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Renal biopsies commonly display
tissue remodeling with a combina-

tion of many different findings. In
contrast to trauma, kidney remodeling
largely results from intrinsic responses,
but why? Distinct danger response pro-
grams were positively selected throughout
evolution to survive traumatic injuries
and to regenerate tissue defects. These
are: (1) clotting to avoid major bleeding,
(2) immunity to control infection, (3)
epithelial repair and (4) mesenchymal
repair. Collateral damages are acceptable
for the sake of host survival but causes for
kidney injury commonly affect the kid-
neys in a diffuse manner. This way,
coagulation, inflammation, deregulated
epithelial healing or fibrosis contribute
to kidney remodeling. Here, I focus on
how these ancient danger response pro-
grams determine renal pathology mainly
because they develop in a deregulated
manner, either as insufficient or over-
shooting processes that modulate each
other. From a therapeutic point of view,
immunopathology can be prevented by
suppressing sterile renal inflammation, a
useless atavism with devastating conse-
quences. In addition, it appears as an
important goal for the future to promote
podocyte and tubular epithelial cell
repair, potentially by stimulating the
differentiation of their newly discovered
intrarenal progenitor cells. By contrast, it
is still unclear whether selectively target-
ing renal fibrogenesis can preserve
or bring back lost renal parenchyma,
which would be required to maintain or
improve kidney function. Thus, renal
pathology results from ancient danger

responses that evolved because of
their evolutional benefits upon trauma.
Understanding these causalities may help
to shape the search for novel treatments
for kidney disease patients.

Introduction

In Greek mythology Perseus used his
sword to strike off Medusa’s head, prob-
ably because he anticipated that this would
kill her immediately. The causal relation-
ship between this injurious trigger and its
immediate tissue consequences fostered
the culture of executions in its various
forms. So far only Victual Brother captain
Klaus Störtebeker on (October 20th, 1401
in Hamburg) was reported to contradict
that scenario after his beheading, when his
body arose and he walked upright past
11 of his men to save them from being
executed along with him.1

Most non-communicable diseases, how-
ever, arise from a mix of injury and the
host’s responses to it. Renal pathology,
especially, is rather dominated by a
complex process of tissue remodeling to
which the injurious trigger accounts only
partially and the kidneys get rather
destroyed by the body’s response to this
trigger. But why did evolution develop
processes that destroy our organs?
Decisions during evolution are generally
based on a careful risk-benefit assessment
which implies that the processes that
finally destroy kidneys provide some other
significant survival benefits that outweigh
renal damage. I will address this question
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by elaborating a unifying concept of
(renal) pathology which is based on the
following assumptions: (1) evolution has
positively selected four major response
programs to address the potentially life
threatening dangers of traumatic injury
from the state of primitive multicellular
organisms, i.e., clotting, inflammation,
epithelial and mesenchymal healing,
(2) kidney remodeling results from deregu-
lated danger response programs and
(3) suppressing inflammation and promot-
ing epithelial regeneration are the most
promising approaches to prevent the loss
of renal tissue, kidney remodeling and
chronic kidney disease (CKD).

Danger Control after Trauma

Multicellular organisms need to maintain
tissue integrity and any traumatic injury
creates an immediate and potential fatal
threat.2 As such there is a need for sealing
the wound and for tissue regeneration,
a concept that applies to plants and
animals.3,4 Upon focal injury, danger
responses control the problem locally,
which is an important benefit to assure
the survival of the entire organism.
Survival outweighs the risk of any focal
collateral damage that may be associated
with these danger responses, e.g., focal
immunopathology and scarring (Fig. 1).
The same concept applies to focal injuries
to the kidney, such as biopsy injuries,
infective pyelonephritis or even unilateral
renal artery stenosis. However, nowadays
many clinically common entities of kidney
injury are of toxic, hemodynamic or
metabolic nature, which hit both of the

kidneys in all of their compartments.
Nature has not yet developed (and
probably will not in the future) different
danger response programs to avoid the loss
of solid organs that are absolutely neces-
sary for survival. The reason for this is
simple, even though it may be hard to
accept for the renal scientist: renal failure
was not (and probably never will be) a
significant selection pressure for the sur-
vival of a species as a whole. Therefore,
kidney tissue remodeling and renal failure
in humans is an—from an evolutionary
point of view—acceptable side effect of the
otherwise very effective danger response
programs that effectively assured the
survival of multicellular organisms after
traumatic tissue injuries.

The Four Elementary
Danger Response Programs

in Skin Trauma

Wound healing after skin injury is a useful
example to illustrate the four danger res-
ponse programs in a temporal manner.5-7

Clotting. Skin trauma usually induces
bleeding which involves the potential risk
of significant blood loss and hemorrhagic
shock. Clotting, a complex interplay of the
injured endothelial cells, the coagulation
factors and platelet aggregation, represents
the first danger response program that,
within minutes, often perfectly controls this
risk.8 Insufficient clotting implies the risk
for major bleedings, while overshooting
clotting causes tissue ischemia via intravas-
cular coagulation or thromboembolism.

