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ABSTRACT Two major sources of stochasticity in the dynamics of neutral alleles result from resampling of finite populations (genetic
drift) and the random genetic background of nearby selected alleles on which the neutral alleles are found (linked selection). There is
now good evidence that linked selection plays an important role in shaping polymorphism levels in a number of species. One of the
best-investigated models of linked selection is the recurrent full-sweep model, in which newly arisen selected alleles fix rapidly.
However, the bulk of selected alleles that sweep into the population may not be destined for rapid fixation. Here we develop a general
model of recurrent selective sweeps in a coalescent framework, one that generalizes the recurrent full-sweep model to the case where
selected alleles do not sweep to fixation. We show that in a large population, only the initial rapid increase of a selected allele affects
the genealogy at partially linked sites, which under fairly general assumptions are unaffected by the subsequent fate of the selected
allele. We also apply the theory to a simple model to investigate the impact of recurrent partial sweeps on levels of neutral diversity and
find that for a given reduction in diversity, the impact of recurrent partial sweeps on the frequency spectrum at neutral sites is
determined primarily by the frequencies rapidly achieved by the selected alleles. Consequently, recurrent sweeps of selected alleles to
low frequencies can have a profound effect on levels of diversity but can leave the frequency spectrum relatively unperturbed. In fact,
the limiting coalescent model under a high rate of sweeps to low frequency is identical to the standard neutral model. The general
model of selective sweeps we describe goes some way toward providing a more flexible framework to describe genomic patterns of
diversity than is currently available.

THE high levels of genetic variation within natural pop-
ulations have long fascinated population geneticists. One

school of thought holds that a substantial proportion of this
molecular polymorphism is neutral or very weakly deleteri-
ous (Kimura and Ohta 1971; Ohta 1973; Kimura 1983). For
neutral polymorphism, the level of genetic diversity results
from a balance between the introduction of alleles through
mutation and their stochastic loss (Kimura and Crow 1964;
Kimura 1969; Ewens 1972). Under the neutral theory of
molecular evolution this stochasticity is thought to result
mostly from genetic drift (Kimura 1983), the random resam-
pling that occurs in finite populations, an effect that is ex-
aggerated by fluctuating population size and large variation
in reproductive success among individuals (see Charlesworth

2009, for a recent review). However, selection at linked sites
may provide a major source of stochasticity as the dynamics
of a neutral allele can be strongly influenced by the random
genetic background on which selected alleles arise (Maynard
Smith and Haigh 1974; Kaplan et al. 1989; Charlesworth
et al. 1995; Hudson and Kaplan 1995b).

In many species examined to date, levels of diversity are
substantially lower in regions of low recombination, as
found in multiple species of Drosophila (Aguade et al.
1989; Berry et al. 1991; Begun and Aquadro 1992; Begun
et al. 2007; Shapiro et al. 2007), Caenorhabditis (Cutter and
Payseur 2003; Cutter and Choi 2010), humans (Hellmann
et al. 2008; Cai et al. 2009), and Saccharomyces cerevisiae
(Cutter and Moses 2011), but not in all species, e.g., Arabi-
dopsis (Nordborg et al. 2005; Wright et al. 2006). Moreover,
levels of diversity are also lower in regions that a priori are
expected to have a higher rate of functional mutations, e.g.,
near genes and conserved elements (Cai et al. 2009;
McVicker et al. 2009; Hernandez et al. 2011). Since the rate
of neutral genetic drift is independent of recombination rate,
this positive correlation between recombination rates and
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diversity offers good evidence that linked selection plays
a substantial role in the fate of alleles, especially in low-
recombination regions. What is still far from clear is how
different forms of linked selection contribute to this reduc-
tion and whether linked selection can explain the narrow
observed range of genetic diversity across species with vastly
different (census) population sizes (Lewontin 1974; Maynard
Smith and Haigh 1974).

Models of the effect of linked selection have often been
divided between those that propose the source of this
linked selection to be either the purging of deleterious
variation (background selection) or the selective sweep of
beneficial alleles (hitchhiking). In this article we explore
the consequences of a generalized model of hitchhiking on
patterns on neutral diversity. We first review some of
the key results of models of linked selection. Under the
background selection model, genetic diversity is continu-
ously lost from natural populations due to the removal of
haplotypes that carry deleterious alleles (Charlesworth
et al. 1995; Hudson and Kaplan 1995b). For strongly del-
eterious alleles, this continuous loss acts primarily to in-
crease the rate of genetic drift at markers closely linked to
loci with high deleterious mutation rates (Hudson and
Kaplan 1995a; Nordborg et al. 1996). Therefore, this back-
ground selection model leads to a reduction in genetic di-
versity but no skew in the frequency spectrum. However,
a skew toward rare neutral alleles can result if weakly dele-
terious mutations are incorporated into the model (Nordborg
et al. 1996; Gordo et al. 2002).

On the other end of the spectrum, Maynard Smith and
Haigh (1974) proposed that local levels of genetic diversity
could be reduced by the hitchhiking effect. The hitchhiking
effect results from the fact that when an initially rare, ben-
eficial allele sweeps rapidly to fixation, it carries with it
a linked region of the haplotype on which it arose. The size
of the genomic region affected by a recent sweep is propor-
tional to the ratio of the strength of selection to the rate of
recombination (Maynard Smith and Haigh 1974; Kaplan
et al. 1989; Stephan et al. 1992; Barton 1998), and so the
reduction in levels of diversity is determined by the distri-
bution of selection coefficients and the rate of sweeps per
unit of the genetic map. Neutral alleles farther away from
the selected site may not be pulled all of the way to fixation
if recombination occurs during the sweep, which can lead to
a transient excess of high-frequency derived alleles an in-
termediate distance away from the selected site after each
sweep (Fay and Wu 2000; Przeworski 2002; Kim 2006). As
neutral diversity levels slowly recover through an influx of
new mutations after the sweep, there is a strong skew to-
ward low-frequency derived alleles, a pattern that persists
for many generations (Braverman et al. 1995; Przeworski
2002; Kim 2006). In a large population, the rate of sweeps
could be high enough that hitchhiking dominates genetic
drift as the source of stochasticity (Maynard Smith and
Haigh 1974; Kaplan et al. 1989; Gillespie 2000), an idea
that has been termed genetic draft (Gillespie 2000).

Support for a hitchhiking model over the standard model
of background selection is found in Drosophila, where there
is a greater skew toward rare alleles at putatively neutral sites
in regions of low recombination (Andolfatto and Przeworski
2001; Shapiro et al. 2007) and regions surrounding amino
acid substitutions have lower levels of diversity (Andolfatto
2007; Macpherson et al. 2007; Sattath et al. 2011). How-
ever, in humans (and other species) there is no strong skew
toward rare alleles in low-recombination regions (McVicker
et al. 2009; Hernandez et al. 2011; Lohmueller et al. 2011),
which combined with other evidence (Coop et al. 2009;
Hernandez et al. 2011) suggests that full sweeps may have
been rare and that background selection may be the main
mode of linked selection, in humans and a number of other
species.

Although the recurrent full-sweep model has been the
subject of considerable theoretical investigation, it may
actually be relatively rare for advantageous alleles to sweep
rapidly all the way to fixation. Fluctuating environments
(e.g., Gillespie 1991; Kopp and Hermisson 2007, 2009a,b)
and changing genetic backgrounds may often act to prevent
alleles from achieving rapid fixation within the population
(see Pritchard et al. 2010 for a recent discussion). For ex-
ample, if multiple mutations affecting the adaptive pheno-
type segregate during the sweep, then it may be that no one
of these alleles sweeps to fixation (Pennings and Hermisson
2006a,b; Chevin and Hospital 2008; Ralph and Coop 2010).
Multiple alleles spreading rapidly from low frequency can
lead to either a set of partial sweeps within the population
or a soft sweep if the alleles are tightly linked. Furthermore,
a similar effect can occur when selection acts on an allele
present as standing variation, if the allele is present on mul-
tiple haplotypes when it starts to spread (Innan and Kim
2004; Hermisson and Pennings 2005; Przeworski et al.
2005). The fact that, under these models, no single haplo-
type goes quickly to fixation acts to reduce the hitchhiking
effect and alters the effect on the frequency spectrum.

The genome-wide effect of other modes of linked
selection on patterns of diversity is relatively unexplored.
One model that has been investigated is an infinitesimal
model of directional selection, where the aggregated effect
of selection over many loci can be a substantial source of
stochasticity at linked and even unlinked sites (Robertson
1961; Santiago and Caballero 1995, 1998; Barton 2000).
Fluctuating selection due to varying environments has also
been shown to lead to reduced levels of diversity at linked
neutral sites (Gillespie 1994, 1997; Barton 2000) and sim-
ulations of specific models of fluctuating selection have
shown that the same reduction in diversity can result in
a much smaller skew in the frequency spectrum than under
the hitchhiking model (Gillespie 1994, 1997). However, as
yet no coalescent model of the effect of recurrent incomplete
sweeps has been developed.

