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Abstract
Cell biologists have developed methods to label membrane proteins with gold nanoparticles and
then extract spatial point patterns of the gold particles from transmission electron microscopy
images using image processing software. Previously, the resulting patterns were analyzed using
the Hopkins statistic, which distinguishes nonclustered from modestly and highly clustered
distributions, but is not designed to quantify the number or sizes of the clusters. Clusters were
defined by the partitional clustering approach which required the choice of a distance. Two points
from a pattern were put in the same cluster if they were closer than this distance. In this study, we
present a new methodology based on hierarchical clustering to quantify clustering. An intrinsic
distance is computed, which is the distance that produces the maximum number of clusters in the
biological data, eliminating the need to choose a distance. To quantify the extent of clustering, we
compare the clustering distance between the experimental data being analyzed with that from
simulated random data. Results are then expressed as a dimensionless number, the clustering ratio
that facilitates the comparison of clustering between experiments. Replacing the chosen cluster
distance by the intrinsic clustering distance emphasizes densely packed clusters that are likely
more important to downstream signaling events.

We test our new clustering analysis approach against electron microscopy images from an
experiment in which mast cells were exposed for 1 or 2 minutes to increasing concentrations of
antigen that crosslink IgE bound to its high affinity receptor, FcεRI, then fixed and the FcεRI β
subunit labeled with 5 nm gold particles. The clustering ratio analysis confirms the increase in
clustering with increasing antigen dose predicted from visual analysis and from the Hopkins
statistic. Access to a robust and sensitive tool to both observe and quantify clustering is a key step
toward understanding the detailed fine scale structure of the membrane, and ultimately to
determining the role of spatial organization in the regulation of transmembrane signaling.
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1 Introduction
Cells communicate with the outside world through membrane receptors that recognize one
of many possible stimuli (hormones, antibodies, peptides, other cells) in the extracellular
environment and translate this information to intracellular responses. Changes in the
organization and composition of the plasma membrane are critical to this process of
transmembrane signal transduction (Lingwood and Simons 2010), so there is great interest
in understanding the organization of membrane proteins in resting cells and in tracking their
dynamic reorganization during signaling (Wilson et al. 2001, 2007 Oliver et al. 2004;
Lagerholm et al. 2005; Xue et al. 2007; Andrews et al. 2008; Lingwood and Simons 2010).

In this laboratory, high resolution information about the spatial organization of membrane
proteins is generated by transmission electron microscopy (TEM). We stimulate cells for
selected times, then rapidly rip and fix membrane sheets, cytoplasmic face up. We then label
the cytoplasmic tails of specific transmembrane proteins, as well as proteins that are
recruited to membranes, using functionalized gold nanoparticles (Oliver et al. 2004; Wilson
et al. 2007). Sometimes the stimuli are also tagged with electron-dense nanoprobes
(nanogold, quantum dots) to identify activated receptors from the outside of the cell. After
labeling, samples are processed for TEM and spatial point patterns of the centers of the gold
nanoparticles are generated from the TEM images using image processing software
(Baddeley and Turner 2006; Zhang et al. 2006).

Previously, the Hopkins, and sometimes the Ripley, statistic (Zhang et al. 2006; Tan et al.
2006) were used to characterize the distributions of membrane proteins in resting and
activated cells. These statistics are given by a plot of the statistic for simulated random data
to be compared with a plot of the statistic computed from the experimental data (Oliver et al.
2004; Xue et al. 2007; Zhang et al. 2006). These methods can distinguish between more and
less clustered data. However, they do not provide a straightforward quantitative measure of
the extent of clustering. Many of our figures will contain a plot of the Hopkins statistic to
illustrate its consistency with and difference from our new method. Examples of the
biological data and the Hopkins statistic are given in Figs. 10, 11, 12, 13, and 14.

For our biological data, the membrane proteins are receptors. To better understand the
receptor biology, it is important to know how many receptors are physically close to other
receptors. Consequently, we need to find clusters based on the geometric distance. Already,
clusters have been determined by choosing a clustering distance d and putting two receptors
in the same cluster if they are closer than d; see, e.g.,Andrews et al. (2009). The problem is
that it is not clear how to choose a good clustering distance. In general, clustering
approaches can be divided into two types: hierarchical and partitional (Jain et al. 1999). The
hierarchical approach focuses on how the clusters vary with clustering distance, and thus
provides an excellent foundation for us to build a method of computing an intrinsic
clustering distance dI based on the data and then using this to quantify the clustering. The
hierarchical approach can be divided into single, complete, average, centroid, median, and
wards link methods. For this study, the single-link method best matches the biology. If we
set the clustering distance to ε and connect all of the data points in each cluster, we obtain
the ε-neighborhood graph (Cominetti et al. 2010; Schaeffer 2007). For more information
about alternative clustering approaches, see Tan et al. (2007), Fan and Pardalos (2010). It
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may also be possible to use a partitional approach to accomplish the same tasks, but this
seemed more difficult than using the hierarchical approach.