Inflammation. Eukarionts compete
with prokarionts for nutritients and space

of their biotope. This battle between
eukarionts and prokarionts started from
monocellular organisms and represents the
underlying concept behind the evolution
of the immune system and the clinical
concepts of infectious diseases and host
defense.9 Traumatic injury of metazoan,
such as skin wounding, involves the risk of
pathogen entry and potentially fatal sepsis,
a danger that has been addressed by rapid
induction of a local inflammatory state
that intends to control pathogen entry and
spreading. Sponges and other primitive
organisms use several hundreds of Toll-like
receptors to recognize their microbial
environment and to initiate inflammation
and appropriate host defense mecha-
nisms.10-12 It is important to note that
extrinsic pathogen-associated molecular
patterns (PAMPs), as well as intrinsic
damage-associated molecular patterns
(DAMPs), can activate the same innate
immunity pattern recognition receptor
platforms which explains why infectious
and sterile forms of inflammation initiate
identical inflammatory responses.13,14

Inflammation is already activated by
clotting, as aggregating platelets release
chemokines that trigger the recruitment of
neutrophils and subsequently other leuko-
cytes that attack, and ideally neutralize,
pathogens.15 Local inflammation and abs-
cess formation support host survival while
systemic inflammation during sepsis, a
deregulated version of the same response
program, implicates life-threating conse-
quences.16 Insufficient host defense
implies the risk of potentially fatal infec-
tion while overshooting local inflamma-
tion causes unnecessary immunopathology

Figure 1. Traumatic injuries across species and kidney disease. Coordinated danger response programs are of benefit for multicellular organisms, even if
they cause some collateral tissue damage or persisting defects. However, metabolic, hemodynamic or toxic factors rather hit the kidney in a diffuse
manner which is why collateral damage affects the entire renal tissue and progresses to end-stage renal disease.
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and loss of parenchyma, e.g., in pyoderma
gangraenosum.17

Epithelial healing. In wounds of non-
sterile outer and inner surfaces the risk of
infection can only be sufficiently con-
trolled when the external barrier defect is
rapidly repaired.7,18 This is achieved by
immediate signals that trigger re-epithelia-
zation from the borders of the wound.4,7,19

Superficial erosions of the epidermis or the
corneal and conjunctival epithelium heal
rapidly also in adults.4,7,19 Coagulation
factors like fibrinogen and platelet-derived
growth factors are the first mediators
within the wound with direct mitogenic
effects on surviving cells in the epithelial
compartment.4,8,15,19,20 During the inflam-
matory phase, epithelial growth factors,
as well as certain interleukins like IL-6,
IL-17 and IL-22, stimulate epithelial
repair.19,21-27 Epithelial healing depends
on the presence of local progenitor cells
that are committed to the specific epithe-
lial lineage phenotype.18,28,29 Progenitor-
mediated re-epitheliazation should be a
highly controlled and coordinated process
requiring appropriate activation, prolifera-
tion, migration and finally differentiation
into the final phenotype. Insufficient re-
epitheliazation implies a persistent risk
for infections and creates chronic wounds
while overshooting or uncoordinated re-
epitheliazation which causes hyperplastic
wounds.4

Mesenchymal healing/fibrosis. Insuffi-
cient re-epitheliazation or injury to
mesenchymal tissues activates the wound
healing program of mesenchymal healing.
This process stabilizes the organ structure,
regrows vasculature or fills the gap of lost
parenchymal cells that cannot regrow.
After a bone fracture or a tear of a
ligament, but also insufficient epithelial
repair stimulates mesenchymal healing,
e.g., through the process of epithelial-
mesenchymal transition (EMT) of epithe-
lial cells that get arrested in the G2/M
phase.30 The number of collagen-pro-
ducing cells increases either by EMT,31,32

by the influx of bone marrow-derived
fibrocytes,33,34 by the transition of peri-
cytes or endothelial cells34,35 or simply by
proliferating resident fibroblasts and their
transition to myofibroblasts.35 The accu-
mulation of extracellular matrix, i.e.,
fibrosis, leads to stiffening of the tissue,

i.e., sclerosis. Insufficient mesenchymal
healing may destabilize tissues and result
in chronic wounds, while overshooting
mesenchymal healing produces keloid and
scleroderma.

The sequential activation of these
danger response programs has been, and
still is, essential to assure the survival of
multicellular organisms so that they can
reach the age of reproduction. Children
and adolescents have to survive many skin
wounds until the next generation is born;
wound healing is also necessary to survive
a baby’s delivery. Given the enigmatic
importance of these danger response pro-
grams it comes as no surprise that injuries
to internal organs involve the activation of
the identical series of mechanisms.