Here is an outline of how we proceed. First, we develop
a coalescent-based model of patterns of diversity surround-
ing a selected allele that sweeps into the population but not
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necessarily to fixation. We concentrate on the case of a very
large population and sites that are partially linked to this
selected locus. We find that if the initial rise of the selected
allele is rapid, then the coalescent process is primarily
affected by this stage and relatively insensitive to the
subsequent dynamics of the selected allele. Using this
intuition, we then develop a coalescent model of recurrent
sweeps on patterns of neutral diversity in which selected
alleles may reach only intermediate frequency. To test the
approximations involved in the model we compare the re-
sults at several stages to simulations. Some of the implications
of these results for interpretation of genome-wide diversity
patterns are presented in the Discussion.

Results

Coalescent framework and assumptions

As first described by Hudson and Kaplan (1988) and Kaplan
et al. (1988), patterns of neutral diversity at a neutral locus
linked to a selected locus can be modeled by conditioning on
the trajectory of the frequency of the selected allele through
time and treating the two allelic classes as subpopulations
within each of which the dynamics are neutral, with recom-
bination moving lineages between the two (see also Barton
and Etheridge 2004; Barton et al. 2004). Consider a locus
under selection at which a derived allele D and an ancestral
allele A segregate, and let the frequency of D at time t be
denoted X(t). We study the coalescent process at a neutral
locus partially linked to our selected locus, with recombina-
tion occurring at rate r per generation between the selected
and the neutral locus. Each ancestor on a given lineage in
the coalescent process carried either the D or the A allele at
the selected locus, which we refer to as the “type” of that
lineage.

Throughout we assume that the diploid population size N
is large and constant over time. For simplicity, we assume
that the effective population size is 2N [i.e., the neutral co-
alescence rate of a pair of lineages is 1/(2N)] and that no
more than two lineages coalesce at once in the absence of
a selective sweep.

Suppose at time t that kD and kA of our lineages are of the
derived and the ancestral type, respectively. There are NX(t)
individuals carrying the derived allele that could be progen-
itors of the kD lineages, so the instantaneous rates of coales-
cence of pairs of lineages within the two allelic classes at
time t are

�
kD
2

�
1

2NXðtÞ and
�
kA
2

�
1

2Nð12XðtÞÞ
; respectively:

(1)

The total instantaneous rate of recombination is (kD + kA)r.
If a recombination event occurs on a lineage at time t, it
chooses to be of type D with probability X(t) and chooses
to be of type A otherwise.

We leave the dynamics of the selective sweeps that
determine X(t) fairly unspecified, and while stochasticity
may play an important role in shaping the trajectories, in
examples we usually treat X(t) as nonrandom. As we want
coalescences caused by a single selective sweep to occur at
more or less the same time, we require that once the se-
lected allele is introduced into the population, it increases in
frequency rapidly, and that once the allele frequency leaves
the boundary (e.g., moves above 1%), it does not return
(e.g., drops below 1%) unless it does so on the way to loss
(e.g., hits 0 before returning to 1%). This condition implies
that our model applies to alleles that are at least partially
codominant, as fully recessive alleles spend appreciable
time, behaving stochastically, at very low frequencies, which
can lead to different coalescent dynamics at linked loci
(Teshima and Przeworski 2006; Ewing et al. 2011).

Relation to previous models

We describe a simple approximation to the coalescent with
recurrent sweeps that is inspired by similar approximations
for a model of recurrent full sweeps. The approximation
postulates two types of coalescent events: “neutral” events
occurring at rate 1/2N between any pair of lineages and
additional coalescent events, involving two or more line-
ages, due to selective sweeps. The first class of events can
occur at any time, due to random resampling of lineages.
The second class of events, the sweep-induced coalescent
events, can involve more than two lineages, as we assume
that lineages forced to coalesce by a sweep do so instanta-
neously on the relevant timescale. We assume that all such
lineages coalesce into a single lineage and that the distribu-
tion of the number of such lineages is binomial, with a suc-
cess probability that is a function of the trajectory taken by
the selected allele and the recombination distance to that
allele. This framework is a natural extension of similar
approximations used for full sweeps (Barton 1998; Gillespie
2000; Kim and Stephan 2002; Durrett and Schweinsberg
2005; Nielsen et al. 2005).

Processes with two classes of coalescent events have
previously been developed to approximate a recurrent full-
sweep model (Kaplan et al. 1989; Gillespie 2000; Durrett
and Schweinsberg 2005). When the transition probabilities
can be written in this binomial form, as they also are in the
recurrent full-sweep models of Gillespie (2000) and Durrett
and Schweinsberg (2005), the model is called a L-coalescent
(Pitman 1999; Sagitov 1999). These also arise in neutral
models where individuals have large variance in reproduc-
tive success (e.g., Möhle and Sagitov 2001; Sargsyan and
Wakeley 2008). As in other work, we present this model
as an approximation not in the sense of asymptotic conver-
gence, but rather as a simplification, which we show later
is close enough to be useful. We make a number of sim-
plifying assumptions and often do not make use of the
most accurate analytical forms available, in an effort to
maintain an intuitive form and description of the process
obtained. In particular, Durrett and Schweinsberg (2004)
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showed that a coalescent process with simultaneous multi-
ple collisions could provide a better approximation to the
coalescent process during a sweep, a direction we do not
pursue (see also Barton 1998; Etheridge et al. 2006).

An approximation to the coalescent process during
the sweep

Figure 1A shows an example of the relationships between
different sampled individuals at a neutral locus in a finite
population undergoing recurrent selective sweeps. At the
times indicated by the lightning bolts, selective alleles sweep
into the population at some locus linked to our neutral site.
All lineages descended from the original carrier of the de-
rived allele coalesce, nearly instantaneously on this
timescale.

Figure 1B zooms in on one of these selective sweeps. The
derived allele at the selected locus (D) arose t generations
ago. The five surviving ancestral lineages recombine on and
off the D background, whose frequency through time is
shown by the dark gray shading. Just after time 0 those
lineages on the D background coalesce as X goes to zero
(their coalescent rate, which is proportional to 1/X, goes
to infinity). We will show that the complexity of the process
shown in Figure 1B can be approximated by a much simpler
multiple-merger coalescent process suggested by Figure 1A,
in which lineages coalesce “neutrally” at rate 1/(2N), and
furthermore, each lineage flips a coin at each selective
sweep to decide which type it is, and those that are of type
D merge simultaneously.

Suppose that a derived allele at the selected locus (D)
arose t generations ago, at time 0. The selected mutation
may still segregate within the population in the present day

or may have gone to fixation or loss sometime before the
present [in which case X(t) = 1 or 0, respectively]. First
consider coalescences occurring very close to the origin of
a selective mutation. A lineage can be type D at time 0 for
one of two reasons: either it was of type D in the present day
and not yet recombined off the D background or at the first
recombination after the selected allele arose, the lineage
chose to be of type D. The lineage of an individual drawn
at random from the present-day population is therefore of
type D at time 0 with probability

q ¼ qðr;XÞ :¼ XðtÞe2rt þ r
Z t

0
e2rtXðtÞdt: (2)

Here the integral is over t, the number of generations be-
tween the origin of D and the first subsequent recombination
on a lineage (t is marked for the red lineage in Figure 1B).
Note that although many recombination events may have
occurred, since at each recombination event the lineage
chooses a new type independently of its previous type, we
need consider only the first after the sweep. If t � 1/r, the
first term can be ignored, so we commonly assume that

qðr;XÞ ¼ r
Z N

0
e2rtXðtÞdt; (3)

as the allelic state of the sample has long been forgotten.
Importantly, we can see that the dependence of q on X
decays exponentially through time at rate r. Therefore, the
fate of the selected allele more than a few multiples of r
after it arose, including its presence or absence in the pres-
ent day, will have little effect on q. Concretely, for two tra-
jectories labeled 1 and 2, if X1(s) = X2(s) for all 0 # s # T,

Figure 1 (A) An example of a multiple-merger
coalescent genealogy. Eight alleles have been
sampled in the present day, and we trace their
lineages backward through time, up the page.
Lightning bolts indicate the times when a se-
lected allele has swept into the population. At
each sweep, each lineage is either descended
from the original carrier of the derived allele at
the selected site (lineages marked with a black
circle) or descended from some other ancestor
(lineages marked with a white circle). (B) Zoom-
ing in on one sweep. The frequency of the de-
rived allele, D, through time, X(t), is shown in
dark gray. The four surviving lineages are
shown in different colors as in A. Horizontal
dashed lines depict recombination events in
the history of a lineage. A circle indicates the
oldest recombination event experienced by
each of our lineages before the D allele arose,
and the color of the circle indicates where the
allele recombined onto the D background
(black) or on to the A background (white). As
we approach the time the selected allele arose,
the three lineages found on the D background
coalesce into a single lineage.
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then regardless of subsequent differences in the trajectories,
|q1 2 q2| # e2rT.