Here, we describe a method for computing a number that quantifies the amount of clustering
and apply it to the biological data described below. This permits the easy comparison of the
extent of clustering between experimental conditions. The method was implemented in
MATLAB in the clustering quantification (CQ) program developed by the authors. This
program uses the MATLAB dendrogram function to compute and display a hierarchy of
clusters that depends on the clustering distance. The information about the hierarchy is then
used to compute the intrinsic clustering distance dI that characterizes the distance between
points in clusters. This distance characterizes the nanoscale structure of any clustering in the
data.

We can also generate a hierarchy for simulated random data. The simulated data are
typically much less clustered than our biological data and consequently d̃I for random data is
larger than dI for the biological data. In both cases, the amount of clustering is strongly
dependent on the number of particles in the image. For randomly generated data, we provide
a simple formula for estimating d̃I as a function of the number of particles. To obtain a more
intuitive and useful description of the clustering, we introduce the clustering ratio ρI that is
the ratio of the intrinsic distance for simulated random data divided by the intrinsic distance
for the experimental data. Importantly, ρI is a dimensionless number that tells us how much
more clustered the biological data are in comparison with simulated random data.

Because there are a finite number of points in the image, the clusters only change at a finite
number of values di which are all of the distances between pairs of points. The dendrogram
displays this information. A minor complication is that for very small values of d, the
dendrogram function considers all points as clusters. Because of the biological
applications, we are only interested in nontrivial clusters that contain at least two points. For
a set of data points, the CQ program returns a plot of the number of clusters as a function of
the clustering distance d, a plot of the hierarchical clustering display by a dendrogram, and
at the intrinsic clustering distance dI, a plot of the clusters enclosed by their convex hulls and
information on number of clusters, number of points in clusters, and other details of the
clustering. The CQ program is available at http://stmc.health.unm.edu/.

We begin our discussion in Sect. 2 by defining the distance functions needed for clustering
analysis, then we give an overview of hierarchical clustering and dendrograms. An example
is presented to illustrate these concepts.

In Sect. 3 we introduce a function C(d) that gives the number of clusters as a function of the
clustering distance d. The intrinsic clustering distance dI is then defined to be the smallest
distance for which there is a maximum number of clusters. A similar concept was introduced
inCominetti et al. (2010). Clustering for simulated random data is studied and used to
normalize the clustering distance for the biological data. The normalized clustering distance
is a dimensionless number that we call the intrinsic clustering ratio ρI and that we use to
quantify the clustering in the data.

In Sect. 4, we use the intrinsic clustering distance and intrinsic clustering ratio to analyze
electron microscopy images from experiments in which mast cells were exposed for 1 or 2
minutes to increasing concentrations of antigen targeting the IgE-FcεRI receptor
complexes,then membranes were quickly ripped off the cell, fixed and labeled with gold
particles targeting the FcεRI β subunit (see Fig. 1). As expected, the intrinsic clustering
distance dI decreases with increasing stimulation and consequently the intrinsic clustering
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ratio increases with stimulation. Surprisingly, for the clustering in the data set analyzed here,
the clustering is proportional to the logarithm of the stimulus concentration.

Section 5 contains a summary of what has been done. Appendix contains samples of the
images we used to analyze the biological data along with the analysis of the clustering in the
images.

1.1 The Biological Experiments and Data
The experiments focus on the RBL-2H3 mast cell line that expresses the high affinity IgE
receptor, FcεRI (Kinet 1999). This receptor binds IgE with high affinity and with no
apparent effect on receptor distribution or cellular activity. We know from previous work
that IgE-FcεRI receptor complexes are distributed nonrandomly (in small and large clusters)
over the cell surface in the absence of a stimulus (Oliver et al. 1988; Seagrave et al. 1991;
Wilson et al. 2001). Cells are activated by the addition of multivalent antigen to physically
crosslink the cell surface IgE-FcεRI receptor complexes. The minimal signaling unit is a
receptor dimer. In general, multivalent ligand crosslinks multiple receptors. Multiple ligands
and receptors can form chains, loops, and other complex structures. The large stable clusters
of crosslinked receptors that form on antigen-activated cells, especially after prolonged
incubation, are often called aggregates.