Clotting in Renal Pathology

There are several renal disorders that
directly relate to clotting disorders such
as the thrombotic microangiopathies or
phospholipid antibody syndrome, which
originate from intense activation of
the endothelia.36,37 Microvascular clotting
causes tissue ischemia and eventually
necrosis (Table 1). Vascular damage with
GBM perforations and plasma leakage
also occurs in intense tissue inflammation,
e.g., in crescentic glomerulonephritis.38

Vascular damage implies bleeding, which
manifests as hematuria in the kidney, a
process that should activate clotting. It is
well documented that crescentic glomeru-
lonephritis is associated with glomerular
fibrinogen deposition especially in the area
of loop necrosis.39,40 The same applies to
vascular disintegration in Alport nephro-
pathy which lacks glomerular inflam-
mation but where the genetic GBM

abnormality promotes vascular injury.41

Activated platelets release coagulation
factors as well as proinflammatory and
mitogenic factors which activate inflam-
mation and epithelial healing, e.g., CC-
chemokines, platelet-derived growth
factors (PDGF) and others.8,15,19

Insufficient or Overshooting
Inflammation in Renal Pathology

Renal inflammation is a major deter-
minant of AKI, as well as the progression
of CKD. The network of resident
dendritic cells inside the kidney and
infiltrating mononuclear phagocytes are
fully equipped with the entire spectrum of
pattern recognition receptors that can
activate innate immunity.42,43 In addition,
the renal parenchymal cells express a
limited spectrum of such receptors.44,45

Mesangial cells, endothelial cells, podo-
cytes, tubular cells and renal fibroblasts
lack some of the endosomal nucleic acid-
specific Toll-like receptors and the NLRP3
inflammasome but they readily get acti-
vated by exposure to bacterial endotoxin
and other PAMPs and DAMPs.46,47 For
example, infections cause a transient
exposure to PAMPs that have the potential
to activate cells and trigger inflammatory
responses inside and outside the kidney.
We have demonstrated this concept by
transiently injecting agonists into mice
with experimental immune complex
glomerulonephritis or lupus nephritis and
could demonstrate that they activate the
intrarenal production of cytokines, type I
interferons which increases inflammation
and tissue damage.48-58 By contrast,
the NLRP3 inflammasome contributes
to interstitial, but not to glomerular,

Table 1. Danger response programs and typical histopathologic abnormalities of the kidney

Program Insufficient Predominant

Clotting Macrohematuria Thrombotic microangiopathy
Ischemic necrosis

Inflammation Pathogen-related
pathology

Immunopathology, necrosis, apoptosis, necroptosis (renal
abcess formation, crescentic glomerulonephritis, allograft
rejection, interstitial nephritis, acute tubular necrosis)

Epithelial healing FSGS,
glomeruloscerosis
Tubular atrophy

Crescentic glomerulonephritis
Podocytes pushed into catastrophic mitosis

Cyst formation, chronic vasculopathies

Mesenchymal
healing

Mesangiolysis Mesangioproliferative glomerulonephritis
Glomerulosclerosis

Interstitial fibrosis, hypertensive vasculopathy
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disease.59-61 The type of response
depended on the cell-type specific expres-
sion of the involved receptors which
explains the heterogeneity of infection-
associated flares of, e.g, IgA nephropathy,
lupus nephritis and renal vasculitis.

Another important aspect of PAMP-
mediated renal inflammation is the loss
of renal parenchymal cells, especially
podocytes, because these cannot be easily
regenerated. When mice with Alport
nephropathy were transiently injected
with bacterial CpG-DNA, resident dend-
ritic cells and infiltrating Ly6Chigh+

macrophages were stimulated to produce
more proinflammatory mediators includ-
ing the proapoptotic cytokine tumor
necrosis factor-a which induced podocyte
apoptosis and accelerated progressive
glomerulosclerosis.62

Renal inflammation does not only result
from extrinsic stimuli. Any kind of tissue
damage that causes renal cell necrosis can
cause the release of DAMPs from intra-
cellular compartments, which signals “dan-
ger” to the innate immune system.44,63,64

For example, renal ischemia-reperfusion
injury does not involve PAMP exposure
but tubular cell necrosis induces a TLR-
dependent acute intrarenal inflammatory
response which largely contributes to the
extent of AKI and loss of renal func-
tion.65-68 Surprisingly, TLR signaling
occurs mostly in renal parenchymal cells44

because TLR signaling in the intrarenal
network of dendritic cells is efficiently
suppressed by the constitutive and induced
expression of TLR signaling inhibitors
thatare absent or dysfunctional in tubular
epithelial cells.69-72 As another example,
lupus nephritis is a state of abnormal
immune recognition of endogenous
nucleic acids.73,74 Nuclear particles that
contain immunostimulatory endogenous
RNA and/or DNA activate antigen-pre-
senting dendritic cells, macrophages, and
B cells, to mature and to release numerous
proinflammatory mediators including
type I interferon.74,75 The latter set off a
coordinated antiviral immune response
explaining the similarities between the
clinical manifestations of viral infections
and systemic lupus.76 This process also
occurs inside the kidney as documented by
the antiviral gene expression signature in
renal biopsies.77,78 For example, mesangial

cells and glomerular endothelial cells use
their cytosolic nucleic acid sensors to
translate nucleic acid recognition into the
release of type I interferons which con-
tribute to renal inflammation and tissue
damage.79-84

