based validation difficult.

Power simulations motivate a second mapping approach
Of the total 1,067 assayable CNVs targeted on the capture array, we succeeded in detecting
a breakpoint for 205 (19%) during the initial analysis. To explore the reasons for this low
yield, we conducted simulations modeling the details of our experiment to assess the
variables affecting its power to detect CNV breakpoints (Online Methods, Supplementary
Fig. 3 and Supplementary Note). Specifically, we simulated hundreds of breakpoints at
random locations within each validated, non-VNTR target region, and we estimated the
probability that each CNV breakpoint was, first, captured by a read and, second, correctly
identified by SSAHA2, given the number, mapping locations and lengths of reads in the real
data and the frequency of the CNV at that locus (estimated by the call frequency in the two
CGH experiments used for CNV discovery). We were surprised to see that conditional on
simulating a single split read, the SSAHA2 pipeline correctly identified the breakpoint only
14% of the time, with equal power for deletion- or duplication-compatible split reads,
implying that many more CNV breakpoints could possibly be recovered with a different
mapping approach. We hypothesized that the low power of our approach resulted from the
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flexibility of the model we were fitting with SSAHA2: allowing the two ends of a read to
map in different orientations, on different strands and indeed on different chromosomes
requires stringent filtering to avoid spurious hits.

To increase sensitivity to breakpoint structures, we constructed a second mapping pipeline
based on the BLAT alignment algorithm (Online Methods). Whereas our implementation of
SSAHA2 is able to identify split reads separated by a single gap and having <16 bp of
breakpoint microhomology, BLAT can make alignments with multiple gaps and more
extensive microhomology; however, the BLAT alignment approach detects only deletion-
compatible splits. Using the same simulation framework as before, we found that a BLAT-
based pipeline had an average mapping power for deletion-compatible split reads of 57%,
nearly four times higher than the SSAHA2 pipeline, but, as expected, no mapping power for
duplication-compatible split reads.

With two complementary mapping approaches in hand, we revisited the simulations, this
time with the aim of assessing the total power of the experiment and estimating the total
number of CNV breakpoint sequences we might expect to obtain with each mapping
pipeline (Fig. 3c and Supplementary Fig. 4). These simulations considered a range of
mutation models, including deletions and tandem duplications. In total we expected to find
300–320 breakpoints with SSAHA2. The number of breakpoints found by BLAT is a
function of the (unknown) proportion of CNVs that are deletions; assuming that all
interrogated CNVs were deletions, we would expect to find 590–610 breakpoints with
BLAT. In summary, making realistic and conservative modeling assumptions, and given the
sequencing coverage we obtained, we found we should expect a minority of CNVs targeted
by the experiment to yield sequenced breakpoints.

Satisfied with this exploration of power using simulated data, we turned to the analysis of
real data with the BLAT pipeline. We identified 302 deletions with this second pipeline;
SSAHA2 detected 177 of these and 22 additional breakpoints, bringing the total number of
breakpoints sequenced to 324. In the Discussion we consider various factors that might
explain why the yield of breakpoints from the empirical data was lower than the yield from
the simulated data.

Characterization of breakpoints
We sequenced breakpoints for a wide distribution of CNV sizes, including CNVs as small as
420 bp and as large as 184 kb. However, our capture was biased toward smaller events:
whereas 30% of the CNVs targeted with the array were larger than 10 kb, only 8% of our
sequenced breakpoints came from CNVs of that size range. This may reflect the fact that the
breakpoints of larger CNVs are more often embedded in complex sequence contexts that
lower the sensitivity of this approach. Notably, reads containing duplication breakpoints
were far more likely to have multiple high-quality mappings than reads containing deletion
breaks, underscoring the role of repetitive sequence in mediating duplications14.