The particular data set used to establish the usefulness of the intrinsic clustering distance
was previously analyzed using the Hopkins statistic and cluster counts in Andrews et al.
(2009). In this experiment, mast cells were primed by incubation with IgE that recognizes
dinitrophenol (anti-DNP-IgE) and were activated by incubation with increasing amounts of
DNPn-BSA, where n = 25, which refers to the number of DNP molecules attached to a
single molecule of bovine serum albumin. In this particular experiment, the activation period
was short—only 1 or 2 minutes. The cells were then rapidly cooled, their upper cell
membrane ripped off onto a TEM grid, and light fixative was added to limit further
movement of membrane components. The membrane sheets were labeled for 20 minutes
using 5 nm gold particles functionalized to recognize the cytoplasmic tails of the FcεRI β
subunit. Labeling conditions were adjusted so that 70 to 90% of the receptors were labeled
(Zhang et al. 2008; Zhang 2010). Specimens were subsequently strongly fixed, processed for
TEM and digital images representing a 2266 nm by 2266 nm part of the membrane were
collected using an Hitachi H7500 electron microscope.

The image processing software inZhang et al. (2006) was used to generate a list of the
coordinates of the centers of the gold particles with an accuracy of under one nanometer.
There are typically a few hundred particles in a data set. For reasonable estimates of the cell
membrane area this is in agreement with papers (Faeder et al. 2003; Xue et al. 2007) that
give the total number of FcεRI receptors on the cell membrane as between 2 × 105 and 4 ×
105. We use the units nanometers (nm) to measure length and minutes to measure time. The
stimulus is measured in micrograms per milliliter (µg/ml).

The number of particles in each image in the experimental data is displayed in Table 1. The
data are dose-response where the dose is the amount of stimulus s used and the response is
the amount of clustering, which will be described later. Because each micrograph is from a
unique cell, each image represents a single experiment. In general, 10 images were collected
for each stimulus concentration. The number of gold particles in each micrograph is shown
in the columns labeled 1 through 11. A dash entry means that there was a technical problem
(out of focus or rips or folds in the membrane) with the experiment. When discussing these
data below, we will omit the file labels as they are the same as in this table.
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We need some quantitative information to analyze the biological data shown in Table 1. As
noted above, the TEM images are squares 2266 nm on each side. The FcεRI are trans-
membrane receptors that are approximately 10 nm in diameter (see Fig. 1). The gold
particles can have some variation in size and shape, but they are all nearly spherical with a
diameter of approximately 5 nm. The gold particles are coated with a thin biofilm.
Consequently, the distance between the centers of any two gold particles should usually be
greater than 5 nm. One complication is that the number of particles per TEM image varies
between 72 and 654, which strongly impacts the clustering whatever the stimulus. Our new
method of analysis will compensate for this.

2 Mathematical Background
The biological data consist of M > 0 particles which will be modeled as points in the
Cartesian plane:

Clustering is defined in terms of two functions, the distance function and the linkage
function. The distance function computes the distance between points and the linkage
function computes the distance between clusters. Clustering results often vary based on the
choice of these functions. The distance between points is defined by

which is the Euclidean distance. The clusters depend on the choice of a clustering distance d
≥ 0. Then, if two points satisfy φj,k ≤ d, they are in the same cluster.

Next, let A and B be two clusters containing points aα and bβ, then the distance between two
clusters is defined by:

which is known as single-linkage merge criterion (Jain et al. 1999; Jain and Dubes 1988). If
φ(A,B) ≤ d, then A and B are combined into a single cluster. These functions were chosen
because it is reasonable to assume that two IgE-FcεRI receptors in the cell membrane are
more likely to interact the physically closer they are to each other.

2.1 Hierarchical Clustering and Dendrograms
Our new method for clustering analysis is based on the hierarchical clustering approach. The
dendrogram function from MATLAB is used to compute and display the hierarchy of
clusters. Dendrograms are tree diagrams that are a graphical representation of a hierarchical
clustering of a data set. They are often used in computational biology to illustrate the
clustering of genes or samples. In our case, the hierarchy is parameterized by the clustering
distance d and the dendrogram displays how the clusters change as d changes. For d
sufficiently small, each cluster contains only one point. As d increases, pairs of clusters are
merged into larger clusters. For sufficiently large d, there is only one cluster.

