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Abstract: Langerhans cell histiocytosis (LCH) has a challenging and still unclear pathogenesis. A body of literature 
points to impaired maturation of the lesional dendritic cells, and to immune dysregulation in the form of increased 
FoxP3 cells. Various cytokine abnormalities such as expression of transforming growth factor (TGF)-β have been 
reported, as well as abnormalities in lipid content in LCH cells. Morphoproteomic techniques were applied to identify 
the signal transduction pathways that could influence histogenesis and immune regulation in osteolytic LCH. Five 
pediatric cases of osteolytic LCH were examined, using antibodies against CD1a, S100, CD68, CD8, FoxP3, phos-
phorylated (p)-STAT3 (Tyr705), protein kinase C (PKC)-α, phospholipase (PL)D1, fatty acid synthase (FASN), and zinc 
finger protein, Gli2. Positive and negative controls were performed. A FoxP3(+)/CD8(+) cell ratio was calculated by 
counting the FoxP3+ and CD8+ cells in 10 high power fields for each case.  There is induction of sonic hedgehog 
(SHH) mediators consistent with TGF-β signaling pathway through Smad3-dependent activation of Gli2, findings 
supported by the plasmalemmal and cytoplasmic expression of PKC-α and PLD1, and nuclear expression of Gli2, 
in lesional cells. The FoxP3+/CD8+ cell ratio is increased, ranging from 1.7-7.94. There is moderate cytoplasmic 
expression of FASN in most of the Langerhans cells, a finding that supports previously published phospholipid 
abnormalities in LCH and is consistent with PKC-α/PLD1/TGF-β signaling. With our study, we strongly suggest that 
the TGF-β cell signaling pathway is a major player in the pathogenesis of LCH, leading to non-canonical induction 
of nuclear Gli2 expression, thereby contributing to osteoclastogenesis in LCH histiocytes.   It could also cause a 
state of immune frustration in LCH, by inducing the transformation of CD4(+)CD25(-) cells into CD4(+)/FoxP3(+) 
cells. This coincides with the clinical evidence of a response to thalidomide in patients with osteolytic LCH, given 
its reported ability to reduce TGF-beta 1 and FoxP3 cells. Such TGF-β signaling in osteoclastogenesis and immune 
dysregulation, and the presence of FASN in the majority of cells, have additional therapeutic implications for osteo-
lytic LCH.
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Introduction

Though Langerhans cell histiocytosis (LCH) is a 
disease mostly found in the pediatric popula-
tion, it can also appear in adults. Distinct enti-
ties have been identified based on specific pat-
terns of disease (monostotic and polyostotic). 
Approximatively two thirds of the children with 
LCH have single-system disease (monostotic or 

polyostotic lytic lesions of the bone, especially 
of the cranium) [1, 2].

Currently there are two main theories regarding 
the pathogenesis of LCH. There is a body of lit-
erature suggesting that it is a clonal disease. 
Arico et al. [3] studied the incidence of 
Langerhans cell histiocytosis in presumed (p) 
monozygotic (MT) and dizygotic (DT) twins in 
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which one of the siblings was affected by the 
disease. He observed that four out of five sets 
of pMT developed the disease at close inter-
vals, and had similar manifestations. One of 
the 3 DT observed developed the disease. In a 
study of 72 cases of LCH, Da Costa and col-
leagues [4] showed using immunochemistry 
that there is consistent p53 expression imply-
ing a mutation, but at that point the authors did 
not find a recurrent genetic abnormality. 
Specifically, they performed sequencing of 
exons 5 to 8 of the p53 gene and found no 
alterations in 7 cases analyzed. In 2010, 
Badalian-Very and co-workers [5] reported that 
thirty-five out of sixty-one studied cases of LCH 
(adult and pediatric population) had a recurrent 
BRAF V600E mutation. Seventeen out of the 
twenty-five (65.38%) pediatric cases of osteo-
lytic LCH (eosinophilic granuloma) with only 
bone involvement had the mutation. However, 
phosphorylated (p)-extracellular signal-regulat-
ed kinase (ERK) and p-mitogen-activated pro-
tein kinase (MAP)-ERK Kinase (MEK) were 
expressed in all pediatric and adult cases, sug-
gesting that there must be alternative mecha-
nisms contributing to the pathogenesis of this 
disease.

