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ABSTRACT Genome-wide association studies (GWAS) aim to detect single nucleotide polymorphisms
(SNP) associated with trait variation. However, due to the large number of tests, standard analysis
techniques impose highly stringent significance thresholds, leaving potentially associated SNPs un-
detected, and much of the trait genetic variation unexplained. Pathway- and network-based methodologies
applied to GWAS aim to detect associations missed by standard single-marker approaches. The complex
and non-random architecture of the genome makes it a challenge to derive an appropriate testing
framework for such methodologies. We developed a rapid and simple permutation approach that uses
GWAS SNP association results to establish the significance of pathway associations while accounting for the
linkage disequilibrium structure of SNPs and the clustering of functionally related elements in the genome.
All SNPs used in the GWAS are placed in a “circular genome” according to their location. Then the
complete set of SNP association P values are permuted by rotation with respect to the genomic locations
of the SNPs. Once these “simulated” P values are assigned, the joint gene P values are calculated using
Fisher’s combination test, and the association of pathways is tested using the hypergeometric test. The
circular genomic permutation approach was applied to a human genome-wide association dataset. The
data consists of 719 individuals from the ORCADES study genotyped for �300,000 SNPs and measured for
51 traits ranging from physical to biochemical measurements. KEGG pathways (n = 225) were used as the
sets of pathways to be tested. Our results demonstrate that the circular genomic permutations provide
robust association P values. The non-permuted hypergeometric analysis generates �1400 pathway-trait
combination results with an association P value more significant than P # 0.05, whereas applying circular
genomic permutation reduces the number of significant results to a more credible 40% of that value. The
circular permutation software (“genomicper”) is available as an R package at http://cran.r-project.org/.
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Genome-wide association studies (GWAS) have successfully identified
many loci associated with complex traits and diseases (Wellcome Trust
Case Control Consortium 2007; Hindorff et al. 2009). However, the
identified single nucleotide polymorphisms (SNP) passing the highly
stringent significance thresholds set in these studies explain only a
small proportion of the traits’ variation (Manolio et al. 2009). Inves-
tigating variants of modest size effects using a gene-set analysis ap-
proach has been proposed to identify some of the undetected variation.
Gene-set methods aim to identify effects of groups of genes, which
may not be individually significant but, when analyzed jointly, may
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have a detectable effect on the phenotype or disease of the organism
under study (Wang et al. 2007).

Most of the gene-set methodologies use random permutations to
assess the statistical significance of the results. Typically, to generate
a null distribution of pathway or gene-set association results, SNP
or gene association P values are randomized post-GWAS [e.g., gene
ontology analysis ALLIGATOR performs gene resampling (Holmans
et al. 2009), and i-GSEA4GWAS performs random SNP permutations
(Zhang et al. 2010)] or, alternatively, phenotypic labels are random-
ized prior to GWAS [e.g,. SNP ratio test (O’Dushlaine et al. 2009) and
RS-SNP random-set (D’Addabbo et al. 2011)]. However, SNP and
gene-level permutations do not take into account the genomic struc-
ture, such as regional linkage disequilibrium (LD) and functional
clustering of genes, effectively simulating a genome in which adjacent
SNPs are uncorrelated by LD and genes are distributed randomly with
respect to each other. Permutation approaches that ignore clustering
generated by LD and functional co-location could create inappropriate
test statistic null distributions. The possibility of performing case/
control label permutations or other permutations prior to performing
GWAS is limited as it requires the raw data which is often not avail-
able, and also given that each permutation is followed by the associ-
ation analysis (GWAS) and subsequently with the gene-set testing,
this results in a computationally expensive approach (Wang et al.
2011a). Furthermore, concern on the application and interpretation
of gene-set–based methodologies has being raised and discussed pre-
viously (Wang et al. 2010, 2011b; Fridley and Biernacka 2011). De-
spite the lack of consensus on the most appropriate methodology
and the warnings raised, GWAS gene-set approaches have being ap-
plied to diseases, such as breast cancer (Menashe et al. 2010), Crohn’s
disease (Ballard et al. 2010), multiple sclerosis (Baranzini et al. 2009),
and schizophrenia (Jia et al. 2010).