We can now approximate the rapid coalescence of
lineages that are forced by the sweep by assuming that all
lineages descended from the original carrier of the D allele
coalesce simultaneously when the selected allele appears (a
“multiple merger”). The lineages will actually coalesce at
slightly different times, but the assumption the derived al-
lele increases rapidly implies that this difference is small on
the coalescent timescale [i.e., o(2N)]. As each lineage takes
part in this merger independently with probability q, the
probability that i of k surviving lineages coalesce at time 0 is

�
k
i

�
qið12qÞk2i; for 2# i# k; (4)

reducing the number of lineages from k to k 2 i + 1.
This approximation assumes that each lineage makes an

independent choice of whether to recombine off the sweep,
which is equivalent to assuming that the coalescences
caused by the sweep form a “star”-like tree, with no internal
edges of nonzero length. Therefore, the approximation
ignores dependencies between lineages induced by coales-
cent events earlier in the sweep and so is a poorer approx-
imation for a large number of lineages. More sophisticated
approximations have been developed to account for this de-
pendency, which improve the properties for large samples
(Barton 1998; Durrett and Schweinsberg 2004; Etheridge
et al. 2006; Pfaffelhuber et al. 2006). However, we believe
this approximation captures many of the important features.

The other component of our approximation is that at all
times, all pairs of lineages coalesce at rate 1/(2N) regardless
of their allelic background. This approximation ignores the
fact that lineages that are currently on different back-
grounds cannot coalesce and that lineages on the same
background coalesce at a higher rate (see Equation 1).

We also note that although large changes in the allele
frequency over a small number of generations represent
a large number of children descended from a smaller number
of ancestors, this will not cause rapid coalescence in a large
population if the allele remains at intermediate frequencies.
Concretely, consider a short time interval from generation t1
to generation t2, over which interval X(t) � (t2 2t1)/N. The
chance that any coalescence occurs during this time interval
on the derived background is small [O((t2 2 t1)/(X(t)N))],
regardless of how the frequency X changes. Therefore, large,
sudden changes in allele frequencies will force coalescence on
the derived background only if X(t) is of order 1/N (and
similarly for the ancestral background). For sites that are
only partially linked to the selected locus, if recombination
is moving the lineages across backgrounds at a sufficiently
high rate compared to the neutral coalescent rate (Nr � 1),
then two lineages in this subdivided model coalesce at a
rate close to 1/2N (see Hudson and Kaplan 1988; Hey
1991; Nordborg 1997; Barton and Etheridge 2004 for a de-
tailed discussion). As such, our approximation will therefore

be worse close to the selected site, but is asymptotically cor-
rect for large r.

A simple trajectory: To build intuition, we first consider
a simple trajectory, making further approximations to keep
the results accessible, and compare the results to full
coalescent simulations. Assume that D arises t generations
ago at a site at distance r from the neutral site under con-
sideration, rapidly sweeps to frequency x, and remains close
to this frequency for a time �1/r. Under many models of
directional selection, most of the time spent in reaching x is
spent at low frequency, so that any recombination that
occurs during this time will likely move a lineage to the
ancestral type, and so only lineages that do not recombine
during the initial sweep will coalesce. If we let tx be the
time it takes for the selected allele to sweep to x and assume
rt � 1, then a simple approximation to q(r, X) is therefore
(with the subscript emphasizing dependence on x)

qðr;XÞ � qx :¼ xe2rtx : (5)

If the initial increase of D is driven by additive selection of
strength s with Ns . 1, then the initial trajectory of D will be
logistic, and it is reasonable to take tx = log(ax/(1 2 x))/s,
where a = 2N or 4Ns depending on whether s is of order 1
or 1/N [the latter case corresponding to the case where the
selected allele has to rapidly achieve frequency 1/(Ns) to
escape loss by drift]. Using qx to approximate the probability
that a lineage is caught by the sweep, the expected pairwise
coalescent time is smaller by a factor of

�
12 q2x e

2t=ð2NÞ
�
; (6)

which can be found by considering whether a pair of
lineages coalesce before, during, or after the sweep.

If rather than remaining near x, the selected allele con-
tinues to sweep to fixation—perhaps it is still under selec-
tion with strength s2 � r—then qx � e2rtx because the
selected allele has gone quickly to fixation as in a full sweep,
and the only time for recombination is in the early phase of
the trajectory tx. On the other hand, if the allele became
strongly deleterious (s2 , 0 and |s2| � r), then q � 0,
because there is little chance of it contributing genetic ma-
terial to the population. However, if selection subsequently
experienced by D is weak (|s2| � r), so that subsequent
dynamics of the selected allele are sufficiently slow, then q
and therefore the coalescent process are independent of the
eventual fate of the selected allele. In summary, for qx to be
a good approximation to q(r, X) and for the sweep to have an
appreciable effect on the coalescent, we need |s2| � r , s.

Comparison to simulation: To demonstrate this, we apply
the same approximation to situations with different long-term
behaviors. The code for these simulations and all simulations
in the paper are contained in Supporting Information, File S1.
We consider five different possible trajectory types. In all
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cases, the initial rise of D was modeled as deterministic logis-
tic growth begun at frequency 1/2N and adjusted to reach
frequency x after tx units of time. In the first case (“bal-
anced”), the allele remains thereafter at frequency x. In the
next two cases (Figure 2, A–C), after time tx, allele D
approaches either frequency 1 (“fixed”) or frequency 0 (“lost”)
logistically, reaching frequency 1 2 1/2N (or 1/2N, respec-
tively) after the next t time units. In the last two cases (Figure
2, D–F), the allele D remains at x for T generations and then
proceeds logistically, in time tx, either to frequency 1 2 1/2N
(“step”) or to frequency 1/2N (“top hat”).

In each case, we used mssel [a modified version of ms
(Hudson 2002) that allows an arbitrary trajectory, kindly
supplied by Richard Hudson] to simulate genealogies for
a recombining sequence surrounding a selected locus at
which a selected allele performs one of the trajectories
shown in Figure 2 . The average pairwise coalescence time
from these simulations was calculated by dividing the pair-
wise genetic diversity by the mutation rate and is shown in
Figure 2 at different distances from the selected locus, com-
pared to the quantity predicted by Equation 6. Close to the
selected site (e.g., for r , 1/T in Figure 2, E and F) the
curves diverge, since the sites represented by the blue curves
see a full sweep, reducing diversity close to the selected site,
while those in the orange curves see a short-term balanced

polymorphism and hence show a peak in polymorphism
near the selected site. As we increase recombination dis-
tance away from the selected site, the three curves are in
good agreement with the black line (Equation 6), indicating
that our partial sweep model captures the main effect on
diversity.

Our simple approximation describes diversity levels well
at partially linked sites over a range of different scenarios
and works well for a wider range of parameters (results not
shown). We furthermore used Equation 4 to predict the
effect of this simple partial sweep on the coalescent process
of more than two lineages and found close agreement with
further mssel simulations for various summaries of diversity
such as the expected number of segregating sites (results not
shown). Overall, these results confirm that for partially
linked sites, the coalescent process is mostly determined
by the initial rapid behavior of the selected allele.

A recurrent sweep coalescent model

We now consider patterns of diversity at a neutral locus
affected by many different selected alleles that sweep into
the population at the times of a homogeneous Poisson
process with rate n. We assume that the sweep rate is low
enough that sweeps do not interfere with each other and
return to discuss this assumption later. Each sweep occurs at

Figure 2 The effect of a single partial sweep. (A) Three possible trajectories followed by the D allele after it arises t generations ago, as described in the
text: blue is “fixed,” green is “lost,” and orange is “balanced.” (B and C) Mean pairwise coalescent time against recombination distance away from
a selected site that has experienced one of the three types of sweeps shown in A, with x = 0.4 and 0.8, respectively. The other parameters were tx/2N =
6.6 · 1023 and t/2N = 0.05. (D) Another three possible trajectories: green is “top hat” and blue is “step.” (E and F) Pairwise coalescent time as in B and
C, but using the trajectories shown in D. The other parameters were tx/2N = 6.1 · 1024, t/2N = 0.1, and T/2N = 0.02. The black line shows the
approximation to the pairwise coalescent time of Equation 6. In E and F, the vertical line gray line marks r = 1/T.
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some distance r from the neutral locus, and as it sweeps its
frequency follows some particular trajectory X(t), which to-
gether in Equation 3 determine q, the probability that a lin-
eage at the neutral site is caught by the sweep. Rather than
try to explicitly model randomness in these two compo-
nents, at first we assume that each sweep independently
chooses its value of q from a probability distribution with
density f(q). This model is exactly a Lambda coalescent, with
L(dq) = q2nf(q)dq + d0(dq)/2N (see Berestycki 2009, for
a recent review), but we leave our discussion in terms of f to
make the results more intuitive.