Innate immune activation triggers the
local release of cytokines and chemokines
which attracts various subsets of leukocytes
into the kidney.85-88 Macrophages, T cells
and B cells occur in different subsets that
all differently contribute to the regulation
of inflammation and renal immunopatho-
logy.89,90 Activating intrarenal macro-
phages, e.g., by transient infections or
certain drugs, can turn non-activated into
activated leukocytes which strongly con-
tribute to renal pathology.91-93 Blocking
the recruitment of pro-inflammatory
macrophages by interfering with the CC-
chemokine CCL2 or its receptor CCR2
probably reduces renal immunopathology
in the glomerular as well as the tubuloin-
terstitial compartment in those diseases
that are associated with renal inflamma-
tion, but not in non-inflammatory forms
like Alport nephropathy.94-99 However,
TLR-mediated renal inflammation
remains an important element of pathogen
control in renal infections. For example,
BK virus infection of the allograft requires
TLRs and cytosolic nucleic acid receptors
to translate pathogen recognition into
appropriate antiviral host defense.100 The
enigmatic importance of renal inflam-
mation also becomes evident during
bacterial pyelonephritis.101 Insufficient
pathogen recognition and renal inflam-
mation will allow pathogen overgrowth
and pathogen spreading, which holds the
risk of systemic infection. For example,
mice that lack a functional LPS receptor,
i.e., TLR4, and that are inoculated with
uropathogenic E. coli into the urinary
bladder, are protected from renal abscess
formation because they can no longer
recognize E. coli LPS and lack the appro-
priate chemokine signaling that would be
required to recruit neutrophils into the
infected kidneys.102 This apparent protec-
tion from immunopathology occurs at the
price of insufficient pathogen control at the
entry site and could cause fatal bacterial
spreading across the entire organism.

Together, the kidney is mostly a sterile
organ in which pathogen control, the

evolutionary rationale for inducing innate
immunity, remains a rare event. As such,
the kidney is mostly affected by renal
inflammation that is triggered by remote
infections that release immunostimulatory
elements into the circulation or by
intrarenal release of DAMPs that promote
a sterile inflammatory response which
predominately promotes unnecessary
(collateral) damage to renal cells, a useless
atavism of wound healing (Table 1).
Thus, suppressing renal inflammation
should be a valid strategy to preserve renal
tissue, especially renal epithelial cells and
vasculature. Drugs with anti-inflammatory
properties without systemic immuno-
suppressive effects may be sufficient for
that.103 The protection of podocytes from
unnecessary inflammatory stress is of
major importance because lost podocytes
can hardly be regenerated and the sub-
sequent glomerulosclerosis still accounts
for the majority of CKD cases.

Insufficient or Overshooting
Epithelial Healing
in Renal Pathology

In the glomerulus as well as within the
tubules the epithelial cells are of enigmatic
importance to the specific function of the
compartment. After a transient and short-
term ischemic or toxic tubular injury
sufficient epithelial repair can rapidly
restore renal function.104,105 Numerous
growth factors drive the repair of the
epithelial monolayers after injury.19 For
example, PDGF is already released by
platelets or injured epithelia during the
early phase of injury.8,15 BMP-7 and its
receptor activin-like kinase-3 also contri-
bute to epithelial healing.106 Furthermore,
cell cycle regulators like murine double
minute (MDM)-2 assure the proliferative
response during AKI by inhibiting p53-
dependent cell cycle arrest.107 Epithelial
healing becomes more evident after the
down-modulation of intrarenal inflam-
mation.108 The removal of necrotic cells
and their DAMPs by infiltrating phago-
cytes changes the renal microenvironment
which promotes a phenotype shift of the
intrarenal mononuclear cells toward anti-
inflammatory and pro-regeneratory pheno-
types.90 This process is associated with the
release of additional growth factors that
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drive epithelial repair in the kidney (and
the liver).108-111 A persistent activation of
intrarenal mononuclear cells toward pro-
inflammatory phenotypes, e.g., due to
aberrant genetic macrophage priming such
as IRAK-M deficiency (own unpublished
data) or repetitive/persistent triggers of
kidney injury impair this epithelial healing
response. In addition, severe forms of
kidney injury may also kill the epithelial
progenitor cells which are located within
the renal epithelial monolayer and that
have a higher capacity to survive stress.112

Even though it was clearly demonstrated
that renal epithelial cells repair without a
cellular contribution from bone marrow
stem cells, the contribution of local
progenitor cells vs. epithelial renewal from
differentiated tubular epithelial cells to
tubular repair from inside the tubular
compartment remains under debate.113-117

However, it is obvious that an insufficient
repair of the tubular epithelial monolayer
will lead to tubular atrophy and nephron
loss, a typical characteristic of progressive
CKD (Table 1).

