Skip to main content
. 2012 Jun 21;13:139. doi: 10.1186/1471-2105-13-139

Table 1.

Overall performance measure of classification algorithms on datasets

Algorithms T1D Az Ab Asthma A & B A & C B & D Avg. Rank
Naïve Bayes
92.0
93.4
91.5
77.7
90.8
93.5
93.6
90.4
1
MLP
90.1
92.7
90.2
71.1
84.7
92.7
89.3
87.3
2
SVM
91.6
88.0
90.7
71.3
86.1
88.4
93.1
87.0
3
VFI
90.5
92.2
75.5
62.6
87.7
93.4
92.7
84.9
4
Hyper Pipes
89.8
89.7
81.3
62.3
82.0
86.6
87.8
82.8
5
R. Forest
91.5
82.4
93.3
62.8
80.6
81.4
81.1
81.9
6
Bayes Net
90.3
87.7
92.5
53.9
80.2
83.2
85.1
81.8
7
K-means
88.3
91.8
80.7
59.6
77.8
83.3
83.6
80.7
8
Logistic R.
90.6
93.3
60.4
50.7
81.5
84.8
90.7
78.9
9
SLR
92.2
71.8
90.1
72.2
65.0
68.5
84.7
77.8
10
KNN
91.4
81.5
52.5
55.8
87.5
75.7
89.0
76.2
11
K star
81.9
90.7
89.4
53.5
64.3
68.8
70.7
74.2
12
M5P
85.1
58.7
83.2
60.0
75.2
73.4
79.6
73.6
13
J48
80.3
69.7
78.4
48.7
70.6
68.4
76.7
70.4
14
Random Tree
83.8
71.7
76.2
52.9
69.3
60.8
75.0
70.0
15
ASC
76.8
70.0
77.9
43.1
72.0
63.1
76.7
68.5
16
LDA 69.7 52.0 89.1 70.8 62.8 69.7 52.6 66.7 17

T1D: Type 1 diabetes datasets, Az: Alzehemer’s dataset, Ab: Antibodies dataset. Table showing algorithms overall performance in each datasets based on average score. Score >90% are marked in bold. Naïve Bayes scored the overall highest average score of 90.4%.