Following from our assumption that each lineage is
affected by a given sweep independently with probability
q, when there are k surviving lineages, the rate at which
they coalesce to k 2 i + 1 lineages due to sweeps is

n

�
k
i

�Z 1

0
qið12qÞk2ifðqÞdq: (7)

This follows from our assumption that sweeps occur
homogeneously through time and do not interfere with
each other and with properties of marked Poisson processes.
For ease of presentation we denote

Ik;i ¼
�
k
i

�Z 1

0
qið12qÞk2if ðqÞdq: (8)

Recall that under our model, the rate of coalescence of pairs
of lineages due to genetic drift is 1/(2N), so that the rate at
which the coalescent process with k lineages coalesces to
k 2 i + 1 lineages is

lk;i ¼
�
k
2

�
1
2N

di;2 þ nIk;i for 2# i# k; (9)

where di,2 = 1 if i = 2 and 0 otherwise. The total rate of
coalescent events when there are k lineages is therefore

lk ¼
1
2N

�
k
2

�
þ n

Xk
i¼2

Ik;i for k$2; (10)

and conditional on a coalescent event the probability that i
lineages of k coalesce, reducing from k to k 2 i+ 1 lineages,
is

pk;k2iþ1 ¼ lk;i
lk

¼
ð1=2NÞ

�
k
2

�
di;2 þ  nIk;i

ð1=2NÞ
�
k
2

�
þ n
Pk

i¼2Ik;i

; for 2# i# k:

(11)

To simulate from this coalescent process we can simulate an
exponential waiting time with rate lk, pick a number of
lineages to coalesce using probabilities pk,k2i+1, and run this
process until we have a single lineage remaining.

Note that in deriving this process we have assumed that
at all times, lineages also coalesce at a neutral rate 1/2N.

This can be justified by assuming that recombination moves
lineages between backgrounds at a high enough rate to
allow the effects of the partitioning of the population by
segregating alleles to be ignored. Therefore, the approxi-
mation will break down if a typical neutral site, at any
given time, is close enough (e.g., within an r of order
1/N) to an allele maintained at intermediate frequency
by long-term balancing selection (e.g., alleles maintained
for timescales of order N). Further work is needed to refine
the coalescent under those conditions, but our approxima-
tions should be suitable for a broad range of scenarios and
genomic regions.

The coalescent process with homogeneous sweeps

It is natural to examine the case in which selective sweeps
occur at a uniform rate along a sequence of total length L.
We assume that this sequence recombines at rate rBP per
base each generation and that sweeps enter the population
at a rate nBP per base each generation, so that the total rate
of sweeps is n = nBPL. We also assume that the sweeps are
homogeneous; i.e., the trajectory followed by the frequency
of the derived allele, X, is independent of the distance
between our neutral site and the site at which a sweep
occurs.

We consider sweeps occurring along a very long chromo-
some and so take L / N, but then the total rate of sweeps,
n = nBPL, also goes to infinity. To obtain a meaningful limit,
we need that as L / N the rate of sweeps corresponding to
each nonzero value of q converges to a finite value. Recall
from (3) that the probability a lineage is caught up in a given
sweep depends on the distance to the sweep (which is rBPℓ
for a site ℓ bases away) and the trajectory X taken by the
sweep and is given by qðrBPℓ;XÞ ¼ rBPℓ

R t
0 expð2rBPℓtÞXðtÞdt:

In a finite genome of length L, the probability distribu-
tion on values of q has density f(q) = hL(q)/L, where
hLðqÞ ¼

R L
0 ℙXfqðrBPℓ;XÞ 2 dqgdℓ. Here hL(q) is the rate at

which selective sweeps appear at location rBPℓ and whose
trajectory X gives q(rBPℓ, X) = q, integrated across the
genome; and f(q) is hL(q) normalized to integrate to 1,
since

R 1
0 hLðqÞdq ¼ L. The functions hL converge for q. 0 as L

becomes large as long as the probability that distant sweeps
affect the focal site decays quickly enough. We therefore as-
sume that hL(q) converges to a finite limit h(q), i.e., that the
following exists:

hðqÞ ¼ lim
L/N

L f ðqÞ for 0, q# 1: (12)

This means that although the total rate of sweeps per
generation is infinite, only a finite number happen close
enough to our neutral site to potentially affect our co-
alescent process. Therefore, the rate at which k lineages
coalesce down to k 2 i + 1 due to sweeps converges:

nBPLIk;i/nBP

�
k
i

�Z 1

0
qið12qÞk2ihðqÞdq as L/N:

(13)
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If we take the trajectory X to be fixed, we can rewrite
Equation 13 as

nBP

 
k

i

! Z 1

0
qið12qÞk2ihðqÞdq

¼ nBP

 
k

i

!Z N

0
qðrBPℓ;XÞið12qðrBPℓ;XÞÞk2idℓ

¼ nBP
rBP

 
k

i

!Z N

0
qðr;XÞið12qðr;XÞÞk2idr; (14)

which decouples the dependency of the rate of sweeps on
the recombination rate rBP from the trajectory X. If X is
random, then we need to average over possible trajectories,
and so we define

Jk;i ¼
�
k
i

�
X

h
∫∞0 qðr;XÞið1−qðr;XÞÞk2idr

i
; (15)

where EX[�] denotes the average over possible trajectories.
We assume that this integral is finite for 2 # i # k; for
further discussion of these points see Appendix A. Impor-
tantly, under our assumption that sweeps do not interfere
with each other, Jk,i does not depend on the recombination
rate rBP or the rate of sweeps nBP, but only on the dynamics
of the selective sweeps X.

Allowing coalescent events due to drift, k lineages coa-
lesce down to k 2i + 1 at rate

lk;i ¼
1
2N

�
k
2

�
di;2 þ nBP

rBP
Jk;i for 2# i# k; (16)

where di,2 = 1 if i = 2 and is 0 otherwise. As Equation 16
follows from the simple change of variable in Equation 14, it
will hold under any homogeneous sweep model where
sweeps instantaneously (relative to a timescale of 2N) force
lineages to coalescence, with Jk,i replaced by some constant
that does not depend on rBP or nBP. This result greatly gen-
eralizes that of Kaplan et al. (1989), who described a similar
coalescent process for a full-sweep model.

We can see from Equation 16 that 2NnBP/rBP is the rele-
vant compound parameter that in a general sweep model
determines the rate of sweeps relative to neutral coalescent
events. In small samples, sweep-induced coalescent events
will dominate those due to drift if the population-scaled rate
of sweeps per unit of the genetic map is much greater than
one, provided that not all the Jk,i are too small. We revisit
this strong-sweep limit in the Limiting processes section.

The coalescent process with homogeneous
partial sweeps

We now return to the setting above (in A simple trajectory),
in which a simple trajectory rises quickly to frequency x,
under which assumptions q(r, X) � qx (Equation 5). We
suppose that the frequency x at which each sweep slows is
chosen independently with probability density g(x). It also

seems reasonable to assume furthermore that tx, the time it
takes to reach frequency x, does not depend on x; we denote
this time by t. This is approximately true for many models of
directional selection, since selected alleles move quickly
through intermediate frequencies. In this case, the rate at
which k lineages coalesce to k 2 i + 1 is

lk;i
1
2N

�
k
2

�
di;2 1

�
k
i

�
nBP
t rBP

Z N

0

�Z 1

0
ðxe2rÞi ð12xe2rÞk2i gðxÞdx

�
dr;

(17)

suggesting that the important quantity, which acts as a co-
alescent timescaling, is 2NnBP/(t rBP), with the distribution
on x acting to control how many lineages are forced to co-
alesce with each sweep. If we determine t by a simple model
of additive selection with selection coefficient s, the key
parameter becomes 2NnBPs/(log(Ns)rBP).

This compound parameter, 2NnBPs/(log(Ns)rBP), is also
the key parameter in full-sweep models (Kaplan et al. 1989;
Stephan et al. 1992). However, since full sweeps require x =
1, if diversity is strongly reduced, then numerous lineages
must merge at each sweep, which in turn leads to a strong
skew toward rare alleles in the frequency spectrum. We will
see that this relationship between the reduction in diversity
and the skew in the frequency spectrum is substantially weak-
ened under a partial sweep model when we allow x � 1.

Summaries of neutral genetic diversity

Level of neutral diversity: A key quantity of interest is the
level of neutral nucleotide diversity, p, the number of differ-
ences between randomly sampled alleles at a neutral locus.
Under an infinite-sites model of mutation, which we use
here, the expectation of p, averaging across sites, is equal
to the expected coalescent time of a pair of lineages multi-
plied by twice the mutation rate. If the mutation rate per
generation at our neutral locus is m, in the absence of
sweeps, the level of diversity is E[p] = u, where u = 4Nm
is the population-size–scaled mutation rate, and the expec-
tation is the average across sites. Note that u is the level of
diversity under the usual neutral model.

Under our model featuring both sweeps and drift,

E½p� ¼ u

1 þ  2N I2;2n
; (18)

so a key parameter is the population-scaled rate of sweeps
2Nn.