Researchers’ understanding of mutational processes changes over time, and the processes
have primarily been studied in model organisms and somatic tissues. Given this, it is
important to first describe the phenomenology of germline breakpoint sequences in humans
that we directly observed through experimentation, before attempting to ascribe mechanisms
to different classes of breakpoints. We assembled and manually curated contigs containing
the newly sequenced breakpoints, then characterized the sequence context at each break by
ascertaining the extent of homology at the ancestral edges of the break and the number and
nature of base pairs inserted in the break (Online Methods, Fig. 4a). These properties clearly
delineate four different classes of CNV breakpoint in our data (Supplementary Table 1). Of
the 315 sequenced deletion breakpoints, 103 (33%) showed 1–367 bp of inserted sequence
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at the breakpoints in addition to the deletion. Two hundred and nineteen (70%) of the
sequenced deletion breakpoints showed 1–30 bases of homology at the ends, consistent with
a microhomology-mediated process such as MMBIR or NHEJ. Only 32 of the deletions with
sequence insertion at the breakpoints are flanked by microhomologies; this is significantly
less than would be expected if the two signatures arose independently of one another (P <
10−15; χ2 test; Fig. 4b). Moreover, 21 (66%) of these microhomologies are of only a single
base and may have occurred by chance. Twenty-five breaks were simple blunt-end joins,
with no homology or inserted sequence, which is also less than would be expected if CNV
ends were placed at random on the genome (Fig. 4c). We did not observe a correlation
between size of deletion and the frequency of the four different breakpoint signatures, nor
was there a correlation between deletion size and the number of inserted bases or the length
of microhomology (Fig. 4d).

We aligned (using BLAT) the 22 insert sequences larger than 20 bp against the reference
genome to identify their likely origins, which serve as clues to the mutation process that
generated them. Five sequences had no clear matches, but the other 17 inserts strongly
matched local genomic sequence and appear to result from more complex mutational events.
In 13 instances (4.5% of all sequenced deletions), the inserted sequence (39–377 bp) is
actually from the other strand nearby in the same chromosome, representing an inversion of
local sequence (Fig. 5). We validated the structures of these more complex apparent
rearrangements by PCR and capillary sequencing (Supplementary Table 2) to confirm that
they were not sequencing artifacts. These findings explain, in part, the between-strand
mappings described above and have important implications for understanding structural
mutation. In some cases, it is likely that the inverted sequence was formed at the same time
as the deletion, an event compatible with a replication-based mechanism involving local
template switching, such as MMBIR, as has been described recently20,21,22. Another
possibility is that the inversion was present before the deletion, which raises the possibility
that the inversion may have had a mutagenic effect. This phenomenon has previously been
observed only in the formation of rare, pathogenic rearrangements caused by NAHR23,24,

but it could occur more widely. Similarly, we identified small indels within 300 bp of at
least seven breakpoints, consistent with emerging evidence that indels may increase local
genome instability14,25.

Several mutation processes are associated with a genomic signature that can be identified
without base-pair resolution. The CNVs identified in these three individuals were generated
from a CGH platform with 50-bp resolution, which is sufficient to confidently assign CNVs
as VNTRs or the products of NAHR between large blocks of homologous sequence (>200
bp). We can therefore combine the results of the sequencing and the array data to provide a
more comprehensive overview of the spectrum of mutations forming these array-detectable
CNVs in normal individuals (Table 1).

DISCUSSION
Although we have focused here on the insights into mutational mechanisms that can be
gained when CNV breakpoints are mapped to base-pair resolution, there are two other
important applications of this knowledge. Mapping CNVs to base-pair resolution allows
precise annotation of function, including whether each CNV overlaps functional sequences
and the likely the impact on those sequences. In addition, base-pair resolution enables the
development of breakpoint-specific genotyping assays, which, by virtue of their qualitative
nature, are likely to be more robust than quantitative assays for the same variants and thus
more useful in locus-specific population surveys, such as association studies.
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Genome-wide resequencing has recently become possible, but the cost still prohibits the
ascertainment of CNV breakpoints from a large number of samples. Many fundamental
research questions require approaches to sampling that differ from those of large
international genome-resequencing projects (such as the 1,000 Genomes Project), including
sampling a variety of tissues, individuals or organisms. As the technology matures, targeted
resequencing could be the gold standard for validation in CNV studies. Moreover, we have
shown that not predicating breakpoint sequencing on prior assumptions of the underlying
allelic structure allows complex events to be discerned that may have been missed by PCR-
based approaches.