Insufficient epithelial repair in the
glomerular compartment is the predomi-
nant cause for CKD. The particular
structure of the differentiated podocyte
which is required to fulfill its important
function at the glomerular filtration
barrier remains a major obstacle for rapid
repair.118-120 There has been a controversial
debate regarding whether bone marrow-
derived progenitors are able to replace
lost podocytes.121-123 It has now been
convincingly demonstrated that podocytes
originate from local epithelial progenitors
at the urinary pole of the glomerulus that
can migrate to the vascular pole and
differentiate into terminally differentiated
podocytes on the glomerular tuft.124 This
process clearly operates during renal
development and early childhood101 but
its capacity to replace injured podocytes
seems to be limited in adult mice.125,126

The mechanisms that regulate podocyte
renewal within the epithelial monolayer of
glomerular visceral and parietal epithelial
cells are still poorly understood. There
is increasing evidence that those factors
that regulate other stem cell com-
partments, such as Notch and Wnt
signaling, EGF and SDF-1/CXCL12 also
regulate podocyte renewal from their local

progenitors.127-130 Particularly, heavy pro-
teinuria seems to suppress podocyte repair
because glomerular diseases that are asso-
ciated with nephrotic syndrome show
the highest tendency to progressive
glomerular scarring, i.e., glomerulosclero-
sis.131,132 This process is associated with
specific epigenetic imprinting at histone
H3K9, H3K23 (acetylation), H3K4
(dimethylation) and H3K4 phosphoryla-
tion at serine 10 which alters gene
expression and cell growth.133,134

Overshooting epithelial repair also exists
in the kidney, especially when the epithe-
lial cells at the progenitor cell location
get heavily activated in the absence of
the necessary signals for differentia-
tion.112,135,136 For example, rapid pro-
gressive glomerulonephritis combines
glomerular vascular damage and fibrinogen
activation with intense intraglomerular
inflammation.128,137,138 All these factors
heavily activate parietal epithelial cells to
proliferate without any apparent differen-
tiation into podoctes.41,136 Upon rupture
of Bowman’s capsule infiltrating macro-
phages and T cells provide additional
stimuli for the proliferation of epithelial
cells.137,138 We used the model of Col4A3-
deficient mice in the 129/X1/SvJ genetic
background to study crescent formation in
the absence of glomerular inflammation.
Disruption of glomerular capillaries causes
plasma leakage which is sufficient to
trigger the uncoordinated proliferation of
parietal epithelial cells, a cell type that
normally resides, devoid of serum contact,
in the urinary space.41

Overshooting epithelial healing in the
tubular compartment is less evident. The
tubular progenitor cells are located at
the junction of glomeruli and proximal
tubules while single progenitor cells are
scattered in the proximal and distal tubules
of the cortex.139 Chevalier, et al. have
recently demonstrated that the pheno-
menon of atubular glomeruli originates
from an obstruction of the tubular lumen
by epithelial cells.140,141

Together, epithelial repair is an impor-
tant element to regain homeostasis after
injury. Insufficient epithelial repair is the
central element of glomerulosclerosis and
tubular atrophy. Overactive epithelial
repair can cause other forms of renal
pathology, i.e., glomerular crescents. It

should be desirable to stimulate a coordi-
nated proliferation and differentiation of
surviving epithelial cells of their local
progenitor cells.

Mesenchymal Healing
in Renal Pathology

Tissue healing is not limited to epithelia.
Bleeding (skin) wounds imply damage
to mesenchymal structures. Neo-angio-
genesis, bone fractures, ligament ruptures
or muscle damage require mesenchymal
healing. In addition, healing in general
implies the need for mechanical stabiliza-
tion also of parenchymal tissues like the
kidney, i.e., epithelial growth factors are
secreted together with pro-fibrotic growth
factors that stimulate the mesenchymal
cells of the tissues to mature and to
increase the secretion of extracellular
matrix.19 For example, in skin wounds
resident tissue fibroblasts are activated to
mature to myofibroblasts that produce
type I and other collagens and to promote
wound contraction which reduces the
wound area, a process that limits infections
and that supports re-epithelisation.4 In
areas of irreversible tissue loss, e.g., after
ligament rupture or severe burning of the
skin, fibrous tissue fills the gap of the lost
tissue. In the long run, fibrolysis, the
process of removing fibrous tissue after the
disease process has ended, leads to a
reduction of scar size to the minimum of
what is absolutely required to stabilize the
tissue.4 These outstanding beneficial
effects of mesenchymal healing should
not be forgotten when questioning why
many different renal disorders lead to a
common scarring pathway. Again, during
evolution the benefits of fibrosis outweigh
the problems which, however, can become
the predominant problem of few indivi-
duals. For example, the contraction of the
fibrous skin wounds of badly injured skin
can reduce joint mobility which, still,
remains a focal problem. In the kidney,
again, the diffuse nature of metabolic,
hemodynamic, and toxic injuries implies
that the process of fibrosis affects all of
the kidney tissue to the same extent
(Table 1). In this context, wound con-
traction implies the development of
shrunken kidneys. However, it is likely
that fibrosis itself does not destroy the
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kidney. The extracellular matrix mainly
replaces lost renal epithelia. As such,
reducing fibrosis may result in even
smaller kidneys, if not accompanied by
regeneration of intact nephrons. For
example, repetitive mesenchymal stem cell
injection into Col4A3-deficient mice with
progressive Alport nephropathy signifi-
cantly reduced interstitial fibrosis of the
kidney but did not improve renal function
and overall survival.142 Renal interstitial
fibrosis, even though an extremely
interesting process with multiple fasci-
nating aspects to study with the latest
technologies,32,35,143 rather seems to be a
marker of loss of renal parenchyma rather
than a pathogenic factor of renal failure by
itself. It is of note that the driving factor
of interstitial fibrosis seems to be an
insufficient epithelial repair, e.g., when
proliferating epithelial cells get arrested in
the G2/M phase and start to produce
tumor growth factor-β,30 a process, e.g.,
also triggered by aristocholic acid,30,144 the
pathogenic element of Chinese herb
nephropathy.145 This concept implies that
in the kidney mesenchymal healing could
be a second-line healing program that
predominates whenever epithelial healing
is too slow or of low capacity.