Because two IgE-FcεRI receptor complexes must dimerize to create a signal, we are only
interested in nontrivial clusters that contain more than one point. For small d, there are only
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trivial clusters. For increasing d, the number of nontrivial clusters increases until a
maximum value is reached. For larger d, the number of nontrivial clusters decreases until
there is one large cluster left. The dendrogram function can display dendrograms for any
number of points, however, the dendrograms of data sets with more than 30 points can be
incomprehensible to read. In this situation, 30 nodes will be used to group these points in the
display of the dendrograms. More details can be found in the CQ program.

To illustrate hierarchical clustering, an example of 10 random points is given in Fig. 2(a)
and its hierarchy of clusters visualized by a dendrogram is given in Fig. 2(b). The vertical
axis on the dendrogram plot gives the clustering distance d, while the horizontal axis lists
the individual points that are collected into clusters. For the data shown in Fig. 2(b), if d <
50 nm, there are only trivial clusters, while for d > 1100 nm all the points are in one large
cluster.

To identify intermediate clusters in Fig. 2, consider a value of d between the smallest
distance between any two particles and the distance where there is only one large cluster. If
a horizontal line is drawn at height d, then the intersection of this line with the vertical lines
of the dendrogram plot gives all of the clusters determined by the clustering distance d. The
horizontal line connecting two clusters lies at a height d where two or more clusters merge
into one. In Fig. 2, for d = 100 nm, there is one nontrivial cluster consisting of the points {4,
9}. For d = 200 nm, there are two clusters, the previous and {7, 10}. For d = 300 nm, there
is cluster {4, 9} and point {5} joins cluster {7, 10} to form cluster {5, 7, 10}.

3 The Analysis Tools
The goal of this section is to describe the concept of the intrinsic clustering distance dI that
will characterize the nanoscale distance between particles that are in clusters. This distance
is computed by CQ, the clustering quantification program, which computes the clusters in the
data as a function of the clustering distance d, and then computes the function C(d) ≥ 1 that
gives the number of nontrivial clusters determined by the distance d. For very small values
of d, every cluster given by the dendrogram function contains one particle and is thus
trivial. For our data, there can only be one cluster for , because this is the
length of the diagonal (maximum length) of the membrane imaged. Typically, there is only
one cluster for d greater than a few hundred nanometers. We define the intrinsic clustering
distance dI to be the smallest value of d for which there is a maximum number of clusters,
that is, for all d, C(d) ≤ C(dI) and if C(d) = C(dI), then dI ≤ d.

To illustrate our ideas and use of the CQ program, we generated a modest example with 100
random points in a region the same size as that in our biological data and plotted these points
in Fig. 3(a). Typically, the images of biological data contain several hundred points, but
some do contain fewer than 100 points. We then computed C(d) and plotted the result in Fig.
3(b). The maximum of C(d) is at d = 134 nm, so dI = 134 nm. Next, the clusters for d = 134
nm were computed, and then the MATLAB function convexHull was used to compute the
convex hulls of the clusters, which were then plotted in Fig. 3(a).

The dendrogram in Fig. 3(c) reduces the 100 points to 30 nodes. Figure 3(d) shows the
Hopkins statistic (Zhang et al. 2006) which indicates a very small amount of clustering
within the randomly generated data as the bar graph has moved slightly to the right of the
expected curve for random data. The fact that dI is large indicates the data are random. It is
clear that a more quantitative assessment of the clustering would really be helpful in
assessing the clustering in data.
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The function C(d) is noisy, as is indicated in Fig. 3(b) for random data and Figs. 10, 11, 12,
13, and 14 for biological data. We tried fitting parts of the C(d) curve with some smooth
simple functions, and then computing the maximum of the smooth function. However, this
made no significant improvement in our estimates, and thus is not used in the CQ program.

For the biological data, the average number of particles in an images is 252. The
dendrogram function reduces this number of points to 30 nodes, as illustrated in Fig. 3(c).
This emphasizes the large scale structure of the clustering, so is only of modest interest to
the biologists. Consequently, we will emphasize dendrograms of small subsets of our data,
as is done in Sect. 4.2.