Moreover, it is difficult to explain a pure clonal 
origin for a disease that, in some cases, 
regresses spontaneously and in other cases 
has a very aggressive behavior. Therefore, 
many researchers have concentrated on the 
study of the immunophenotype and chemokine 
expression of lesional cells in LCH. Fleming et 
al. [6] demonstrated the aberrant co-expres-
sion of CCR6 and CCR7 in twenty-four cases of 
LCH. Geissmann and colleagues [2], in an 
attempt to characterize the LCH cells, showed 
that these cells do not express CD83 and 
CD-Lamp (markers of mature dendritic cells), 
but that the majority of cells express CD14 
(marker of immature dendritic cells). Senechal 
and co-workers reported on an expansion of 

FoxP3 regulatory T cells in patients with LCH 
raising the possibility of dysregulation of the 
host immune system compromising its ability to 
eliminate LCH cells [7]. Additionally, osteo-
clasts, a consistent component of osteolytic 
LCH are regarded as a major contributor to 
osteolysis and the histogenesis of the osteo-
lytic form of the disease.

Because of these existing data that support 
both clonal and dysmaturation/immune dys-
regulation-associated processes in the etio-
pathogenesis of osteolytic LCH, we decided to 
focus on defining the factors common to its his-
togenesis. In this context, we were guided by 
therapies with proven efficacy in osteolytic 
LCH, namely aminobisphosphonates that inhib-
it osteoclastic giant cells [8-14] and thalido-
mide, which inhibits transforming growth factor 
(TGF)-β signaling and downregulates T regula-
tory cells [15-19]. This focus is underscored by 
the previous report of Brown [20], noting that 
the latency-associated peptide of TGF-β1 and 
osteoclastogenic interleukin (IL)-11[21], a 
downstream effector of the TGF-β signaling 
pathway [22] are expressed in osteolytic LCH. 
Thus, the objectives of this study are two-fold: 
firstly, to identify additional components of the 
TGF-β signaling pathway involved in osteoclas-
togenesis and T regulatory cell expansion in 
osteolytic LCH using morphoproteomics; and 
secondly, to develop possible therapeutic strat-
egies that target these histogenetic 
processes.

Methods

With Institutional Board Review approval, four 
pathologists from the University of Texas–
Health Science Center analyzed formalin-fixed, 
paraffin-embedded tissue from five pediatric 
cases (age ranging from 2-12) of LCH osteolytic 
lesions (Table 1). Histologic (hematoxylin&eosin; 
H&E) and immunohistochemical (S100 

Table 1. Study Population of Pediatric Cases with Osteolytic LCH. 

Case Age Sex Type of lesion
1. 3 yo M Monostotic; left sphenoid wing
2. 9 yo M Monostotic; left iliac crest
3. 12 yo F Monostotic; pterygoid process
4. 5 yo F Monostotic, right fibular lesion
5. 2 yo F Polyostotic; palate and skull lesions; skin involvement present
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[CMC715, Cell Marque, Rocklin, CA], CD1a 
[ab708, Abcam], and CD68 [M0814 Dako]) 
studies were performed on all cases. 
Monoclonal antibodies against phospholipase 
D1 (PC-PLD1, 28314, Santa Cruz Biotechnology, 
Santa Cruz), protein kinase C-α (PKC-α, 8393 
Santa Cruz), phosphorylated (p)-signal trans-
ducer and activator of transcription (STAT)3 
phosphorylated on tyrosine 705 (8059 Santa 
Cruz), zinc finger protein Gli2 (ab26056 abCam), 
fatty acid synthase (FASN) (3180 Cell Signaling 
Technology), FoxP3 (ab10563, Abcam), and 
CD8 (ab4055, Abcam) were applied after tis-
sue rehydration and antigen-retrieval . Using 
bright-field microscopy, the expression or 
absence of PLD1, PKC-α, p-STAT3 (Tyr705), 
Gli2, and FASN was assessed for each case, 
along with the subcellular compartmental dis-
tribution of these individual monoclonal anti-
bodies. Positive and negative controls were run 
concurrently. 