To examine the applicability of our approximations we
again performed coalescent simulations with mssel for a se-
lected locus at a fixed location experiencing recurrent
sweeps. In this case, where selected alleles recurrently
sweep into the population at a fixed genetic distance r, fol-
lowing our simple partial sweep trajectory again as charac-
terized by qx and 2N, the nucleotide diversity is given by

E½p� ¼ u

1þ 2Nnx2 expð2 2rtxÞ
: (19)
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We used two types of recurrent trajectory, the recurrent step
and the recurrent top hat, as described earlier. For the
recurrent top-hat trajectory, we simulated an exponential
waiting time with mean n between the end of one top hat
and the start of the next (and similarly for the step case). In
Figure 3 we show diversity levels moving away from the
locus undergoing these two types of recurrent sweeps, as
well as the analytical approximation given by Equation 19.
Recall that in both types of trajectories the derived allele
pauses at frequency x for time T, and therefore we expect
that the fate of the allele will affect diversity at recombina-
tion distances,1/T. For distances.1/T, Equation 19 shows
good agreement with our simulations, regardless of whether
the recurrent sweeps go to loss or fixation. The approxima-
tion does not perfectly match our simulations, presumably
because e2r2tx is an imperfect approximation to the proba-
bility of recombination during the sweep. Nevertheless, di-
versity levels generated by the two types of recurrent
trajectory agree away from the selected site, which impor-

tantly confirms that only the initial rapid stage of the trajec-
tory affects the coalescent process at partially linked sites.

The level of diversity under homogeneous sweeps: Under
the model in which sweeps occur homogeneously along an
infinite sequence, with coalescent rates given by Equation
16, the level of nucleotide diversity is given by

E½p� ¼ u

2NnBPJ2;2=rBP þ 1
: (20)

These results generalize previous results by Kaplan et al.
(1989) and Stephan et al. (1992), who found a relationship
of the form (20) for a model of homogeneous recurrent full
sweeps. In fact, since Equation 20 follows only from the
assumption that the rate and characteristics of sweeps are
independent of their location along the genome (see Equa-
tion 14), this relationship between diversity, the density of
selective targets, and recombination rate will hold for a wide

Figure 3 Reduction in diversity (p/u) as a function of recombination distance from a site experiencing recurrent sweeps. The three panels are for
different values of the frequency x that each sweep reached rapidly. The solid line is for recurrent top-hat trajectories and the dashed line for recurrent
step trajectories The time that the trajectory pauses is T/2N = 0.01 and tx/2N = 0.003 in both cases. The three colors correspond to three different
population-scaled rates of sweeps: 2Nn = 2, 4, and 8. The vertical gray line marks recombination distance r . 1/T from the selected locus, above which
the dynamics subsequent to reach x should make little difference. The solid black lines give the prediction of (19).
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variety of homogeneous recurrent-sweep models including
the homogeneous full-sweep model.

Frequency spectrum: We now study the effects of recurrent
partial sweeps on other properties of neutral diversity at
a locus besides pairwise nucleotide diversity and compare
our calculations to simulation.

Two commonly studied properties of a sample of neutral
diversity at a locus are the expected number of segregating
sites in a sample of size n and the expected number of
singletons in a sample of size n. Under the infinite-sites
assumption, these are respectively equal to the mutation
rate multiplied by the expected total length of the genealog-
ical tree of the sample (which we denote Ttot) and by the
mutation rate multiplied by the expected total length of the
terminal branches (T1). We provide recursions that allow
easy calculation of both E[Ttot] and E[T1] in Appendix B.

We also look more generally at the frequency spectrum of
segregating alleles, which is, in a sample of n individuals,
the proportion of segregating sites at which k derived alleles

are found, for each 1 # k # n. Let Fn,k denote the expected
proportion of segregating sites in a sample of size n at which
exactly k samples carry the derived allele under an infinite-
sites model of mutation. Fn,k is equal to the expected time in
the coalescent tree spent on branches that subtend exactly k
tips (those on which mutation would lead to a site segre-
gating at k of the n samples), divided by E[Ttot]. Under
neutrality (Kingman’s coalescent), this quantity is
FNn;k ¼ ð1=kÞ=Pn21

j¼1 ð1=jÞ. It is not so easy to find an explicit
general expression under the coalescent model with sweeps
that we study, but for the case k = 1 we have described in
Appendix B how to compute E[T1]/E[Ttot], and the general
case can be found from simulation of the coalescent process.

Figure 4A shows the ratio of Fn;k=FNn;k, estimated by direct
simulation of our coalescent process. The rates are given
by Equation 9, with q fixed to qx ¼ xe2txr, and txr = 0.6
(and various x). To make the simulations comparable, the
population-scaled rate of sweeps 2Nn was adjusted such that
p/u = 1/2 in each, i.e., to obtain a 50% reduction in diversity
due to sweeps. We see that for partial sweeps at a fixed site,

Figure 4 Properties of the frequency spectrum with sweeps occurring at a fixed genetic distance. Coalescent rates are given by Equation 9, with q fixed
to qx ¼ xe2tx r and txr = 0.6, across a range of x. (A) The percentage of segregating sites found at frequency 1 # k # 20, relative to the neutral
expectation (i.e., F20;k=FN20;k). In these simulations the rate of sweeps Nn has been fixed to result in a 50% reduction in diversity. The dashed gray line
gives the neutral expectation. (B) The mean number of singletons divided by mean number of segregating sites, from mssel simulations with a sample
size of 10 at a neutral site a distance 2Nr = 200 from a selected site. The selected allele performs a recurrent top-hat trajectory (with N = 10,000 and
tx /2N = 0.003, giving rtx = 0.6, and pausing T/2N = 0.01) to frequency x = 0.2, x = 0.5, or x = 0.9 across a range of 2Nn. Note the span of p/u is smaller in
the low-x simulations as the effect on diversity of a given 2Nn is smaller. Solid lines show the analytical approximation for E[T1]/E[Ttot] of Appendix B.
The dashed gray line gives the neutral value of the expected proportion of singletons 1=

Pn21
j¼1 1=j.
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across a range of x, the frequency spectrum is skewed toward
rare alleles and away from intermediate-frequency alleles.

To test the degree to which our coalescent matches the
full model, in Figure 4B we compare the mean proportion of
singleton sites under our coalescent model to that found
from simulation with mssel. We simulated a recurrent top-
hat trajectory of the frequency at a selected locus as before
and used this trajectory with mssel to simulate the neutral
coalescent at a nonrecombining locus a distance r away from
this selected locus. We used the three values x = 0.9, 0.5,
and 0.2 for the intermediate frequency the allele reached
and in each case varied the rate of sweeps, n. Each combi-
nation of n and x gives a point in Figure 4B, plotted at its
mean reduction in diversity (p/u) and the mean number of
singletons divided by the mean number of segregating sites.
These are compared to the analytical values of E[T1]/E[Ttot]
computed using Equations B1 and B3, with coalescent rates
given by Equation 9, using a constant q ¼ xe2rtx and Equation

20 to find the reduction p/u. There is good agreement be-
tween the simulations and the analytical results, showing that
our simplified process approximates the properties of the full
coalescent process at a single site reasonably well.

Figure 4 studied the effect on the frequency spectrum of
recurrent sweeps at a fixed distance from a neutral site; in
Figure 5 we study the frequency spectrum under the coales-
cent process with sweeps occurring homogeneously along
the genome. Figure 5, A and B, shows the same quantities
as Figure 4A, for simulations of the homogeneous partial-
sweep coalescent process with a fixed value of x, using rates
given by Equation 17, and 2NnBP/(trBP) chosen so that p is
50% and 10% of its value under neutrality, respectively. In
Figure 5C, there is no genetic drift and only sweeps force
coalescence, i.e., N = N, and so we do not need to specify
2NnBP/(trBP) as it acts only as a timescaling. In Figure 5D we
show our analytic calculation of E[T1]/E[Ttot] as a function
of the reduction in p caused by selective sweeps.

Figure 5 Properties of the frequency spectrum under a spatially homogeneous model of sweeps using the coalescent process with rates given by
Equation 17. Simulations were performed for a sample size of 20. For a particular x we adjusted the value of NnBP/(trBP) to achieve the specified
reduction in p. (A and B) The percentage of segregating sites found at frequency 1 # k # 20, relative to the neutral expectation for sweeps. In each
panel the reduction in diversity, p/u is fixed. (C) The same quantities as in A and B, but for the case where there is no genetic drift, and sweeps are the
only stochastic force affecting allele frequencies. (D) The fraction of segregating sites that are singletons, for different x, as a function of p/u, calculated
using recursions for E[T1]/E[Ttot] (Appendix B).
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The skew in the frequency spectrum depends strongly on
the frequency x reached by the selected allele. Sweeps to
low frequencies lead to a much smaller distortion for the
same reduction in p. Therefore, the strong relationship be-
tween the reduction in p and the skew in the frequency
spectrum under a model of full sweeps is much weaker if
the sweeps do not go to fixation.