Although we were able to increase the number of sequenced breakpoints by using two
mapping pipelines, we did not exhaustively explore all possible mapping strategies. There
are likely to be additional breakpoint sequences to be mined from these data, perhaps
corresponding to complex rearrangements. The vast majority of events we have identified
here are deletions, despite our expectation that at least 20% of targeted events are
duplications14. A modified strategy for capturing duplications—by targeting additional
sequence within the breakpoints and using de novo assembly of all targeted reads—seems
particularly appropriate, considering the enrichment of repetitive contexts at duplication
breakpoints14.

Our experimental approach may not have ascertained all classes of CNV. We discovered the
target CNVs by array CGH, a platform that is not well suited for identifying polymorphism
of extremely high–copy number repeats or heterochromatin. Moreover, breakpoints
embedded in repeats much larger than 300 bp cannot be sequenced with the approach used
here. In the short term, the most complete picture of mutation processes will come from
integrating information from multiple experiments.

Through power simulations, we showed that breakpoints for only a minority of targeted
CNVs were likely to be found by this experiment. Nonetheless, substantially fewer
breakpoints were recovered than we predicted through simulations. Several properties of
real data may account for this. First, we did not simulate our reads with sequencing error,
and the assumption of error-free sequencing allows a higher proportion of simulated reads to
be mapped with confidence. Second, breakpoint-spanning reads have shorter contiguous
matches to the reference genome than unsplit reads, and we did not attempt to model the
effect that this lower sequence homology may have on capture efficiency. Third, the several
mutation models we considered were only simple models of deletion and duplication; more
complex models will presumably lower both the sampling and mapping power. Finally, it is
possible that the locations of CNV breakpoints within target regions are biased toward
sequences within the target region that have lower probe densities, and thus sampling power
is not uniform across the target region.

In a single experiment, we sequenced more CNV breakpoints than have been reported in any
previous study, to our knowledge, excepting genome-wide sequencing projects. Until now,
the prohibitive cost and effort required to sequence CNV breakpoints has limited the number
of events described at base-pair resolution. An analysis of 270 deletion breakpoints found
that 40% of the breaks show microhomology and 14% contain small amounts of inserted
bases3. A study looking at 227 CNVs larger than 7 kb concluded that 38% of their events
were formed by NAHR, 39% by NHEJ and 17.5% by retrotransposition, and 4.5% were
VNTRs26. In a screen of structural variants from individuals with lung cancer, 306 germline
structural variants were sequenced27. We reanalyzed this dataset, removing 226 inversions
and likely transposable element polymorphisms. We found insertion of nontemplated
sequence in 22.5% of events and microhomology in 40% of events, but only 7.5% of events
showed both signatures; the remainder were blunt ends. In total, these figures accord
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reasonably closely with what we observed in the present study: microhomology at 70% of
deletion breakpoints, inserted sequence in 33%, but just 10% of breaks showing both
microhomology and inserted sequence. Thus, in contrast to previous studies that have
disagreed over the relative proportions of different breakpoint signatures3,26, once CNVs are
detected at high (<3 kb) resolution and obvious differences in ascertainment accounted for,
distinct studies agree relatively closely on the proportions of different breakpoint signatures,
and thus on the relative contributions of different mutational mechanisms.

There are still hurdles between the generation of copious CNV breakpoint information and
the use of that information to make rigorous inferences about germline CNV mutation
processes. It cannot be taken for granted that insights derived from experiments on somatic
cells (which often have mutations affecting other components of DNA repair) are
comprehensive with respect to germline mutation processes. There may be additional
mechanisms operating in the germline, and the relative contributions of mutational
mechanisms may be different. One example of the former is the developmentally
programmed homologous recombination that takes place preferentially at recombination
hotspots in the germline, which drives mutation at some VNTR loci28 and can cause
NAHR29,30.