A FoxP3 (+)/CD8 (+) cell ratio was calculated by 
counting the FoxP3 (+) and CD8 (+) cells in 10 
high power fields for each case. 

Results

H&E evaluation of the tissue from the five cases 
examined showed destructive lesions com-

prised of a histiocytic population of cells with 
cleaved nuclei and nuclear grooves, admixed 
with multinucleated giant cells, including osteo-
clasts, and with an eosinophilic infiltrate. The 
histiocytic cells expressed S100, CD1a, and 
CD68 Figure 1 depicts H&E and CD1a; S100 
and CD68 although expressed are not depict-
ed]. A diagnosis of osteolytic Langerhans histio-
cytosis was rendered for each of the five cases, 
based on the above findings. The zinc finger 
protein Gli2 was variably expressed in the 
majority of the nuclei of the lesional cells 
(Figure 1, frames C and D) and has implications 
in osteoclastogenesis (vide infra).

The majority of lesional Langerhans cells had 
moderate-intense cytoplasmic and plasmalem-
mal expression of PKC-α (Figure 2A) as well as 
mild-to-moderate expression of PLD1 (Figure 
2B), with similar compartmentalization. There 
was focal mild cytoplasmic expression of these 
protein analytes in the multinucleated giant 
cells. FASN had moderate, variable cytoplasmic 
expression in the Langerhans cells and some-
what stronger expression in the multinucleated 
giant cells (Figure 2C).

In an attempt to investigate a possible immune-
dysregulation in Langerhans histiocytosis, we 
counted the FoxP3+ (Figure 3A) and CD8+ 
(Figure 3B) cells in ten high power fields, and 
their ratio was increased in these cases, being 

Figure 1. Hematoxylin-eosin 
(H&E) shows a proliferation 
of histiocytic cells, some with 
cleaved nuclei, nuclear grooves, 
admixed with multinucleated 
giant cells, including osteo-
clasts, and with an eosinophilic 
infiltrate (frame A). The lesional 
cells express CD1a (frame B). 
This pattern of expression is 
consistent with a diagnosis of 
Langerhans cell histiocytosis. 
Morphoproteomic application 
of a probe for glioma-associ-
ated oncogene protein (Gli)2 
reveals nuclear expression in 
a majority of lesional Langer-
hans cells (frames C and D;DAB 
[brown] chromogen) with impli-
cations for TGF-β signaling and 
osteoclastogenesis. (original 
magnifications, x400 for A, B, 
and D and x200 for C). 
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the highest (7.94:1) in case 5, in which there 
were polyostotic skull lesions and skin involve-
ment with a poor response to treatment. The 
lowest FoxP3/CD8 ratio observed was 1.7:1. 
Correspondingly, p-STAT3 (Tyr 705) was 

expressed focally in the nuclei of lesional 
Langerhans cells but it was not observed in the 
multinucleated giant cells (Figure 3C). A nega-
tive immunohistochemical control is included 
in Figure 3D.

Discussion

Morphoproteomics utilizes morphology to 
determine the subcellular compartmentaliza-
tion of both phosphorylated and non-phosphor-
ylated protein analytes in evaluating their state 
of activation. Furthermore, by combining such 
findings with both the correlative expression of 
other proteins and the nature of companionate 
cells in the lesional microenvironment, morpho-
proteomics can provide clues to histogenesis, 
lesional biology, and potential therapeutic 
options [23, 24].