Intriguingly, sweeps that go to intermediate frequency
can lead to a greater proportion of high-frequency–derived
alleles than under a full-sweep model. While a single, recent
full sweep leads to high-frequency derived alleles through
hitchhiking (Fay and Wu 2000), under a recurrent full-sweep
model these alleles are then fixed in the population by sub-
sequent sweeps and drift (Kim 2006) and therefore removed
from the frequency spectrum. Further work would be needed
to understand the intuition for the excess of high-frequency
derived alleles under a recurrent partial-sweep model.

Summaries of the frequency spectrum: In Figures 4 and 5,
we saw that regardless of whether sweeps occur at a fixed
distance from our neutral site or homogeneously along the
sequence, as we increase the rate of sweeps the frequency
spectrum becomes further skewed toward rare derived
alleles at the expense of intermediate-frequency alleles.
Here we provide evidence that this will hold for any set of
parameter values. Tajima’s D and Fu and Li’s D (Tajima
1989; Fu and Li 1993) are two common ways of detecting
deviations away from the frequency spectrum expected un-
der a neutral model with a constant population size. Nega-
tive values of Tajima’s D can be thought of as indicating
a deficit of intermediate-frequency alleles, and Fu and Li’s
D indicates an excess of singleton alleles. Durrett and
Schweinsberg (2005) proved that in large samples, both of
these summary statistics are negative under a multiple-
mergers coalescent model of full sweeps, as long as lk, the
total coalescent rate when there are k lineages, satisfiesXN

k¼2

�
lk2

�
k
2

��
logðkÞ
k2

,N: (21)

See equation 4.5 in Durrett and Schweinsberg (2005). In-
formally, this condition requires that the total coalescent
rate is not too much higher than the neutral coalescent rate
when there are a large number of lineages. Their methods
were not specific to their situation but hold for all multiple-
merger coalescent models satisfying Equation 21. As above,
we argued that a generalized-sweep model can be approxi-
mated by a multiple-merger coalescent, and therefore it
seems that reasonable generalized-sweep models will, at
least for large samples, have a frequency spectrum that is
skewed toward singletons at the expense of intermediate-
frequency alleles (a notable exception is the “low-frequency”
limit we discuss below).

Limiting processes

Before we move to discuss the implications of these results
for data analysis there are two limiting processes that merit

our attention. The first is when the rate of sweeps is
sufficiently high to dominate genetic drift as a source of
stochasticity. The second limit results when sweeps very
rarely achieve high frequency in the population, in which
case the resulting coalescent model is identical to the
standard neutral coalescent, despite the fact that much of
the stochasticity may be driven by sweeps.

The rapid sweep limit: A surprising conclusion from the
homogeneous model and Equation 16 is that if all coales-
cences come from “selective” events, then the frequency
spectrum does not depend on the density of selective targets
or on the recombination rate (although the number of seg-
regating sites certainly does). This effect can be seen in
Figure 5D as the fraction of singleton sites plateaus when
the reduction in p is large; i.e., when the population-scaled
rate of sweeps per unit of recombination is high, nBP/rBP �
1/2N. The easiest way to see this is to take N / N while
keeping the rate of sweeps and their trajectory dynamics
fixed, so that in a sample of fixed size the coalescence rate
from Equation 16 converges to lk,i / nBP/rBPJk,i, where Jk,i
does not depend on nBP, rBP, or N. In this limit, nBP and rBP
affect the process only by a timescaling, do not affect the
transition probabilities of Equation 11, and so do not affect
the frequency spectrum. Diversity in this limit behaves as

E½p� ¼ 2mrBP
nBPJ2;2

(22)

(assuming, as usual, that m is sufficiently small); i.e., nucle-
otide diversity increases linearly with the recombination
rate, if neither nBP nor J2,2 varies across recombination envi-
ronments. Similar limits can also be derived by letting N/ N

under the more general coalescent process with rates given by
Equation 7.

For this limit to be a reasonable approximation for
a sample of size k in a population of size N, we need the
rate of neutral coalescences to be much smaller than the rate
of selective coalescences; i.e.,

�
k
2

�
� NnBP=rBP

Pk
i¼2Jk;i. In

sufficiently large samples,
�

k
2

�
will be large enough that

the coalescence rate due to genetic drift will be appreciable,
at least until the number of lineages surviving back in time
declines. From a technical standpoint, this is related to the
question of whether the coalescent process “comes down
from infinity” (for a review see Berestycki 2009).

The low-frequency limit: As noted in our discussion of Fig-
ure 5, the frequency spectrum may be close to neutral in
appearance even with large reductions in p if selected
alleles sweep only to low frequency. In fact, by taking a limit
(satisfying certain conditions) in which sweeps occur fre-
quently, but each sweep has a small probability of causing
coalescence, we can recover Kingman’s coalescent.

We illustrate this limit by taking n / N and allowing f(q)
to depend on n in such a way that as n / N, Ik,ℓ/Ik,2 / 0 for
all 3# ℓ# k, and that n Ik;2/ð k

2 Þg, for some 0, g , N. As
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shown in Appendix C, a sufficient condition for this is that
limn/Nn

R 1
0 q2f ðqÞdq is finite. In this limiting case, the rate

of coalescence is

lk ¼
�
k
2

��
g þ 1

2N

�
; (23)

so the limiting model behaves exactly as the standard
neutral coalescent but with an effective population size of

Ne ¼ 2N
2Ng þ 1

: (24)

Note that the limiting coalescent process does not satisfy
condition (21) of Durrett and Schweinsberg (2005) and that
Tajima’s D and Fu and Li’s H will have mean equal to zero at
all sample sizes, as is natural since the limiting process is just
the neutral (Kingman’s) coalescent.

In the case of our simple partial-sweep coalescent this
limit would occur if the frequency x reached by sweeps is
taken to zero as the rate of sweeps grows at least as 1/x2.
The simple homogeneous full-sweep coalescent process ob-
viously cannot be taken to this limit as there is a proscribed
set of Jk,•, which features a nontrivial amount of coalescence
involving more than pairs of lineages.

Interference: In both limits discussed above the population-
scaled rate of sweeps has to be very high. In the first limit
the rate of sweeps has to be high enough to dominate the
rate of neutral coalescence, and in the second limit the rate
of sweeps has to be high enough to compensate for the fact
that any one sweep is very unlikely to cause coalescence.
The requirement of a high rate of sweeps implies that
interference between the sweeps may occur, thus violating
our assumption that the sweeps are independent. Inves-
tigations of the effect of such interference on the signal of
hitchhiking have shown that interference reduces the impact
of any one sweep on patterns of polymorphism (Kim and
Stephan 2003; Chevin et al. 2008), although to interfere, the
sweeps must begin at very similar times at loci separated by
a low recombination rate. This suggests that a very high rate
of sweeps is needed indeed before interference will have an
appreciable impact on the hitchhiking effect, as would occur
in the homogeneous sweep model if nBP/rBP is very large.
The limits we describe above require only that the population-
size–scaled rate of sweeps (Nn or NnBP) be high, and there-
fore it is possible to keep the per generation rate of sweeps
sufficiently low to avoid the effect of interference. Further
work is needed to investigate coalescent models under such
high rates of sweeps and could be useful in understanding
genealogical processes in organisms with low or no recom-
bination that also experience strong selection pressures.

Discussion

The prevailing view of adaptation in a population genetics
setting is based on a lone selected allele racing from its

introduction into the population to fixation, carrying with
it a chunk of the chromosome on which it arose. This
cartoon has been a very useful prop for developing tests to
identify genes underlying recent adaptations and for
interpreting genome-wide patterns of polymorphism. How-
ever, it seems likely that such full sweeps constitute only
a small proportion of the selected loci whose frequency
changes in response to adaptation (see Pritchard et al.
2010, for a recent discussion). If we are to develop a better
understanding of the full impact of linked selection on
patterns of diversity, we need to develop a richer and more
flexible set of models.

The work in this article was motivated by models in
which the external environment or the genetic background
varies on a fast enough timescale that new alleles rarely
reach fixation before selective pressures change, either
slowing their advance or reversing their trajectory. We laid
out an approximation to the coalescent process under such
a model and showed that, while the initial rapid stage of
the trajectory will strongly affect the coalescent process,
subsequent slower dynamics of the selected alleles have
a much smaller effect. We then extended this idea to
a recurrent-sweep model, approximating the dynamics by
a multiple-merger coalescent. While some of our results are
fairly general, to provide a more intuitive sense we have
often employed simple allele-frequency trajectories and
made other approximations. Nonetheless, we expect more
realistic models to give rise to qualitatively equivalent
results.

