
Intercepted Decarboxylative Allylations of Nitroalkanoates

Meghan Schmitta, Alexander J. Grenninga, and Jon A. Tungea

Jon A. Tunge: tunge@ku.edu
aThe University of Kansas, Department of Chemistry 2010 Malott Hall, 1251 Wescoe Hall Dr.,
Lawrence, KS, 66045

Abstract
Using palladium-catalyzed decarboxylation, several cascade reactions of allyl and prenyl
nitroalkanoates that lead to nitro-containing chemical building blocks are described. A nitronate
Michael addition/Tsuji-Trost allylation cascade was developed, leading to functionally dense
chemical building blocks. Likewise, a Tsuji-Trost/decarboxylative protonation sequence was
developed for the synthesis of orthogonally functionalized 2° nitroalkanes. The latter method
provides rapid access to the indolizidine core.
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1. Introduction
Palladium-catalyzed decarboxylative allylation (DcA) is a convenient method to generate
functionalized chemical building blocks with only CO2 as a byproduct.1,2 Using this
chemical reactivity, various methods have been developed for the synthesis of nitrogen-
containing chemical building blocks.3 This is of significance since nitrogen-containing
materials often exhibit interesting biological activities. In this regard, we reported the rapid
decarboxylative allylation of nitroalkanes (Scheme 1).4 Nitroalkanes readily allow the
incorporation of nitrogen into alkaloids and other biologically active nitrogenous
compounds because they have the advantageous chemical properties of a relatively low pKa
(~10 in H2O)5 and facile reducibility to amines. As shown in Scheme 1, nitroacetic esters
are readily functionalized by α-alkylation.6,7 Decarboxylative allylation then provides
tertiary nitroalkanes that are readily reduced to amines.

One advantage of the DcA of nitroalkanes is that it allows the generation of reactive
nucleophiles and electrophiles in situ. We and others have previously demonstrated that
these nucleophilic and electrophilic coupling partners can be funneled down alternate
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reaction pathways such as Michael-addition/Tsuji-Trost allylation cascades (interceptive
DcA)1,8 or capture by protonation.9 Herein we report that allyl nitroalkanoates can
participate in similar cascade reactions. We present a Michaeladdition/Tsuji-Trost cascade
leading to functionally dense nitro group-containing compounds (Scheme 2) as well as a
Tsuji-Trost/decarboxylative protonation cascade strategy to access functional allylated 2°
nitroalkanes (Scheme 3).

2. Michael addition/Tsuji-Trost allylation cascades
To begin, we treated allyl nitroalkanoates under similar conditions to those developed for
the successful DcA reaction of allyl nitroalkanoate (5 mol% Pd(PPh3)4, DCM),4 however an
equivalent of benzylidenemalononitrile was included in the reaction mixture. Gratifylingly,
the intermediate allyl electrophile and nitronate nucleophiles were intercepted with the
benzylidene malononitrile to form highly functionalized nitroalkanes (Table 1). The
intercepted DcA reaction was not nearly as rapid as the standard DcA reaction, requiring 12
h for completion. The uninterrupted decarboxylative allylation reaction of allyl
nitroalkanoates required < 5 minutes to achieve completion under the same conditions.4 The
slower rate of interceptive DcA is easily explained by the coordination of benzylidene
malononitrile to Pd(0), rendering the catalyst less electron-rich and less prone to undergo
oxidative addition with the allylic carboxylate. Nonetheless, various allyl nitroalkanoates
were excellent coupling partners (2a–d). α,α-Dialkyl nitroalkanes (2a–b), including
Michael (2c)7 and Knoevenagel/Diels-Alder (2d) adducts6 were compatible coupling
partners. It was unfortunate, though not surprising, that Diels-Alder adduct 2d was formed
with no diastereoselection; changing the solvent from DCM to toluene did not improve the
diastereoselectivity, but the cascade reaction progressed comparably well. Aside from allyl
nitroalkanoate (2a–d), cinnamyl, hexenyl, and prenyl nitroalkanoates were excellent
coupling partners (2e–g), giving exclusively the linear product. Although 2e–g were formed
with no diastereoselection, the diastereomers of 2g could be chromatographically separated.
The successful synthesis of prenylated product 2g was particularly gratifying given that
attempted decarboxylative prenylation of 1a led primarily to the protonation product (eq. 1).
While palladium-π prenyl complexes often undergo β-elimination instead of the desired C–
C linkage, prenylation methodologies have been developed for some nucleophiles.10