We have developed a permutation approach that uses GWAS
results (single SNP association P values) to establish the significance
of gene sets and pathway associations. The objective was to develop
a method that would increase our understanding of the pathways
involved in various traits and to detect the effects that would have
been missed by traditional single-marker analysis without generating
an excess of false-positive pathway associations. We explore the per-
formance of pathway-based approaches applied to GWAS using this
new “circular genomic permutation” approach. This approach is
equivalent to the simulation of pathways with the same number of
genes as the pathway under study and with a structure that faithfully
reflects that found in the genome with regard to conservation of LD
and relative location of features (SNPs and genes), but with the SNP
effects on the phenotype randomized and no real pathway effects.
This allows us to obtain appropriate distributions of the test sta-
tistics under the null hypothesis of no association for every path-
way/trait combination surveyed. We compare our approach with
that of applying the hypergeometric test alone, which assumes that
the null distribution is hypergeometric, or of generating a null dis-
tribution by random permutations at the SNP and the gene levels,
which does not take full account of genomic architecture. In addi-
tion, we attempt to measure the variation explained by the SNPs
acting under a pathway.

MATERIALS AND METHODS

Genome-wide association data and analysis
The association values were obtained from the Orkney Complex
Disease Study (ORCADES) (McQuillan et al. 2008).The cohort
consisted of 719 individuals measured for 51 traits ranging from

physical to biochemical measurements. These traits include blood
pressure, height, waist circumference measurements, and cortisol and
cholesterol levels, among others (for full descriptions, see Table S1).
Individuals were genotyped using the Illumina HumanHap 300v2
array (which contains in excess of 300,000 SNP markers; http://
www.illumina.com/). The SNP association P values were calculated
for each trait as described here. Each trait was adjusted for sex
and age, and the residuals were transformed to ensure their normal
distribution using quantile normalization. The mixed linear model
mmscore() function of the GenABEL package (Aulchenko et al.
2007) for R statistical software (http://www.R-project.org) was used
to test association between SNP and trait under an additive model
for the SNP fixed effect. This score test for family-based association
takes into account pedigree structure and allows unbiased estimations
of SNP allelic effects when relatedness is present between individuals
in the population sample (Chen and Abecasis 2007). The relation-
ship matrix used in this analysis was generated by the ibs() func-
tion of GenABEL (using weight = “freq” option), which utilizes
IBS genotype sharing to estimate the realized pairwise kinship
coefficient.

SNP annotations
The genomic location of every SNP in the dataset was updated using
the WGAViewer software annotation tool (Ge et al. 2008). Gene
annotations (i.e., gene identifiers, symbols, and locations) were ex-
tracted from the NCBI Gene database (http://www.ncbi.nlm.nih.gov/
gene; build.37.1). The SNP-to-gene annotation was performed by
linking the SNP genomic location and the gene genomic locations.
Two annotation datasets were created according to the physical dis-
tance of the SNPs to the genes. “Distance 0” refers to the dataset
where the SNPs were annotated to a gene if they were located within
the start and end of transcription of the gene (including SNPs
falling within the introns of a gene). The second annotation an-
notated SNPs to genes if they were within a 20 kb distance of the
gene(s), also from the start to end of transcription. SNPs from both
datasets may be annotated to more than one gene, and many SNPs
do not annotate to any gene.

Pathway analysis: gene P values and
hypergeometric test
KEGG pathways were used as the predefined gene sets. The sig-
nificance of the association of a pathway with each trait was evaluated
using the hypergeometric test. Under the assumption of indepen-
dent variables, the hypergeometric test gives the probability of having
x number of “significant genes” belonging to the same pathway.

P ¼ 12
XK
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where m represents the number of genes in the pathway, K is the
number of significant genes in the pathway, N the total number of
genes contained in the dataset, and S is the total number of signif-
icant genes in the dataset (according to their joint gene P values).
To apply the hypergeometric test, we needed one P value per gene;
however, the number of SNPs mapped to a specific gene varies across
the whole dataset, and therefore, a variable number of SNP P values
of association are assigned to each gene. The joint gene P value was
calculated using the Fisher’s combination test as described by Peng
et al. (2010).
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ZF ¼ 2 2
XK
i¼0

log Pi

where Pi represents the SNP association P values, and K is the
number of SNPs to be combined.