This certainly applies for the glomerular
compartment because podocyte renewal
from local progenitors is mostly insuffi-
cient, especially in proteinuric disorders of
the adult.112,132 Smeets et al. have recently
demonstrated that in FSGS parietal epi-
thelial cells do not sufficiently differentiate
into mature podocytes but rather increase
the production extracellular matrix.146

Ideally, this scar formation stabilizes the
glomerular pathology by forming a stable
synechia or focal scar, like it may happen in
some forms of secondary focal-segmental
glomerulosclerosis. However, when a
higher percentage of glomerular podocyte
gets lost, the scarring process has its own
dynamic, and rapidly progresses to global
glomerulosclerosis,120 mostly because the
hyperfiltration of the remaining glom-
erular loops puts additional dynamic
stress on the initially unaffected podo-
cytes.118,147 A mesenchymal transition of
parietal epithelial cells also contributes to
the formation of fibrocellular crescents.148

We recently documented that crescent
formation in Col4A3-deficient mice with

Alport nephropathy is associated with a
phenotype switch of the proliferating
parietal epithelial cells.41 Parietal cells in
cellular crescents lose their epithelial
polarity and start to produce extracellular
matrix into all directions like mesenchy-
mal cells which leads to the honeycomb-
like transformation of the Bowman’s
space into fibrocellular crescents.41 This
process is conceptually similar to the
epithelial-mesenchymal transition of
tubular epithelial cells which is thought
to contribute to the heterogeneity of
interstitial fibroblasts.35 The significance
of this phenomenon for human kidney
disease remains under debate because
clear evidence is still lacking that the
transformed epithelial cells actually leave
the tubular compartment by passing
through their tubular basement mem-
brane in vivo.32,149-151 In the glomerulus,
however, parietal epithelial cells that do
not adequately differentiate into podo-
cytes clearly undergo this mesenchymal
transition and cause scarring without
leaving their compartment.41,148

Infiltrating leukocytes and other bone
marrow progenitors contribute to renal
fibrosis, as reducing leukocyte recruitment
markedly reduces interstitial fibrosis in
various models of glomerular or tubuloin-
terstitial kidney disease.85,152-155 Whether
this is a direct or an indirect effect is
less clear.99,156,157 For example, blocking or
deletion of the chemokine receptor CCR1
prevents the recruitment of alternatively
activated macrophages with a “wound
healing” phenotype which can modulate
the fibrotic process directly.90,158-165

Together, mesenchymal repair is an
important element to stabilize tissues after
traumatic injury, especially after loss of
parenchymal tissue. In the kidney, insuffi-
cient scarring does not seem to be a
problem. Glomerular scarring, glomerulo-
sclerosis and the formation of fibro-
cellular crescents, is the greatest concern
because of their irreversible nature and the
missing capacity to regrow lost nephrons.
Why scarring does not occur inside the
tubular compartment remains a miracle,
but the interstitial compartment is com-
monly affected. Fibroblast activation
and matrix deposition seem to fill the
gaps left by dying nephrons. However,
because nephrons do not grow back, this

mechanical stabilization of the renal tissue
is another useless atavism and the contrac-
tion of the fibrous tissue further contri-
butes to kidney shrinking. Whether
reducing renal fibrosis alone can regain
renal function without replacing the lost
nephrons remains under debate.