What we need to know is how much more clustering is in the biological data than in the
randomly generated data. Because the number of particles in a biological image is highly
variable, we need to study the clustering in random data as a function of the number of
points in an image. This can then be used to normalize the intrinsic clustering distance,
producing a clustering ratio that we use to characterize the amount of clustering in biological
data. Note that because the biological data are highly variable, we will need to compute
averages over the data sets with the same stimulus to obtain reasonable results.

3.1 Simulated Random Data
An important factor is that, for a fixed clustering distance d and a fixed region, the number
of clusters in simulated random data increases as the number of particles M increases. To
understand how this affects the biological data, using the function rand from MATLAB, we
simulated a uniform distribution of M random particles 100 times and then computed the
average µ(dI) and standard deviation σ(dI) of the intrinsic distances. These are tabulated in
Table 2 for several values of M. An example of one of the simulations is shown in Fig. 3.

To compare the intrinsic distance for biological data to that for simulated random data, we
will need the values of dI for many values of M other than those in Table 2. These values are
plotted in Fig. 4 and look like the plot of the reciprocal of a polynomial. Consequently, we
fit these values with a function d̃I(M) of the form

(1)

using the fminsearch function from MATLAB. This produces

(2)

that is also plotted in Fig. 4. The fit is excellent with a relative mean square error of 0.3%.
Note that d̃I(M) very slowly goes to zero as M goes to infinity.

It is typical for the number of particles in the images to be analyzed to vary substantially. To
compensate for this, we introduce the clustering ratio

(3)

which measures how much more the biological data clusters as compared to simulated
random data for the same number of particles. It is the clustering ratio that provides an
intuitively reasonable measure of clustering. It is also reasonable to define the clustering
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ratio as the reciprocal of ρI, that is, as dI/d̃I. Our choice makes ρI increase with an increasing
stimulus, and thus is more intuitive.

4 Analysis of Biological Data
For the biology, it is important to know when the FcεRI are interacting. These molecules are
about 10 nm in diameter. So, it is unlikely that particles that are 50 nm apart are attached to
receptors that will interact, while at 20 nm, it is far more likely that the receptors are
interacting. The clustering distances dI that are given in Table 3 indicates that it is more
likely that the receptors interact as the stimulus increases. At time t = 1 min, the trend is that
dI decreases for increasing stimulus dose. At time t = 2 min, data were not taken for zero
stimulus as this would be similar to the data at t = 1 min. For stimulus 0.001, only two data
sets were taken. For t = 2 min, the remaining data show some decrease with increasing
stimulus. For all of the data, in the t = 1 min case, the intrinsic distance varies from 140 nm
down to 14 nm. By t = 2 min, the variation is smaller, 79 nm down to 12 nm.

The intrinsic clustering ratio for the biological data ρI is shown in Table 4. As for the
clustering distance, the clustering ratio is noisy. However, there is a clear trend in the t = 1
min for the clustering ratio to increase with stimulus, especially for the three largest stimuli.
For the t = 2 min, the clustering ratio for s = 0.100 is larger than for weaker or stronger
stimuli. The laboratory has also generated dynamic data for the FcεRI receptor that indicates
that, for the stronger stimuli, most of the clustering has been completed before t = 1 min,
which could possibly explain this apparent lack of correlation between stimulus and
clustering.

Because of the noise in the clustering ratio, we computed the average and standard deviation
of the clustering ratio of the data over all of the experiments with the same stimulus, and
give the results in Table 5. We first observe that, for the unstimulated data, the clustering as
measured by the ρI, is more than twice what is seen in simulated random data. Next, at t = 1
min, there is a clear trend for the clustering to increase as the stimulus increases. In fact, at t
= 1 min, we see that increasing the stimulus by a factor of 10 increases the clustering ratio
by approximately 1. More precisely

At 2 min, the relationship between the stimulus is more complex but is larger for the
strongly stimulated cells than for the unstimulated. It is also important to note that the
standard deviation σ is quite large. This quantifies the amount of variation in the data, which
is quite large, but does not increase as fast as the mean µ. For example, for 2 min with
stimulus 0.100, µ is quite large, but so is the standard deviation. It is possible that running
more experiments would reduce the standard deviation and produce values of µ in line with
the t = 1 min data.