The second challenge is to develop a rigorous, statistically driven framework for mapping
the breakpoint signatures we observed to the mutation processes that formed them. There are
multiple mutational mechanisms that can generate similar breakpoint signatures: for
example, MMEJ, MMBIR and NHEJ are all capable of generating deletions with
microhomology at the breakpoints. There are thought to be subtle distinctions, however, in
the properties of breakpoints produced by NHEJ and MMEJ; for example, MMEJ is thought
to require longer stretches of microhomology (>5 bp) than NHEJ (1–4 bp). If these
preferences can be precisely characterized, we envisage being able to use statistical analysis
of large collections of CNV breakpoints to estimate the relative contributions of different
pathways or sub-pathways to in vivo CNV formation. This could be done, for example, by
modeling the empirical distribution of microhomology lengths as a mixture of contributions
from different pathways.

There is not universal agreement as to whether certain mutational mechanisms are
biologically distinct. For example, some view NHEJ and MMEJ as distinct pathways9,
whereas others see them as two strands of a more general and flexible NHEJ mechanism7.
The phenomenology is static, but researchers’ understanding of mutational mechanisms is
dynamic, so the mapping of signatures to mechanisms is subject to change over time. Large
amounts of data from targeted experiments, coupled with statistical analyses, should help
crystallize these issues and establish population-based studies of CNV mutation as less of a
descriptive exercise and more of an inference-based one.