Summary

Traumatic tissue injury endangers the
survival of multicellular organisms, hence,
a series of danger response mechanisms
were positively selected throughout evolu-
tion. Clotting and inflammation prevent
bleeding and infection and are followed by
epithelial and mesenchymal healing for
tissue repair. During focal injuries these
responses assure survival even when
collateral damage leads to persistent
defects such as focal immunopathology
and scarring. The kidneys, however, are
mostly affected by toxic, metabolic, hemo-
dynamic or immune-mediated triggers of
injury which affect all parts of both
kidneys at the same time. Therefore,
clotting and inflammation, as well as
abnormal healing responses, often trigger
remodeling of the renal tissue and promote
additional and potentially progressive
kidney injury. From a therapeutic per-
spective, the inhibition of renal inflam-
mation together with the stimulation of
epithelial healing without promoting
mesenchymal healing should be the most
promising strategy.

Dr Jeffrey Miner, Professor of Medi-
cine, Washington University School of
Medicine: Do you know when in the
Alport disease the proliferative response
begins? When can you first detect Ki67
positive podocytes or parietal cells?

Dr Hans-Joachim Anders, Professor
of Medicine, Klinikum der Universitat
Munchen: We noticed crescents already at
early stages of the disease. Within weeks
there are global crescents. Then later
crescents become more prominent. We
have not really tried to find out what is the
earliest time point when that starts. There
is quite some variability also on that point.
In the end as you saw, the mortality curve
is quite tight. The mice more or less died
between 8 and 10 weeks of age.

Dr Miner: My immunologist collea-
gues tell me that LPS induces TNF a
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expression by the liver such that it can
explain all of the downstream effects. Are
you saying that it must be produced
within the kidney to have the effects that
you are seeing?

Dr Anders: It was an unexpected
finding for us to see that repetitive LPS
injections did not do anything to impact
the progression of Alport nephropathy. Of
course, then we focused more on the
positive finding on the CpG-DNA, so we
did not really follow-up on the question,
why didn’t we see anything with LPS. The
easiest explanation would be that the
repetitive injections were more or less
turning down the system. Which should
also work somehow with CpG-DNA but
it is far less dominant because the LPS
receptor TLR4 is expressed in all cells, also
inside the kidney. Whereas the receptor
for CpG-DNA is only expressed on the
immune cells, on B cells and macrophages
of which we mainly find the macrophages
inside the kidney of Alport mice. So we
think with that we mainly modulated the
inflammatory component that comes from
the macrophages. Whereas, one would
have expected that, because the receptors
are everywhere, the effect of LPS would be
much stronger, so the only explanation
I have is that it is a downregulatory effect
that starts from the second injection.

Dr Miner: Did you try combining the
LPS with the CpG-DNA?

Dr Anders: No.
Dr Helen Liapis, Professor of Patho-

logy and Immunology and Medicine,
Washington University School of Medi-
cine: I would like you to expand on your
concept about environmental dangers. In
the Alport case, what do you think may
be an environmental danger response in
humans who carry an inherited mutation
and how that will work with your concept.

Dr Anders: I mean, we used agonists
for bacteria and injected them systemi-
cally. So from that point of view one
would conclude that at least systemic
infections should provide that kind of
stimulus to promote the progression of the
disease. We have done a lot like that in
lupus models where you clinically already
have the experience that infections could
cause a flare. We did the same kind of
studies in lupus mice and were injecting
all different kinds of Toll-like receptor

agonists and then carefully described how
does the flare develop and that may be
related to the cell-type specific expression
of the Toll-like receptors in the end.14,93

From there we knew that it is really the
cells inside or outside the kidney get
stimulated by that particular agonist and
then you get more inflammation. In
Alport’s you anyway have a low grade
of inflammation and the inflammation
increases only upon a particular stimuli. I
would raise the hypothesis, that infections
are no good for Alport kids or any people
with CKD, with a smoldering disease
process and that any infection that would
transiently activate innate immunity could
then increase cytokine release and attract
more leukocytes, and cause more kidney
damage. I think the clinical experience
from IgA nephropathy is pretty clear, that
you have even vascular ruptures causing
macrohematuria in association with an
infection which then goes away after a
while. Those of you who see lupus patients
or patients with renal ANCA vasculitis
know very well that each flare takes away
some part of the renal function and that
flares are indicators of bad outcomes.

Dr Liapis: Are there any data on TNF
in humans or in the serum in patients with
Alport?

Dr Anders: Not that I know. No one
has looked at it.

Dr Feng Chen, Associate Professor of
Medicine, Washington University School
of Medicine: You mentioned that scars
occur in tubular injury because the repair
may come too slowly. That certainly is the
case. In the glomerulus, proliferation at a
high rate may also cause problems like the
loss of polarity. For the parietal cells to
replace the damaged podocytes, they have
to migrate a long distance in order to reach
the correct location for repair. Is it possible
that for optimal repair of the glomerulus, it
might be better to slow down the prolifera-
tion? Maybe slower is better in this case.