4.1 Additional Analysis Using the CQ Program
The clustering analysis program CQ computes many quantities other than the intrinsic
distance dI and clustering ratio ρI. For example, it computes: the total number of clusters
(tnc), the maximum cluster size (mcs), and the percentage of particles in clusters (ppc).
Since the particles per TEM image vary between 72 and 654 (see Table 1), we present
weighted averages of the these quantities in Table 6. The weighted average is computed as
follows. Let ni, 1 ≤ i ≤ I be the number of points in the images in a data set; here I = 10.
Then set
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If qi, 1 ≤ i ≤ I, are given data, then the weighted average of data is

Table 6 gives the weighted averages of several quantities related to the biological data. We
include some results using a fixed cluster distance of 50 nm for comparison with the usual
method of determining clusters using a fixed distance. For these data, we see:

column 3: For t = 1 min, dI decreases with increasing stimulus; for t = 2 min, dI is small
and decreases a little.

column 4: The percentage of particles in clusters is essentially a constant, 70% for all
the data. This is because dI decreases with increasing stimulus.

column 5: The total number of particles has substantial variation.

column 6: The total number of clusters has substantial variation, but is not strongly
dependent on the stimulus concentration.

column 7: The maximum cluster size in this data set is essentially a constant 10
particles.

column 8: Using a fixed cluster distance of 50 nm, the percentage of particles in clusters
for t = 1 min increases from about 65% to 92%. For t = 2 min and a strong stimulus, the
percentage of particles in clusters is about 80% to 90%.

column 9: Again, using a cluster distance of 50 nm, the mean cluster size shows a
strong increase with increasing stimulus.

Previous papers (Varma and Mayor 1998; Goswami et al. 2008) present experimental
evidence that receptor clustering may be independent of receptor concentration and
stimulus. We note that the percentage of particles in clusters, total number of clusters and
maximum cluster size do not strongly depend on the stimulus; see columns 4, 6, and 7 from
Table 6, which is in agreement with these papers.

4.2 Fine Scale Cluster Structure
To study the nanoscale structure of the membrane, we introduce the notion of a dense or
compact cluster as a cluster determined using the distance dI. Previously, clusters were
determined by a fixed distance, for example, 43 nm inAndrews et al. (2009). From Table 3,
we see that dI is usually smaller than this distance, so the particles in clusters are typically
closer together than when 43 nm is used. When dI ≤ 20 nm, the receptors must be nearly
touching as they are about 10 nm in diameter.

To illustrate how compact clusters can be used to understand membrane organization, we
have included Figs. 5, 6, 7, 8, and 9. Note that because we are looking at a single image for
each stimulus, the values of dI may not decrease with increasing stimulus. For each value of
the stimulus and for t = 1min, we chose data from the experiment with the largest number of
points M (see Table 7) and then found the largest compact cluster and plotted the cluster and
its dendrogram. For these data, dI is small, between 17 nm and 32 nm so the clusters are
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compact. The gold particles are drawn to scale, that is with 5 nm circles. Note that the sizes
of the gold particles may vary by as much as one nm.

The dendrograms are quite useful in understanding the clusters. For example, in Fig. 5, we
see that particles {1, 2, 3, 4, 5, 6} are a compact group, particles {7, 8, 9} form a less
compact group, and these two groups are only about 25 nm apart. The cluster in Fig. 6 has a
similar structure.

What is really apparent is that there is very little special structure in these clusters. This is
probably due to the multivalent nature of the ligand. Currently, the laboratory is generating
data using ligands with small valency. Here, we expect to see special cluster appearing, for
example, linear chains of crosslinked receptors.

5 Discussion
It is well known that membrane proteins are distributed nonrandomly in the plasma
membranes of animal cells. Evidence for this heterogeneity has been used to support the
existence of a variety of membrane subdomains, including lipid rafts, protein islands and
cytoskeletal corrals (Lingwood and Simons 2010; Oliver et al. 2004). It is also well known
that protein distributions change when cells are stimulated. In the case of the high affinity
IgE receptor, FcεRI, of mast cells, the change induced by the addition of multivalent antigen
involves a reorganization of 5 nm gold particles marking receptors from singlets and small
clusters to larger clusters, accompanied by biochemical and physiological responses by the
activated cells. This ligand-driven redistribution of receptors has been observed by both
scanning and transmission electron microscopy (Seagrave et al. 1991; Oliver et al. 2004) and
has been confirmed using both the Hopkins and Ripley statistics (Zhang et al. 2006;
Andrews et al. 2009). However, until now there has not been a good quantitative way to
compare clustering between experimental conditions.