For this study, we considered the genes to be significantly asso-
ciated with a trait if their gene P value is less than a # 0.05. The
hypergeometric test was calculated for the 51 traits and for each of
the 225 pathways in the KEGG database (Ogata et al. 1999).

Circular and random permutations
We used circular genomic permutations, gene-level random permu-
tations, and SNP-level random permutations to obtain the distribu-
tions of the hypergeometric test pathway-association P values under
the null hypothesis of no association. The three permutation types
were performed for each test (for each pathway for each trait) and are
described below.

Circular genomic permutations: Our methodology performs the
permutations at the SNP-level in a genomic manner. The complete
set of SNP association P values are ordered according to their ge-
nomic position, first by chromosome and then by their location
in the chromosome, including those SNPs genotyped in our data
but not annotated to any gene. We consider the genome to be
circular and ordered from chromosome 1 to chromosome X and
restarting at chromosome 1 again. Then the complete set of SNP
association P values are permuted by rotation with respect to their
genomic locations, i.e., a random number between 1 and the total
number of SNPs is drawn, and the P value associated with the
first SNP in the genome rotates to that of the random number-th
SNP and all other P values rotate to the same degree to the cor-
responding SNPs. SNPs thus retain the same position with respect
to each other but, at each permutation, gain new random values
of association with adjacent P values showing similar patterns of
correlation as found in the original data. For each permutation,
the joint gene P values are calculated using Fisher’s combination
test followed by the hypergeometric test (Peng et al. 2010). This
process is repeated 10,000 times to obtain the test statistic dis-
tribution under the null hypothesis of no pathway effect on the
phenotype.

The pathway significance threshold was set at 5% of the distribution
of the test statistics obtained from each pathway-trait test permuta-
tion; each pathway-trait test distribution consists of 10,000 permuted
hypergeometric results. The hypergeometric-empirical P values
were calculated from the ranked position of the hypergeometric-
theoretical P value in the permutations.

Gene-level and SNP-level random permutations: To explore how
circular permutations perform compared with random permutations,
alternative permutation strategies were applied to the distance 0 data-
set. These permutations randomly attributed the observed trait-
association P values to either SNPs or genes, as appropriate, without
accounting for spatial (and other possible) correlations among them.
Both random permutation procedures consisted of 10,000 runs on
every trait for all the 225 pathways.

SNP-level random permutations: The difference between the
SNP-level random permutation and circular permutation is that
the association P values are randomly given to n SNPs, where n is
the total number of SNPs per gene for each trait in the initial GWAS.
This simulates a situation where SNPs within a gene are not corre-
lated due either to LD or to their collocation within a gene. Random

selection of SNP P values is followed by the Fisher’s combination test
and the hypergeometric test.

Gene-level random permutations: For the gene-level random
permutations, the gene P values where calculated once for the
original (non-permuted) dataset. This permutation consists of
re-sampling genes according to the number of genes represented
in our dataset per pathway with their P values. This simulates
a situation where genes within a pathway are not correlated due
to any spatial or functional clustering within the genome.

RESULTS

GWAS data annotations
After quality control and genome-wide analysis of the data, 318,235
SNP association P values were taken for further analyses. Approx-
imately 42% of the SNPs were successfully annotated to a gene
(�137,808 SNPs) at distance 0. The percentage of annotated SNPs
rises to �61% for the 20 kb annotation dataset. According to the
NCBI gene statistics, currently there are �42,059 unique human gene
identifiers (as of February 2012; http://www.ncbi.nlm.nih.gov/projects/
Gene/gentrez_stats.cgi?TAXORG=9606). The numbers of unique gene
identifiers observed in the datasets were 17,806 and 30,580 for distan-
ces 0 and 20 kb, respectively. The analyzed pathways have a total of
5859 unique genes. We found 4403 genes mapping to pathways in
the distance 0 dataset, whereas in the 20 kb dataset, the number goes
up to 5595 genes.