Dr Anders: Yes, we actually do that in
renal vasculitis by treating the patient with
cyclophosphamide so we reduce the pro-
liferation. Repair mechanisms have their
good and bad sides. It is well known that
an overgrowth of bone marrow stem cells
can lead to myeloproliferative syndromes
and if bone marrow stem cells don’t
proliferate enough you get myelodysplastic

syndromes. That means you need a
coordinated proliferation of those cells to
maintain homeostasis. If it is too few it can
cause problems. If it is too much it can
also cause problems. Now that the cells
have been identified, I think it is pretty
clear that, for example FSGS is a disease,
where the podocyte repair is insufficient.
There is loss of podocytes and somehow
the podocyte progenitors within the
parietal epithelial cell compartment cannot
compensate that and that is why you end
up with a scar. If you have crescentic
disease you get dramatic activation of this
regenerative response. That is why you get
a crescent. What we need is that repair
happens in a coordinated manner and I
think you can imagine that if you have a
progenitor which is quiescent it first needs
to be activated. We saw that WT-1 gets
induced, which means these cells get
activated toward a podocyte phenotype.
Then they should proliferate first and
then migrate and when it arrives at the
glomerular tuft it should differentiate into
a podocyte. You need those four steps to
happen in a coordinated way. Let’s just
imagine that if you have a vascular lesion
like in ANCA vasculitis you have a
dramatic inflammation of the glomerulus,
vascular disruption, you have seen the
picture by Steve Bonsib. You get serum
leakage, these cells get heavily activated to
proliferate but not to differentiate to the
same extent. That means you get an over-
growth of undifferentiated progenitors,
you get a crescent. That is probably what
happens and somehow in FSGS you get
podocyte loss. There is proteinuria. The
progenitor cells should get activated but
somehow they don’t proliferate as they
should or a least they don’t differentiate. I
think Marcus Moeller has shown, just a
few months back, very nicely, that the
parietal cell makes the scar in FSGS.146

The cells go there but then they are unable
to differentiate so they stay there and they
use the second program, they produce
matrix and that is why you end up with a
scar. This work raises the idea that many
of the diseases that we see relate to an over
stimulation or blockade of the intrinsic
capacity of the kidney to repair itself.

Dr Ying Maggie Chen, Assistant Pro-
fessor of Medicine, Washington Univer-
sity School of Medicine: The GBM gaps
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are caused by matrix metalloproteinase
(MMP) digestion, right? Is MMP mainly
produced by macrophage cells or by
podocytes because podocytes can also
upregulate MMP expression?

Dr Anders: The published data are
more in support of that MMP12 is
released from macrophages.166

Dr Y.M. Chen: Regarding the animal
model, you are using collagen IV a 3
knockout mice on the genetic background
of SV129, which develops Alport much
faster than another genetic background.
Would you think that the findings on
SV129 can be replicated in another genetic
background?

Dr Anders: That is a good question.
We thought about this but could not
find a reason to do the experiment because
we were mainly using that as a model
so that means we needed crescents to ask
the question: how do they develop?
Dr. Liapis had looked at human Alport
cases and were able to find only very
few crescents. There are a small number
of papers describing crescent also in
human Alport but, at least, in this cohort
it was less than 1%.41 So that means,
I think it is not so interesting to find
out whether it also happens in another
mouse, if it is not a big problem in
humans. I would think that certainly the

genetic background plays an important
role here.

Dr Marc Hammerman, Chromalloy
Professor of Medicine, Washington
University School of Medicine: Are there
any circumstances in humans or in
mammals in which we have evidence that
renal repair is accomplished on the basis of
stem cell migration and differentiation or
does this only apply in fish?

Dr Anders: Marcus Moelle was able to
trace the parietal cells that were stained in
blue in his mouse then move on the
tuft.125 It was published in the same JASN
edition along with the paper of Paola
Romagnani demonstrating that parietal
cells harbour renal progenitor cells. Her
data were all generated in humans.124

Markus data were generated in the
mouse.125 He was able to show that this
happens mostly in young but no longer in
older mice. From that the idea arises that
maybe the capacity to regrow podocytes
from progenitors is much higher in kids
than in adults and from that you can
speculate a lot. For example, why FSGS is
much more frequent in adults than kids or
minimal change diseases almost never ends
up in scarring in kids. So that could mean
that kids maintain a higher capacity to
repair damaged podocytes from their local
progenitors. And with aging this capacity

gets lost somehow. We still don’t know
the reasons and why adults much more
frequently end up with FSGS a podocyte
injury. There are no data yet to support
that. These papers were published 2 years
back, I think now many people move into
this field and each of them with different
questions then hopefully in a few years
we will be able to get answers to these
questions.

Note

Edited transcripts of research conferences
sponsored by Organogenesis and the
Washington University George M.
O’Brien Center for Kidney Disease
Research (P30 DK079333) are published
in Organogenesis. These conferences cover
organogenesis in all multicellular organisms
including research into tissue engineering,
artificial organs and organ substitutes and
are participated in by faculty at Washington
University School of Medicine, St. Louis,
MO USA.
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