Having demonstrated that the Michael addition/Tsuji-Trost cascade process was successful
with benzylidenemalononitrile, we wished to extend this methodology to Michael acceptors
derived from Meldrum’s acid (Table 2). Surprisingly, the reaction failed to produce any of
the desired product under the same conditions developed for benzylidenemalononitrile
(Table 2, entry 1). Furthermore, heating the reactants at various temperatures in chlorinated
solvents failed to give a desirable result (Table 2, entries 2–3). Fortunately, good yields
could be achieved in THF (entry 4) or toluene (entry 5). Interestingly, a modest
diastereoselectivity was observed, though different solvents did not affect this ratio. Aside
from simple unsubstituted allyl esters, the alkyl-substitute hexenyl nitroalkanoate provided a
modest yield of the Michael addition/Tsuji-Trost coupling product (entry 6). Simple
cyclopentyl allyl nitroalkanoate could also undergo a clean reaction in 75% isolated yield
(eq. 2, 3c)
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(1)

(2)

We also attempted to utilize nitrostyrenes as coupling partners for interceptive DcA (eq. 3).
Unfortunately, there appears to be no driving force for the Michael addition to form 4, and
DcA to produce 5 was the only reaction pathway observed (eq. 3).4 In the successful
examples of interceptive DcA, the anion generated upon Michael addition is always more
stable than that of the initial nucleophile. Thus, there is a thermodynamic driving force for
reaction progression. Comparison of the relevant pKa values (in DMSO) further illuminates
the driving force for nitronate (pKa ~ 17) addition to malononitriles (pKa ~ 12) and
Meldrum’s acid adducts (pKa ~ 7.5).5 Moreover, our results trend with Mayr’s observation
that Michael acceptors derived from malononitrile and Melrum’s acid are more electrophilic
than a Pd-π-allyl complex,11 thus addition of nitronates to benzylidene malononitriles is
expected to be kinetically faster than allylation.

(3)

3. Michael addition/Tsuji-Trost allylation cascades
In addition to the development of the Michael addition/Tsuji-Trost cascades initiated by
decarboxylation, we were intrigued by the clean conversion of the prenyl nitroalkanoate into
the protonated 2° nitroalkane product (eq. 1). Historically, allylated 2° nitroalkanes can be
challenging to access due to competing over alkylation. Thus, the nitroalkane nucleophile is
commonly used in excess to selectively give the 2° nitroalkane.12 Clearly, this is an
unattractive solution if one wishes to utilize precious nitroalkane reactants. Since
nitroalkanoates are excellent Tsuji-Trost substrates,13 we proposed that a single pot Tsuji-
Trost allylation/decarboxylative protonation strategy could quickly lead to synthetically
useful 2° nitroalkanes (Scheme 3). Moreover, with appropriate substitution, functional
groups can be paired to quickly access cis-1,5-dialkyl pyrrolidines and the indolizidine
core.14,15
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We began by synthesizing substrates 6 from prenyl nitroalkanoate using Yb(OTf)3-catalyzed
Michael additions (eq. 4).7b Once the nitroalkanoates were alkylated with the vinyl ketone,
the substrates 6 were allowed to react with allyl carbonate in the presence of catalytic
amounts of DBU (50 mol%) and Pd(PPh3)4 (5 mol%) at −30 °C. The palladium catalyst first
effects the Tsuji-Trost allylation of the nitroalkanoate. Upon warming, this reaction is
followed by decarboxylative protonation to yield secondary nitroalkanes 7a and 7b in good
yields. Moreover, synthetically useful quantities (>1 g) of 7b were prepared for further
chemical manipulation.

To demonstrate the utility of this process, compound 7b was then converted to the
indolizidine core in 4 steps (Scheme 4). Upon reduction of the nitro group,6 spontaneous
condensation to the imine occurred.11 This imine was immediately reduced to the cis-1,5-
pyrrolidine as a single diastereomer.15 As purification of this secondary amine was deemed
too challenging, it was not purified until after acylation with acryloyl chloride. This 3-step
process progressed in 65% overall yield. Interestingly, this amide exists as a 1:1.2 mixture of
rotamers about the amide-bond. Fortunately, heating with Grubbs’ second generation
catalyst (5 mol%), the diastereomers underwent convergent metathesis leading to a single
ring-closed product 9 in 88% yield.

In conclusion, we have shown that nitronates and Pd-π-allyl complexes derived from allyl
nitroalkanoates can be diverted from decarboxylative allylation (DcA) through reaction
pathways including Michael addition/Tsuji-Trost cascades and Tsuji-Trost/decarboxylative
protonation reactions.
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Scheme 1.
DcA of allyl nitroalkanoates.
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Scheme 2.
Cascade Michael addition/Tsuji-Trost allylation initiated by decarboxylation of allyl
nitroalkanoates.
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Scheme 3.
Cascade Tsuji-Trost/Decarboxylative Protonation of allyl nitroalkanoates.
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Scheme 4.
Synthesis of the indolizidine core.
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Table 1

Interceptive decarboxylative allylation of allyl nitroalkanoates with benzylidenemalononitrile.

a
reaction conditions: 1:1 1:benzylidenemalononitrile, 5 mol % Pd(PPh3)4, DCM, rt, 12h

b
1:1 d.r.

c
toluene in lieu of DCM, rt, 12h
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d
>20:1 linear:branched
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