Hypergeometric test results
For each dataset, 11,475 hypergeometric tests were performed (from
a combination of 225 pathways and 51 traits). At a P # 0.05 thresh-
old, we would expect �574 significant results by chance alone. The
hypergeometric results of the distance 0 dataset produced 1423 tests
below the 0.05 threshold; therefore, more than twice the number of
significant tests than expected by chance was observed. The number
of significant tests below the 0.05 threshold on the 20 kb annotation
increased to 1805.

Figure 1 Threshold distributions at distances 0 and 20 kb. Distance 0:
The first quartile of the tests sets a threshold of �0.02 and the third
quartile is set at �0.03, whereas the maximum value was equal to
0.175. The range of threshold distributions at 20 kb was smaller than
that observed at distance 0. The first quartile had a threshold of� 0.008,
the third only went up to �0.02, and the maximum threshold set
was 0.093.
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Circular genomic permutation results

Distance 0: The results based on the empirical pathway significance
threshold found 536 pathway-trait tests to be statistically significant
(Table S2). The range of the pathway significance thresholds observed
across all the tests (all pathway-trait combinations) was very variable
(Figure 1). For distance 0, the maximum empirical pathway sig-
nificance threshold across tests corresponded to a P value of 0.175
(i.e., for one pathway-trait combination, hypergeometric-empirical
P values below 0.175 would be significant at the 0.05 level as deter-
mined empirically by circular permutation). However, for most of the
pathway-trait combinations, the hypergeometric-theoretical P value
of 0.05 was too liberal for the empirical threshold of 0.05. For the
empirical P value threshold of 0.05, the inter-quartile distribution
(i.e., central 50% of the tests) corresponded to P values from �0.02
to �0.03. As a result, more than 60% of the hypergeometric tests that
were classified as significant when using the hypergeometric test alone
do not remain statistically significant at a (P # 0.05) if the empirical
pathway significance thresholds are used. The opposite was also

observed for some trait-pathway combinations; thus, five results
with the hypergeometric-theoretical P value less significant than a
(i.e., non-significant), are deemed to be significant according to
the permutations. These results correspond to four different path-
ways and five different traits.

Figure 2 Hypergeometric-theoretical P values vs. hypergeometric-empirical P values at distances 0 and 20 kb. Visual representation of the
relationship of the hypergeometric-theoretical P values (x-axis) compared with the hypergeometric-empirical P values from the permutations (y-axis).
To assess the effect of the size of the pathways (i.e., number of genes in the pathway), P values are colored by pathway size. For this represen-
tation, pathways were clustered using k-means with eight groups. The legend represents the centers of that size group. (Top plots) The red line
represents the trend that would be followed if the hypergeometric-empirical P values would match perfectly to those of the hypergeometric-
theoretical P values. (Bottom plots) Close-up from the top plot, where the red lines are fixed at a 0.05 empirical threshold. The close-up graph
represents all the tests below an arbitrary threshold set at 0.05 when using the hypergeometric test alone. The results below the line represent the
significant results when applying circular permutations; results above the line are those which were not longer significant according to this method.

n Table 1 r2 results for hypergeometric-theoretical P values,
hypergeometric-empirical P values, and r2 difference between the
hypergeometric-theoretical P values and the hypergeometric-
empirical P values

Hypergeometric r2 Empirical r2 Difference r2

Genes 0.014 0.039 0.225
SNPs 0.061 0.058 0.431
SNP-gene ratio 0.056 0.013 0.082

The predictive variables used were functions of the number of genes, the number
of SNPs, or the SNP-gene ratio in the pathways. These predictors were
categorized into groups representing the size of the pathway (i.e., amount of
genes/SNPs/SNP-gene ratio on each pathway).
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Distance 20 kb: A total of 594 tests were found to be significant at the
empirical threshold (Table S3). The pathway significance thresholds
were smaller than those observed at distance 0. The inter-quartile
threshold range was from �0.008 up to �0.02, and the maximum
pathway significance threshold set was equal to 0.093 (Figure 1). Here
four tests were also observed to be significant in the permutations but
with a theoretical hypergeometric probability less significant than a
(P $ 0.05). However, these tests are not the same as the ones detected
by the distance 0 analysis. The analyses at distances 0 and 20 kb share
a total of 198 (�34%) significant tests (Table S4).