METHODS
Methods and any associated references are available in the online version of the paper at
http://www.nature.com/naturegenetics/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experimental overview. This diagram depicts the three stages of the experiment. First, test
(green) and reference (red) DNAs are cohybridized to a CGH array. Second, the intensity
data generated from the CGH experiment is summarized at each probe and the distribution
of probe intensities is used to identify CNVs using the GADA segmentation algorithm18.
The intensity data are then used to construct confidence intervals around each putative CNV
breakpoint. A hybridization-based capture array is designed to these confidence intervals.
Third, test and reference samples are cohybridized to the capture array. Fragments with at
least partial homology to the target regions are preferentially retained and sequenced.
Sequence reads are mapped to the genome; reads without CNV breakpoints show
contiguous homology to the reference across all bases, whereas reads containing breakpoints
appear to be split, with partial homology to either side of the CNV.
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Figure 2.
Confidence intervals. (a) We used our array CGH data to construct confidence intervals for
both the 5′ and 3′ breakpoints of 350 CNVs with published breakpoint sequences. m2
confidence intervals (shown here as 700 horizontal gray lines) are drawn in base pairs 5′ or
3′ (<0 or >0, respectively) from the GADA-estimated breakpoint location. The true location
for each sequenced breakpoint is represented as a red dot. There appears to be a strong
positive correlation between confidence interval size and the accuracy of the GADA
breakpoint estimates, indicating the CGH data contains useful information on the
uncertainty in breakpoint location. (b) We confirmed this by modeling the relationship
between confidence interval size and the accuracy of our breakpoint estimates. The best-fit
line from least-squares regression is shown in red (test of slope = 0, P < 10−15). (c) A
permutation test of the hypothesis that our confidence intervals cover more breakpoint
locations than expected by chance. As our test statistic, we used the number of true
breakpoints covered by a set of confidence intervals. A null distribution for this statistic was
generated using 1,000 permutations of m1 confidence intervals across CNVs (shown here as
a black curve). The number of true breakpoints covered with the correctly assigned
confidence intervals (indicated by a vertical red line) was 13 s.d. greater than the mean from
the randomly assigned permutations. (d) The relationship between CNV log2 ratio between
test and reference in the discovery CGH experiment and the breakpoint estimation error
indicate that GADA breakpoint estimation accuracy decreases as the CNV signal is closer to
the background.
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Figure 3.
Properties of the pulldown experiment. (a) Distribution of read lengths for all sequences,
mapped sequences, and mapped and targeted sequences. (b) Integration of CGH data,
confidence intervals and short-read sequencing facilitates rapid identification of CNV
breakpoints. Shown here is an overview of the data for a deletion observed twice in the CGH
experiment and then successfully recovered by split-read analysis. (c) Power of the
pulldown experiment to identify breakpoints for 1,185 validated, non-VNTR loci, plotted as
a function of haploid sequence coverage. According to power simulations, the single best
predictor of breakpoint sequencing success of non-VNTR loci was sequence coverage of the
target region (Pearson R = 0.78). Using the BLAT pipeline, we estimated that our approach
has 90% power to sequence a CNV breakpoint when both target regions of the CNV have an
average of twofold haploid sequence coverage (Online Methods and Supplementary
Methods).
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Figure 4.
Summary of sequence content at deletion breaks. (a) Histogram summarizing the number of
breakpoints showing blunt ends (red), microhomology (blue) or inserted sequence (red). For
each class of breakpoint, events are binned by the number of bases in each feature; in the
case of blunt ends, all events are in the same bin of 0 bases. (b) Nonrandom distribution of
microhomology observed at deletion breakpoints. We derived an expected distribution of
microhomology length by simulating random breakpoints while conditioning on the base
content of CNV breakpoint regions. Here we have plotted the difference between the
observed and expected amount of microhomology for our deletion breakpoints, which
reveals two notable features of our data: (i) there are more deletion breakpoints showing
microhomology than expected by chance; (ii) conditional on the presence of
microhomology, there is an enrichment of breakpoints with 2–9 bases of microhomology.
(c) The presence of inserted sequence within deletion breakpoints is more common in the
absence of microhomology (P < 10−15, χ2 test). (d) Each deletion sequenced in the
pulldown experiment is represented with a horizontal line. The deletions are parsed by
sequence features into three groups: the top group shows no microhomology or inserted
sequence, the second group shows at least 1 bp of inserted sequence, represented by a blue
line, and the third groups shows at least 1 bp of microhomology at the breakpoints,
represented by green lines. CNVs and sequence features are plotted on a log scale, and
CNVs are sorted by size within groups.
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Figure 5.
Inverted sequence at complex CNV breakpoints. These schematic homology plots
summarize into four classes the 12 cases of deletions with inverted sequence we observed.
The plots represent the regions of similarity and orientation of these sequences within the
CNV region as if we had plotted a dot plot of the reference (x axis) against the new allelic
structure from assembly of the 454 reads (y axis). Sequences inverted within the new allele
relative to the reference are colored red and orange; those in the same orientation are blue
and purple. The black loops represent the deleted sequence. (a) A deletion plus an inverted
sequence originating from within the larger deleted region; n = 8. (b) Deletion plus inverted
sequence originating from the local vicinity; n = 2. (c) Deletion plus inverted sequence
originating from the local vicinity, but owing to an incomplete assembly it is not clear
whether it comes from within or outside the deletion region; n = 2. (d) In a single case, a
deletion plus two separate inversions with sequence originating from the local vicinity of the
breakpoint.
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Table 1

CNV breakpoint signatures

Signature Possible
mechanism(s)

Data required Estimated
proportion

>100 bp sequence
homology at breakpoints

NAHR ~100-bp breakpoint
resolution

10–15%

Tandem repeat array
in reference sequence

VNTR ~100-bp breakpoint
resolution

10–15%

Blunt ends NHEJ, others Precise sequence ~5%

Insertion of <20 bp non-
templated sequence but
no microhomology

NHEJ Precise sequence 20–25%

Insertion of >20 bp local
sequence

MMBIR Precise sequence 5–10%

Microhomology
(<10 bp)

NHEJ, MMEJ,
MMBIR

Precise sequence 40–50%

Dispersed duplication Retrotransposition Evidence of
dispersion

~1%

This table combines the analysis of array data described elsewhere14 with analysis of the sequencing data presented here. The information is
relevant for CNVs larger than 500 bp outside of the highly repetitive (more than ten matches) regions of the genome.

Nat Genet. Author manuscript; available in PMC 2012 August 28.