Each sweep we consider consists of a single allele at
a locus rising on a single haplotype from very low frequency
into the population. This contrasts with many other soft-
sweep models, under which a sweep starts on multiple
haplotypes, because multiple different alleles initially seg-
regated at the locus (Hermisson and Pennings 2005), or as
a result of multiple mutations occurring after selection pres-
sures switched (Pennings and Hermisson 2006a,b; Ralph
and Coop 2010), or because the adaptive allele was previ-
ously neutral and present on multiple haplotypes (Innan
and Kim 2004; Przeworski et al. 2005). It is likely that re-
current models of such soft sweeps could be approximated
through coalescent models with simultaneous multiple col-
lisions (Schweinsberg 2000), to model the simultaneous rise
of multiple haplotypes. This seems to be a fruitful area of
future work as it would substantially extend our under-
standing of the effects of a broad family of recurrent-sweep
models on genomic patterns of diversity.

We have also ignored the effect of background selection.
To a first approximation, the effect of background selection
can be modeled as an increase in coalescence rate, which
would be a minor modification to Equations 9 and 16. This
would alter the predicted relationship between diversity and
recombination (Innan and Stephan 2003) given by Equation
20 and would offer a simple way to model the genealogical
effects of both general models of hitchhiking and back-
ground selection.
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The interpretation of population genomic patterns

Models in which selective sweeps do not always sweep to
fixation have a much wider spectrum of predictions than the
recurrent full-sweep model. Three broad correlations that
have been used to argue for the prevalence of linked
selection and used to potentially discriminate between
models invoking background selection or full sweeps are
(1) correlations between neutral diversity and the recombi-
nation rate, (2) correlations between the frequency spec-
trum and the rate of recombination, and (3) correlations
between putatively adaptive divergence and neutral di-
versity. We now describe some of the implications of our
results for understanding these patterns in population
genomic data.

Correlation between recombination and diversity

One of the earliest and most compelling pieces of evidence
for the role of linked selection in the fate of neutral alleles is
a positive correlation between recombination and levels of
diversity at putatively neutral sites (factoring out substitu-
tion rates as a proxy for differences in mutation rate). This
pattern is consistent with both full sweeps and background
selection, as both predict positive, albeit differently shaped,
relationships (Innan and Stephan 2003). The shape of the
diversity–recombination curve under a homogeneous rate of
partial sweeps is identical to that of the full-sweep model
and more generally similar for a broad class of homoge-
neous sweep models. In fact, the relationship under a homo-
geneous model depends only on 2NnBPJ2,2, as seen in
Equation 20.

To illustrate this point, in Table 1 we present estimates of
2NnBPJ2,2 for humans and Drosophila melanogaster, assum-
ing a model with drift and a homogeneous rate of selective
sweeps across the genome, and from Equation 20 and data
from Shapiro et al. (2007) and Hellmann et al. (2008).
Along with these estimates, Table 1 also shows the implied
rate of sweeps per generation per base pair, nBP, under the
simple partial-sweep model, for a variety of values of x.
These rates are surely overestimates and are intended for
illustrative purposes only, as they ignore the effect of other
forms of linked selection, e.g., background selection.

The strength of the relationship between diversity levels
and recombination varies dramatically between the two
species, as indicated by the very different estimates of
2NnBPJ2,2 (note that the estimates of nBP are similar due to

the 100-fold difference in N). In Drosophila the positive re-
lationship between recombination and diversity is strong
(e.g., Aguade et al. 1989; Berry et al. 1991; Begun and Aquadro
1992; Begun et al. 2007; Shapiro et al. 2007), but in humans
the relationship seems to be weaker and is and complicated
by other confounding factors (Payseur and Nachman 2002;
Hellmann et al. 2003, 2005, 2008; Cai et al. 2009). How-
ever, we should be cautious in the biological interpretation
of this difference, as in humans diversity is usually estimated
in large windows (much of which will be noncoding and far
from genes), while in Drosophila neutral diversity levels are
usually estimated from synonymous sites in individual
genes. What is needed is a comparative analysis that studies
these patterns at the same genomic scale and accounts for
the profound differences in the density of functional targets
among species.

The fact that the diversity–recombination curve plateaus
rapidly in humans is strong evidence that linked selection
does not affect the average neutral site in regions of high
recombination. Technically, this could also occur if the den-
sity of selective targets nBP decreases approximately linearly
with recombination rate; however, this option does not seem
likely a priori.

Although in D. melanogaster this curve is still concave, it
does not appear to flatten completely in high-recombination
regions (e.g., Sella et al. 2009), suggesting that linked selec-
tion is an important source of stochasticity even in these
regions. At face value the concave nature of the curve sug-
gests that both genetic drift and linked selection contribute
to stochasticity, as NnBP � rBP would lead to an almost linear
relationship across the observed range of recombination
rates (see Equation 22). However, a model with effectively
no genetic drift can produce a concave curve and fit the
observed data if nBP J2,2 is not constant across recombination
environments, e.g., if sweeps occur at a moderately higher
rate or achieve higher frequency in high-recombination
regions. Neither of these two options seems particularly un-
likely, suggesting that we still have little unambiguous evi-
dence favoring genetic drift as an important source of
stochasticity in Drosophila.

The frequency spectrum

The recurrent full-sweep model predicts a strong positive
relationship between the reduction in neutral diversity and
the skew toward rare alleles (Braverman et al. 1995; Kim

Table 1 Estimates of sweep parameters from the relationship between diversity and recombination

nBP across a range of x

u 2NnBPJ2,2 x = 1.0 x = 0.5 x = 0.2 x = 0.05

Human 0.0017 6 · 10211 3.0 · 10212 1.2 · 10211 7.5 · 10211 1.2 · 1029

D. mel 0.025 7.3 · 1029 3.6 · 10212 1.5 · 10211 9.1 · 10211 1.5 · 1029

The estimate for humans was taken from Hellmann et al. (2008), who fitted a curve of the form of Equation 20. The estimate from Drosophila melanogaster (D. mel) was
obtained from fitting Equation 20 to the synonymous polymorphism and sex-averaged recombination rates of Shapiro et al. (2007) (kindly provided by Peter Andolfatto; see
Sella et al. 2009 for details), using nonlinear least squares via the nls() function in R. These estimates were converted into estimates of the rate of sweeps per generation per
base pair (nBP, last four columns) under the simple partial-sweep trajectory model where J2,2 = x2/tx, assuming tx = 1000 generations (equivalent to a selection coefficient of
�0.01) and that N = 106 in D. mel and N = 104 in humans.
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2006), a pattern not predicted under models of strong back-
ground selection. This relationship has been used to test
between full sweeps and background selection models, al-
though note that as we discussed in Limiting processes, this
relationship is not expected if all coalescence comes from
selective sweeps. Under our simple trajectory model, the
distortion of the frequency spectrum is primarily determined
by the frequencies that sweeps achieve. Therefore, although
a lack of a strong skew in the frequency spectrum is consis-
tent with a low rate of full sweeps, it cannot be used to rule
out a high rate of partial sweeps. A lack of a genomic re-
lationship between the frequency spectrum and recombina-
tion rate is therefore not grounds for rejecting sweeps as
a force in shaping genetic diversity in favor of a model of
background selection. Our results suggest that recurrent
partial sweeps to low frequency in regions of high recombi-
nation in D. melanogaster and in the low-recombination
regions in humans may be a major source of stochasticity
in allele frequencies.

Correlation between divergence and polymorphism

Attention has recently focused on examining the correlation
between neutral diversity and amino acid substitutions (or
other putatively functional changes) between recently
separated species. If a reasonable fraction of amino acid
substitutions are driven by new mutations sweeping to
fixation, then levels of diversity should dip on average
around amino acid substitutions. This relationship has been
tested for by looking for a positive correlation between di-
versity levels and amino acid substitution rates (Andolfatto
2007; Macpherson et al. 2007; Cai et al. 2009; Haddrill et al.
2011) or for a dip in diversity levels around a large set of
aggregated amino acid substitutions (Hernandez et al. 2011;
Sattath et al. 2011). If the density of functional sites is prop-
erly controlled for, these types of correlations between
amino acid substitutions and neutral diversity are not
expected under a (simple) model of background selection.
Such correlations have been detected in Drosophila (Mac-
pherson et al. 2007; Sattath et al. 2011) but in humans the
dip in diversity around nonsynonymous substitutions seems
to result from the dip in diversity levels around genes, an
observation that seems inconsistent with a high rate of
strong full sweeps (Hernandez et al. 2011). Similarly, it
has been observed that the highest FST signals between hu-
man populations are not associated with strongly reduced
haplotypic diversity (Coop et al. 2009).

The fact that selected alleles in the partial-sweep co-
alescent model do not have to sweep all the way to fixation
partially decouples the rate of fixation of adaptive alleles
from their effects on patterns of diversity within popula-
tions. Therefore, the strength of the positive relationship
between substitution rates and diversity depends on the fate
of alleles that sweep into the population. For example, this
positive relationship may be weak and a poor predictor of
the total reduction in diversity, if the majority of adaptive
alleles that initially sweep into the population are eventually

lost (e.g., as can be the case for major-effect alleles in poly-
genic models of adaptation, see Lande 1983; Chevin and
Hospital 2008).