Hypergeometric test vs. circular permutations
The hypergeometric-theoretical P values were compared with those
obtained by permutation analysis. The correlation between the
hypergeometric-theoretical P values and the hypergeometric-
empirical P values seemed to be very high (i.e., 0.840 and 0.885
for the 0 kb and 20 kb analyses, respectively). The hypergeometric-
empirical P values deviate notably from the estimated probability
of the hypergeometric test; for most tests, the hypergeometric-
empirical P values are larger (i.e., less significant) than those
obtained by the hypergeometric test (Figure 2).

To investigate further the causes of the difference between the
hypergeometric-theoretical P values and the permutation results,
we carried out linear regressions in which our observed variables
were the hypergeometric-theoretical P values, the hypergeometric-
empirical P values, and the difference between the hypergeometric-
theoretical P values and the hypergeometric-empirical P values. The
predictive variables used were functions of the number of genes,
the number of SNPs, or the SNP-gene ratio in the pathways. These
predictors were categorized into groups representing the size of the
pathway (i.e., amount of genes/SNPs/SNP-gene ratio on each path-
way). For example, pathways containing from 1 to 25 genes would

belong to category A, while pathways containing 26–50 genes would
belong to category B. The pathways analyzed consisted approxi-
mately of 100 different pathway sizes according to the number of
genes, �200 according to the SNPs, and �130 according to the SNP-
gene ratio. To assign the pathways to their representative category,
we used the k-means algorithm (Hartigan and Wong 1979) within
R. Genes were grouped in 5 clusters, SNPs in 12, and the SNP-gene
ratio into 7. The r2 results demonstrate that none of these three
predictive variables has a strong impact on the theoretical or the
empirical results (Table 1). However, a high r2 was observed for the
regression on the differences between theoretical and the empirical
P values, where the r2 goes up to 0.431 for the number of SNPs
being the predictive variable, where the difference between the
methodologies is greater in pathways of extreme sizes (i.e., very small
pathways containing �23 SNPs or very large pathways �1,500
SNPs), implying that the number of SNPs in the pathways may
influence the differences between the two methodologies. How-
ever, this was not surprising as the P values vary widely between
the theoretical and the empirical approaches, especially for those
extreme-sized pathways where more significant results (small
P values) were observed by the theoretical-hypergeometric test,
but when analyzed through permutations, these results obtain very
large P values.

Random permutations vs. circular permutations: We explored the
distribution of individual tests of the permuted hypergeometric results
(i.e., distribution of P values for each pathway-trait combination for
both random permutations and the circular permutations). Figure 3
shows these distributions for the glucose trait across three pathways
and highlights the differences between them across permutation
methods and pathways. Each plot represents the outcome of the
10,000 permuted hypergeometric tests.

Figure 3 Permutation distributions. Three pathways and their hypergeometric P value permuted distributions for the glucose trait. Each individual
plot represents the outcome of the 10,000 permuted hypergeometric tests per pathway. These three pathways were selected because they
represent the three trends observed across all the analyzed pathways. The left column represents the circular genomic permutation P value
distribution; the central column represents the SNP-level random permutation P value distribution, and the right column represents the
gene-level random permutation P value distribution.
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In Figure 4, we can observe the hypergeometric-empirical P values
obtained through the various permutation methodologies compared
with the hypergeometric-theoretical P values. Here, gene-level random
permutation results seem almost identical to those predicted by the
hypergeometric test. The correlation between the hypergeometric-
theoretical P values and the hypergeometric-empirical P values for
the gene-level random permutations was 0.99, and the maximum
difference observed among all the 11,475 tests was only 0.02. This
degree of similarity is not observed in the SNP-level permutations
(Figure 4).