Our morphoproteomic findings in the lesional 
cells of LCH to include nuclear Gli2 expression, 
plasmalemmal and cytoplasmic PKC- α and 
PLD1, and cytoplasmic FASN coincide with pre-
vious observations of TGF- β1 expression [20, 
25] and pathway signaling in LCH. Specifically, 
the effects of TGF-β1 signaling include osteo-
clastogenesis through IL-11 and Gli2-associated 
parathyroid hormone-related protein produc-
tion [21, 22, 26-31]. Furthermore, the expres-
sion of IL-11 was previously demonstrated in 
LCH by Brown RE [20] and Andersson BU et al. 
[32], and its role in osteoclastogenesis was 
reviewed by Guk KD and co-workers [33], with 
the comment that this role was very well defined 
in vitro. Also, IL-11 signals through JAK/STAT 
pathway [34], and together with TGF-β1 path-
way signaling [35] stimulate the genesis of 
FoxP3+ lymphocytes [36-40], contributing to 
the immune dysregulation of LCH. 
Correspondingly, we found an increased 
FoxP3+ to CD8+ ratio of lymphocytes in the five 
cases of LCH that we studied, and the ratio 
appeared to coincide with the aggressiveness 
of the disease. (The only case with extensive 
involvement of the cranium, with extension to 
the skin, had a ratio of FoxP3+/CD8+ lympho-
cytes of 7.94:1.) Such evidence of immune dys-
regulation was previously reported by Senechal 
et al. [7], who described a consistent expansion 
of T regulatory cells in biopsies from 40 patients 
with LCH. Furthermore, it accords with the gene 
expression profile in LCH lesion CD3+ cells of 
an activated regulatory T cell phenotype with 

Figure 2. PKC-alpha (frame A) and phospholipase 
D1(PLD1;frame B) share a similar subcellular distri-
bution on the plasmalemmal and in the cytoplasmic 
compartments of the majority of lesional cells. Fatty 
acid synthase (FASN;frame C) has variable intensity 
of cytoplasmic expression in the majority of the le-
sional cells. (original magnifications, x200 for A and 
B, x400 for C).
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increased expression of FOXP3 gene [41]. In 
addition, our finding of the expression of FASN 
could reflect TGF-β signaling given the latter’s 
apparent role in inducing FASN [42, 43]. 
Moreover, it provides a correlate with the origi-
nal observation of preferential lipid metabolism 
in histiocytosis X [44, 45]. The expression and 
role of fatty acid synthase (FASN) has not been 
reported in LCH to date, as per a review of the 
National Library of Medicine’s Medline Data 
Base. We noticed variable expression of FASN 
in all cases, and this finding has possible patho-
genetic implications with regard to PKC-α/
PLD1/TGF-β signaling, as well as therapeutic 
implications (see schematic and legend for 
Figure 4; vide infra). As previously stated, the 
role of Gli2 in osteoclastogenesis is well known 
[26], and its expression in lesional Langerhans 
cells provides a correlate for TGF-β signaling via 
the non-canonical TGF-beta {Smad3}Gli2 sig-
naling pathway in the genesis of multinucleated 
osteoclast-like cells in LCH [26-31]. Again, 
based on a review of the National Library of 
Medicine’s Medline Data Base, our study 
appears to be the first to demonstrate the 
nuclear expression of Gli2 in osteolytic LCH. 
The central role of TGF-β pathway signaling in 
incorporating these and previous observations 
in the osteoclastogenesis and immune dysreg-

ulation of osteolytic LCH is represented in the 
schematic in Figure 4 and detailed in the cor-
responding legend. 

Finally, the combination of morphoproteomic 
and morphometric findings in the study, 
although based on a small series of cases, 
raise possible therapeutic options that would 
combine to inhibit TGF-beta pathway signaling 
and immune dysregulation, the latter by target-
ing T regulatory (FoxP3+) cells. This is also sum-
marized in the schematic (Figure 4 and 
legend). 

In conclusion, this study reinforces the impor-
tance of an activated TGF-β pathway in the biol-
ogy and histopathology of osteolytic LCH, with 
the immediate effects to include osteoclasto-
geneis and expansion of T regulatory cells. It 
also raises possible therapeutic strategies to 
target this central TGF-β signaling in the treat-
ment of osteolytic LCH. 
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Figure 3. The cal-
culated ratio of 
FoxP3+/CD8+ lym-
phocytes, revealed 
an increased num-
ber of FoxP3+ cells 
(frame A) compared 
to CD8+ cells (frame 
B). The highest ra-
tio corresponded 
to the case with 
the most aggres-
sive clinical course 
(case 5). Relatedly, 
p h o s p h o r y l a t e d 
(p)-signal trans-
ducer and activa-
tor of transcription 
(STAT)3 (Tyr 705) is 
variably expressed 
in nuclei of the le-
sional Langerhans 
cells (frame C). A 
negative control is 
depicted in frame 
D. (original magni-
fications, x400 A-C 
and x200, D).
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