Here, we present a new method for clustering analysis based on the hierarchical clustering
approach. Using the intrinsic clustering distance dI, we introduce a dimensionless number,
the intrinsic clustering ratio ρI, that compares the amount of clustering of particles in a set of
experimental images with the amount of clustering in simulated random data that contain the
same number of particles. It is important that ρI is determined by an algorithm, and is
independent of user input. Given a pattern of spatial points, the quantitative clustering
program CQ is used to provide the intrinsic clustering distance dI that quantifies the density
of the clustering in electron microscopy images. The dendrograms of the clusters provide a
detailed summary of membrane receptor organization on the 10 nm scale and so should have
important applications in understanding the molecular organization of membranes.

We apply the analysis to an experiment in which mast cells were activated for one or two
minutes with increasing concentrations of multivalent antigen, then FcεRI receptors were
tagged with gold nanoparticles and their distributions captured by electron microscopy and
analyzed. Using ρI, our results confirm an increase in clustering with increasing stimulation
already inferred from visual inspection of micrographs and from Hopkins and Ripley
analysis. The analysis appears to be both robust and sensitive. In support of robustness, the
change in the clustering ratio with increasing stimulation is readily detected even though the
amount of clustering varies substantially between images from ten different cells exposed to
the same experimental conditions. In support of sensitivity, the change in the clustering ratio
with increasing stimulation is detected even though the particles are significantly clustered
before the addition of stimulus. Remarkably, the clustering ratio is proportional to the
logarithm of the stimulus concentration for the experiments analyzed here. Further analysis
will determine if this is unique to the current data set.
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The CQ program produces additional detailed information about the membrane organization,
including the number of clusters, the three largest clusters, the total number, and percentage
of particles in clusters. It also produces the following plots: the total number of clusters as a
function of the distance d, the total number of particles in clusters as a function of the
distance d, the clusters enclosed by their convex hulls, and the distribution of cluster sizes.
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Appendix: Largest Number of Particles Experiments
In Figs. 10–14, for each stimulus and t = 1 min, we chose the experiment with the largest
number of particles and display the TEM image in (a). We also show a plot of the particle
position with the clusters identified by CQ program enclosed by their convex hull in (b). The
Hopkin’s test is displayed in (c) and the function C(d) that gives the number of nontrivial
clusters as a function of the clustering distance d is displayed in (d). In postscript version of
this paper, the plots can be magnified for better visibility.
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Fig. 1.
Cartoon of FcεRI primed with IgE. Image taken from Gould and Sutton (2008)
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Fig. 2.
Positions (a) and dendrogram (b) for 10 random points
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Fig. 3.
Simulated random data with 100 points: (a) clusters enclosed by their convex hulls for dI =
134 nm; (b) number of clusters C(d) with a vertical line at dI; (c) dendrogram of 100 points
using 30 nodes; (d) Hopkins clustering test
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Fig. 4.
Nonlinear fit of the simulated random data from Table 2
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Fig. 5.
Experiment 3368, stimulus s = 0.000 µg/ml, (a) positions and (b) dendrogram of the largest
cluster at the intrinsic distance dI = 27 nm
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Fig. 6.
Experiment 3410, stimulus s = 0.001 µg/ml, (a) positions and (b) dendrogram of the largest
cluster at the intrinsic distance dI = 32 nm
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Fig. 7.
Experiment 3397, stimulus s = 0.010 µg/ml, (a) positions and (b) dendrogram of the largest
cluster at the intrinsic distance dI = 20 nm

Espinoza et al. Page 19

Bull Math Biol. Author manuscript; available in PMC 2012 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Experiment 3390, stimulus s = 0.100 µg/ml, (a) positions and (b) dendrogram of the largest
cluster at the intrinsic distance dI = 17 nm
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Fig. 9.
Experiment 3374, stimulus s = 1.000 µg/ml, (a) positions and (b) dendrogram of the largest
cluster at the intrinsic distance dI = 25 nm
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Fig. 10.
Experiment 3368, stimulus s = 0.000 µg/ml, time t = 1 min, number of particles M = 229, (a)
TEM image, (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 27 nm,
(c) Hopkins test, (d) number of clusters
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Fig. 11.
Experiment 3410, stimulus s = 0.001 µg/ml, time t = 1 min, number of particles M = 468, (a)
TEM image (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 32 nm,
(c) Hopkins’s test, (d) number of clusters