Variance explained by arrhythmogenic right ventricular
cardiomyopathy: an example
To determine whether the pathway-based circular permutation ap-
proach detects more effects and can explain more variation within
a trait than the traditional single-marker approach; the arrhythmo-
genic right ventricular cardiomyopathy (ARVC) pathway was selected
to investigate how much variance was explained by the SNPs within
the pathway. ARVC was selected because it was found to be highly
significant in the distances 0 and 20 kb datasets for the trait glucose
(hypergeometric-empirical P values of 0.0004 and 0.0006, respec-
tively). The traits glucose and waist-to-height ratio were the only
traits found to be significant for the ARVC pathway. Four other
pathways were significant for the same two traits: cardiac muscle
contraction, dilated cardiomyopathy (DCM), hypertrophic cardio-
myopathy (HCM), and fc gamma R-mediated phagocytosis. Figure 5
is a representation of the significant pathways and traits related to
ARVC. However, ARVC, HCM, and DCM share 50 genes in total.
This represents 72% of the ARVC genes, 65% of HCM, and 63%
DCM; there are no genes shared between the cardiovascular disease
pathways and the fc-gamma R-mediated phagocytosis. The fc-gamma

receptors are linked to the initiation of various signals (e.g., actin-
cytoskeleton reorganization, and phagosomal membrane remodel-
ing) (Garcia-Garcia and Rosales 2002).

The mixed linear model implemented in the polygenic() function
of GenABEL was used to calculate the variance explained by the
SNPs with an association P value more significant than a (P #
0.05) for the trait glucose and all traits measured for the ARVC
pathway. The analysis was performed using the distance 0 annota-
tion. A total of �2311 SNPs were mapped to ARVC, from which
175 were below an association P value of 0.05 for the glucose trait.
The percentage of the variance explained was given by the difference
between the total estimated heritability and the estimated heritability
with fixed effects, divided by the total estimated heritability. The
estimated percentage of the variance of the trait glucose explained
by the SNPs in the ARVC pathway with P value more significant
than a # 0.05 was �24%. In addition, only three other traits had
some of the variance explained by the same SNPs: �20% variance
of Hba1c (glycated hemoglobin, a measure of the average glucose
plasma levels over time); �18% of CRP (C-reactive protein, an in-
dependent biomarker for cardiovascular diseases) (Kones 2010); and
�40% of CIMT (carotid intima-media thickness, a measure of ath-
erosclerosis). The phenotypic correlations of Hba1c, CRP, and CIMT
with the trait glucose are 0.37, 0.03, and 0.10, respectively. No other
trait had any significant amount of its variance explained by these
SNPs in the ARVC pathway.

DISCUSSION
In spite of the substantial developments in genetics and genomics,
there are many unresolved questions, and the mechanisms driving
complex diseases remain very poorly explained. Major advances
have become available by sequencing genomes, characterizing their

Figure 4 Permutation methods. This plot compares the hypergeometric P values on the x-axis to the permutation P values in the y-axis. The three
permutation methodologies are represented (circular genomic permutation, the SNP-level random permutation, and the gene-level random
permutations).

1072 | C. P. Cabrera et al.



structure, and identifying the common elements across species (Mouse
Genome Sequencing Consortium 2002). Despite these advances,
there are still regions whose functions or mechanisms of action are
still unknown or not fully understood; an example of this is a recent
study that demonstrates natural selection also acting on non-coding
regions (Mu et al. 2011). Furthermore, gene expression studies have
identified chromosomal regions, groups of contiguous genes charac-
terized by coordinated expression and similar transcriptional profiles
(Caron et al. 2001; Versteeg et al. 2003). This has led to the de-
velopment of approaches to take into account physical locations and
genomic distances (Callegaro et al. 2006; Seifert et al. 2011).

Here we propose a novel approach for testing association of gene
sets taking genomic structure and non-independence among SNPs
into account: the circular permutation method.

The circular genomic permutation was applied to a small study
(N = 719 individuals). Single-marker GWAS analysis detected 11
SNPs across three genomic regions and three traits more significant
than 5 · 1028 (generally accepted GWAS threshold). The small num-
ber of individuals genotyped in this study results in low power to
detect associations reaching the stringent genome-wide threshold.
This in turn results in true associations remaining undetected. The
aim of the gene-set analysis using circular genomic permutation is
to detect associations missed by standard GWAS single-marker asso-
ciation analyses by identifying SNPs with joint effects on a phenotype.
Although our study provides a large number of phenotypic data,
a larger study would have the potential to yield results that give us
a better biological insight of the gene sets.