Concluding thoughts

In this article, we have concerned ourselves with patterns of
diversity at a single neutral site. However, partial sweeps
also have a strong effect on linkage disequilibrium and
haplotype diversity, a signature that has been exploited in
scans for selection (e.g., Hudson et al. 1994; Sabeti et al.
2002; Voight et al. 2006). One simple case that we can
immediately describe is the low q limit (Limiting processes).
In that limit, the coalescent is equivalent to the standard
neutral model and as such the decay of linkage disequilib-
rium will be the same as in the standard neutral model with
an Ne given by Equation 24. A natural way to extend this
exploration would be the genealogical framework developed
by McVean (2007) that has recently been extended to a mul-
tiple-mergers coalescent by Eldon and Wakeley (2008).

We will soon have polymorphism data across a broad
range of taxa that will differ dramatically in selection
regimes, recombination rates, genome size, and population
size, allowing a much fuller picture of how these various
factors interplay to shape genome-wide levels of polymor-
phism. The results presented here, however, suggest that we
will continue to struggle to distinguish between modes of
selection, as relaxing the assumptions of various models can
generate a broad range of overlapping predictions.

Despite that, our results suggest a promising way for-
ward, since a broad range of sweep models can be captured
by simple parameterizations of multiple-merger coalescence
processes. Importantly, this would allow parameter infer-
ence under a general model of linked selection, rather than
focusing on a limited number of specific models. For
example, we could estimate the rate that selection forces
different numbers of lineages to coalesce [parameterized by
nf(q)] as a function of recombination rates and the density
of selective targets. As the multiple-mergers coalescent
model is easily simulated under, it may be readily incorpo-
rated into many of our existing genealogical inference
frameworks. It is likely that parameters of such models
could be estimated very precisely from genome-wide data,
allowing us to concentrate on what these high-level summa-
ries of polymorphism tell us about linked selection across
genomic environments and species. Such inferences may be
important if we wish to move beyond documenting the pres-
ence of linked selection toward describing the genealogical
process in species where selection is a major source of
stochasticity.
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Appendices

Appendix A: Jk,i for a Generalized Trajectory

Recall that we defined in Equation 13

Jk;i ¼
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so that the rate at which the coalescent process having k lineages coalesces down to i lineages from selective events is
nBP/rBPJk,i. The quantity q(X, r) is the pathwise Laplace transform of the process X, defined in Equation 3, and consequently
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It is useful to note that by changing the order of integration,
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for 2 # i # k, as long as the integral is finite. In the case of a pair of lineages i = 2 and this simplifies to
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To briefly explore the conditions for J to be finite, we suppose that X leaves zero as a power of t; i.e., X(t) � ta for some
a . 0, for small t. We see that Jk,2 increases as a increases; i.e., the rate of sweeps is larger the more rapidly X leaves zero. In
this case, q(r) � Cr2a for large r, where C is a constant. Then since
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it can be seen that Jk,2 is infinite if a # 1/2, in the limit of an infinite genome. More generally, if X leaves zero more quickly
than

ffiffi
t

p
(which may be biologically unrealistic), then sweeps occurring arbitrarily far away along the genome will cause

coalescences.
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Appendix B: Recursions to Find E[Ttot] and E[T1]

Two properties of interest are the expected total amount of time in the genealogy at a neutral locus (E[Ttot]) and the
expected total amount of time in terminal branches (E[T1]).

We first derive the expected total time in the genealogy. Recall that if the coalescent process has k lineages, then it waits
an exponentially distributed amount of time with mean 1/lk and then jumps to a smaller number of lineages chosen with
probabilities according to pk,ℓ, with lk and pk,ℓ given in Equations 10 and 11. Therefore, if we let Gn,k be the probability that
the coalescent process that starts from n lineages ever visits the state with k lineages, then

E½Ttot� ¼
Xn
k¼2

k
lk

Gn;k: (B1)

By conditioning on the last state visited before dropping to k lineages, we can see that Gn,k satisfies the recursion

Gn;k ¼
Xn
i¼kþ1

Gn;i   pi;k; for k, n; (B2)

with Gn,n = 1. This recursion is of upper triangular form, so is easily solvable, which together with (B1) allows us to compute
E[Ttot].

We now turn to the expected total time in terminal branches, i.e., those branches on which mutations will lead to
singletons. Note that, since all lineages are exchangeable, E[T1] = n times the mean time until a particular lineage—say,
the first one—coalesces with any other. To find this, let Sn,k be the probability that at some point there are k lineages and that
one of those k lineages is the original first lineage, still not coalesced with any others. Then the mean time until the first
lineage coalesces is

Pn
k¼2ð1=lkÞSn;k, and hence

E½T1� ¼ n
Xn
k¼2

1
lk

Sn;k: (B3)

As above, we can get a solvable recursion for Sn,k by conditioning on the last coalescent event before reaching k lineages. If
the coalescent process jumps from ℓ to k lineages, then the probability that a given lineage is not part of this coalescent event
is (k 2 1)/ℓ, and hence

Sn;k ¼
Xn
ℓ¼kþ1

Sn;ℓpℓ;k
k21
ℓ

for k,n; (B4)

and Sn,n = 1. The recursion is also easily solvable, which lets us obtain E[T1].

Appendix C: More on the Low q Limit

We want to arrange things so that asymptotically, all coalescent events affect only two lineages. We illustrate this limit by
taking n / N and allowing f(q) to depend on n in such a way that as n / N, Ik,ℓ/Ik,2 / 0 for all 3 # ℓ # k, and that
n Ik;2/

� k
2

�
g, for some 0 , g , N. Since this model is a Lambda coalescent with L(dq) = q2n f(q)dq + d0(dq)/2N, if we

rescale time by a factor of C, a necessary and sufficient condition is that CL converges weakly to a point mass at 0.
To emphasize the dependence of f on n we write f(q) = fn(q) and Ik,ℓ = Ik,ℓ(n). We want to find a simple condition under

which the proportion of coalescences involving more than two lineages goes to zero, i.e., that Ik,ℓ(n)/Ik,2(n)/ 0 as n /N if
ℓ . 2. Fix k, and suppose for convenience that f(q) = 0 for all q . 1 2 e, for some e . 0. Then

ek
Z 1

0
qℓfnðqÞdq,

Z 1

0
qℓð12qÞk2ℓfnðqÞdq,

Z 1

0
qℓfnðqÞdq;

so that Ik,ℓ(n)/Ik,2(n) / 0 if and only if R 1
0 qℓfnðqÞdqR 1
0 q2fnðqÞdq

/0:

Using Jensen’s inequality,
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R 1
0 qℓfnðqÞdqR 1
0 q2fnðqÞdq

#

� R 1
0 q2fnðqÞdq

�ℓ=2
R 1
0 q2fnðqÞdq

¼
� R 1

0 q2fnðqÞdq
�ðℓ22Þ=2

;

so if
R 1
0 q2fnðqÞdq/0, this will be achieved. By the same result,

Ik;2ðnÞ
n

�
k
2

�R 1
0 q2fnðqÞdq

/1;

so that, rescaling time by a factor Cn, if

nCn
Z 1

0
q2fnðqÞdq/g as L/N;

then nCnIk;2/ð k
2
Þg for all k. In this limit, the rate at which a pair of lineages coalesces converges and does not depend on

the number of lineages present.
Ideally, we would illustrate this with a stochastic model for X. However, the formula requires the model to be analytically

tractable to a degree satisfied by no population genetics models that we could think of, and it is much easier to make
a concrete choice of f(q). Consider the case where f(q) is the density of a Beta(1, M) distribution. The mean of this
distribution is 1/(1 + M). In that case

Ik;ℓ ¼
�
k
ℓ

�Z 1

0
qℓð12qÞk2ℓþM21  Mdq ¼ M

�
k
ℓ

���
kþM2 1

ℓ

�
; (C1)

so that as M / N,

MIk;2 ¼
�
k
2

�
2M2

ðM þ k2 1ÞðM þ k2 2Þ ����!L/N
2
�
k
2

�
;

so if n = M, then g = 2. We can furthermore check that

Ik;ℓ
Ik;2

¼

�
k
ℓ

�
�
k
2

� ℓ!ðkþM2 ℓ2 1Þ!
2!ðkþM2 3Þ! � 1

Mℓ22 ����!M/N
0 (C2)

so that this simple case satisfies our limit.

224 G. Coop and P. Ralph



GENETICS
Supporting Information

http://www.genetics.org/content/suppl/2012/06/19/genetics.112.141861.DC1

Patterns of Neutral Diversity Under General Models
of Selective Sweeps

Graham Coop and Peter Ralph

Copyright © 2012 by the Genetics Society of America
DOI: 10.1534/genetics.112.141861



G.	  Coop	  and	  P.	  Ralph	  2	  SI	  

File	  S1	  
	  

R	  Scripts	  
	  
	  
File	  S1	  is	  available	  for	  download	  at	  http://www.genetics.org/content/suppl/2012/06/19/genetics.112.141861.DC1	  as	  
a	  compressed	  file.	  