Espinoza et al. Page 23

Bull Math Biol. Author manuscript; available in PMC 2012 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
Experiment 3397, stimulus s = 0.010 µg/ml, time t = 1 min, number of particles M = 575, (a)
TEM image, (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 20 nm,
(c) Hopkins’s test, (d) number of clusters
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Fig. 13.
Experiment 3390, stimulus s = 0.100 µg/ml, time t = 1 min, number of particles M = 453, (a)
TEM image, (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 17 nm,
(c) Hopkins’s test, (d) number of clusters
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Fig. 14.
Experiment 3374, stimulus s = 1.000 µg/ml, time t = 1 min, number of particles M = 654, (a)
TEM image, (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 25 nm,
(c) Hopkins’s test, (d) number of clusters

Espinoza et al. Page 26

Bull Math Biol. Author manuscript; available in PMC 2012 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Espinoza et al. Page 27

Ta
bl

e 
1

B
io

lo
gi

ca
l d

at
a 

se
ts

: c
ol

um
n 

1 
is

 th
e 

am
ou

nt
 s

 o
f 

st
im

ul
us

 in
 µ

g/
m

l a
dd

ed
, c

ol
um

n 
2 

is
 ti

m
e 

t i
n 

m
in

ut
es

 a
t w

hi
ch

 th
e 

ce
lls

 w
er

e 
fi

xe
d,

 c
ol

um
ns

 la
be

le
d 

1
th

ro
ug

h 
11

 g
iv

e 
th

e 
nu

m
be

r 
of

 p
ar

tic
le

s 
in

 e
ac

h 
da

ta
 s

et
. A

 d
as

h 
in

di
ca

te
s 

ex
pe

ri
m

en
ts

 w
he

re
 th

er
e 

w
as

 a
 te

ch
ni

ca
l p

ro
bl

em
 o

r 
th

e 
ex

pe
ri

m
en

t w
as

 n
ot

pe
rf

or
m

ed
. T

he
 la

st
 c

ol
um

n 
gi

ve
s 

th
e 

na
m

es
 o

f 
th

e 
fi

le
s 

co
nt

ai
ni

ng
 th

e 
da

ta

s
t

1
2

3
4

5
6

7
8

9
10

11
E

xp

0.
00

0
1

14
2

13
5

10
0

  8
1

15
2

18
3

22
9

10
3

19
2

17
7

–
33

62
–3

37
1

0.
00

1
1

  7
2

16
3

25
9

29
3

22
1

43
3

46
8

45
6

46
8

45
8

–
34

04
–3

41
3

0.
01

0
1

37
3

24
6

33
1

57
5

30
4

36
6

32
4

52
3

24
1

24
1

–
33

94
–3

40
3

0.
10

0
1

26
3

37
1

43
5

23
3

–
27

4
23

7
45

3
37

6
34

0
15

7
33

83
–3

39
3

1.
00

0
1

14
9

38
2

65
4

29
6

–
24

6
24

6
23

3
18

5
15

9
17

4
33

72
–3

38
2

0.
00

1
2

40
9

38
0

–
–

–
–

–
–

–
–

–
33

60
–3

36
1

0.
01

0
2

16
4

20
0

12
9

25
3

17
1

17
3

15
0

16
5

23
6

25
2

–
33

50
–3

35
9

0.
10

0
2

33
2

38
4

  7
5

  7
7

23
6

11
6

13
0

15
3

17
9

15
1

–
33

40
–3

34
9

1.
00

0
2

23
5

16
6

24
8

22
8

22
9

10
1

  9
1

23
3

23
1

20
3

–
33

30
–3

33
9

Bull Math Biol. Author manuscript; available in PMC 2012 August 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Espinoza et al. Page 28

Table 2

The mean and standard deviation of the intrinsic distance dI for 100 simulations using M particles

M µ(dI) σ(dI)

100 135 18

200 98 9

300 80 7

400 69 5

800 49 3
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Table 5

Stimulus s, time t, mean µ and standard deviation σ of the clustering ratio ρI from Table 4

s t µ(ρI) σ(ρI)

0.000 1 2.47 1.51

0.001 1 2.12 0.85

0.010 1 2.87 1.04

0.100 1 4.07 1.04

1.000 1 5.15 1.79

0.001 2 2.42 0.62

0.010 2 3.07 1.38

0.100 2 6.25 2.12

1.000 2 4.52 1.31
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Table 7

The stimulus s, the intrinsic distance dI for the data sets with the largest number of particles M for each
stimulus and t = 1 min

s dI M File

0.000 27 229 3368

0.001 32 468 3410

0.010 20 575 3397

0.100 17 453 3390

1.000 25 654 3374
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