The methodology was applied to a study genotyped on a single
platform. In instances where studies use a variety of platforms,

imputation of genotypes at loci that are not present in all platforms,
prior to the association analysis that will produce the association
P values that are used in our gene-set analysis is recommended.

We included the X chromosome in the analysis (and permuta-
tions). LD in chromosome X is higher than for the autosomes
(Schaffner 2004). We do not expect this to introduce a substantial
bias in our case where the number of SNPs on the X chromosome
is not high (�2% of the total number of SNPs). However, an alter-
native approach could be to perform the permutations at a chromo-
somal instead of at the genomic level.

We compared the performance of our approach with that of two
other, often used permutation methods (i.e., gene-level and SNP-
level random permutations). The hypergeometric-empirical P values
of the gene-level random permutations agreed largely with the
hypergeometric-theoretical P values because the number of signifi-
cant genes is constant across all tests and the only source of variation
is derived from how many of the re-sampled genes fall in pathways
below the a threshold. Not all correlations of the initial SNP asso-
ciation P values are broken in this type of permutation, as the gene
P values were derived from consecutive SNPs that were annotated
to the same gene. In addition, the simulated pathways would mainly
contain non-correlated gene P values, and therefore, the assumption
of the hypergeometric test is not violated in this scenario. For the
SNP-level random permutations, the SNPs are taken randomly from
the genome and a new gene P value calculated from non-correlated
SNPs, leading to different number of significant genes in the path-
ways and also in the universe (complete dataset), consequently gen-
erating more variation in the permuted hypergeometric results. In
contrast, the circular genomic permutation, which is also performed

Figure 5 Significant tests related to the arrhythmogenic right ventricular cardiomyopathy (ARVC) pathway. Two traits (glucose and waist-to-height
ratio) were found to be significant for the ARVC pathway. Both traits share a total of five pathways significant for both traits. Traits are represented
by sphere nodes, and pathways are represented by the icosahedron nodes. The pathways are colored according to their pathway category. The
link between the pathways and the traits (edges) represent the significant results obtained through the circular genomic permutation approach.
Edges are colored from a blue-to-red scale, where blue represents the most significant results (i.e., the ARVC pathway and the trait glucose
hypergeometric-empirical P value = 0.0004, whereas the linoleic acid metabolism and glucose hypergeometric-empirical P value = 0.044). Image
produced using BioLayout Express (Freeman et al. 2007).
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at the SNP-level where the number of significant genes in the pathway
and in the universe are not fixed (similarly to the SNP-level random
permutations), seems to capture the genomic structure and shows how
likely an outcome is expected according to this structure (Figure 3).

Finding a consensus between pathway-based approaches repre-
sents a challenge. Several methodologies demand a single association
value per gene. Many of the methodologies select the strongest SNP
signal of the gene, but doing so will overestimate the association for
pathways with long genes. We chose to calculate a single gene P value
through the Fisher’s combination test, although this may be conser-
vative for the opposite reason—long genes with true associations may
contain many SNPs with no functional effect that are not in LD with
any functional variants. Another parameter to select is the window
size to apply in the SNP-to-gene annotation. Based on the findings of
Veyrieras et al. (2008), which estimated that 95% of the expression
quantitative trait loci localize within the genes and within 20 kb from
the genes, the 20 kb window-size annotation is becoming more pop-
ular (Holmans et al. 2009; Wang et al. 2011b). A clear advantage of
including a window region for the annotation is the number of SNPs
that will be annotated to genes. Here the number of SNPs successfully
annotated to genes increased by 20% when the annotation window
was set to 20 kb, allowing the capture of 1192 genes mapped to
pathways that were missed before but that may influence the trait.
An undesired effect may be the addition of noise to the analyses,
as some SNPs included in the larger window-size analyses will have
no real effect on the trait, and the proportion of SNPs annotated to
various genes that might be acting under different pathways may
increase. The effect of the noise on the data may also be observed
on the differences between the pathway significance thresholds set
through permutations, where the distance 0 analysis sets on average
a pathway significance threshold of �0.02–0.03, and the distance
20 kb, �0.008–0.02. The distribution of the 20 kb permuted-hyper-
geometric P values approximates to the distributions observed in the
gene-level random distributions. The overlap between the significant
results of the distances 0 and the 20 kb datasets was weak; only
198 tests out of 536 (0 kb) and 594 (20 kb) were observed as signif-
icant in both analyses, suggesting that the annotation has a substantial
contribution to the pathway association results. Some instances in
which the distances 0 and 20 kb analyses agreed included two tests
of the five in distance 0 found significant through permutations but
with a theoretical hypergeometric P . 0.05. They were both con-
firmed as significant in the 20 kb analyses with a hypergeometric test
P value of P = 0.04 and P = 0.001, and both also significant through
the circular permutations of 20 kb.

In both analyses (distances 0 and 20 kb), the correlation of the
hypergeometric-empirical P values with the hypergeometric-theoretical
P values is very strong. However, the strong correlation only shows
the degree of similarity between the ranked order between the em-
pirical P values and the theoretical P values. As shown in Figure 2,
the empirical P values tend to be larger than those obtained only
through the hypergeometric test, which means that the use of the
hypergeometric test alone will lead to false-positive results.

We also looked at the impact of the number of SNPs and the
number of genes of the pathway. As shown in Figure 2, the hyper-
geometric-theoretical P values below 0.05 but not empirically signif-
icant at the same level included pathways of different sizes in terms of
number of genes, and this pattern was also observed when the tests
results were clustered by SNPs (Figure S1).

We presented as an example the significant pathways and traits
linked to one of the most significant pathway-trait associations found
through this methodological study. The ARVC pathway groups genes

involved in one type of cardiomyopathy (characterized by replace-
ment of the myocardium by fibrofatty tissue). Cardiomyopathy is
a dysfunction of the heart muscle highly associated with sudden death,
especially in the young (Towbin et al. 2006). No scientific references
were found for the link between ARVC and the trait glucose. How-
ever, a close form of inherited cardiomyopathy has been linked to the
PRKAG2 gene, a master regulator of glucose and lipid metabolism
(Gollob et al. 2001), and one of the major causes of dilated cardio-
myopathy, the most common type of cardiomyopathy, is hypertension
and ischemic cardiomyopathy (Hunt et al. 2005). The latter is also
associated with abnormal glucose levels (Lopaschuk and Stanley 1997).
Our results show how the three types of cardiomyopathy pathways
(in KEGG) and the cardiac muscle contraction pathway are found
significantly associated to the traits glucose and waist-to-height ratio.
Furthermore, the catalog of published genome-wide association stud-
ies (Hindorff et al. 2009) reports a meta-analysis in which 17 genes
were found significantly associated to fasting glucose (Dupuis et al.
2010). Among these reported genes, two genes (ADCY5 and TCF7L2)
were also found annotated to ARVC and dilated cardiomyopathy
pathways (Ogata et al. 1999). We present the variance explained by
the SNPs as a preliminary result; because the SNPs chosen for the
analysis were those whose P values of association were below 0.05,
there is an expected degree of variance explained by the subset
chosen for the analysis. Subsequently, the present analysis is likely
to overestimate the variance explained by the SNPs, and a better
methodology needs to be developed. Still, because of the small
sample size of the study (n = 719), we do not claim to detect the
link between the ARVC pathway and the trait glucose; to confirm
this result, replication in another cohort would be required.

The rigorous evaluation of pathway methodologies is very
challenging, but the application of permutations can help in their
assessment. Our results demonstrate that the circular genomic per-
mutations provide robust associations. A thoughtful consideration
of the advantages and disadvantages on the window-size annotation
should be done according to the objective of the study. Due to the
various possible sources of bias, keeping the annotation window size
shorter than 20 kb is recommended. Our new methodology permits
the spurious associations that are detected when not accounting for
genomic structure to be discarded. According to the hypergeometric-
theoretical results, �1,400 pathway trait results have a P # 0.05;
however, empirical results suggest that �60% of them could arise
just by chance. In this study, we applied Fisher’s combination test
and a hypergeometric test to test for pathway significance; however,
this permutation approach can be applied to any SNP-to-gene or
SNP-to-pathway P value estimation methodology and to any other
gene sets or pathway resources.
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