Skip to main content
. 2012 Jun 21;13:139. doi: 10.1186/1471-2105-13-139

Table 6.

Performance measures of data mining algorithm at different levels of significance on A & B conditions

SIGNIFICANCE
p < 5 x 10-4
p < 5 x 10-3
p < 5 x 10-2
 
Algorithm Acc. Sp Sn AUC Acc. Sp Sn AUC Acc. Sp Sn AUC Avg.
Naïve Bayes
87.5
83.3
91.7
0.84
91.7
83.3
100
0.97
91.7
83.3
100
0.96
90.8
VFI
79.2
75.0
83.3
0.93
91.7
83.3
100
0.95
87.5
75.0
100
0.90
87.7
K means
87.5
83.3
91.7
0.88
91.7
83.3
100
0.92
83.3
75.0
91.7
0.83
87.5
SVM
83.3
83.3
83.3
0.83
87.5
91.7
83.3
0.87
87.5
83.3
91.7
0.88
86.1
MLP
79.2
83.3
75.0
0.70
91.7
91.7
91.7
0.95
dnf
dnf
dnf
dnf
84.7*
Hyper Pipes
83.3
75.0
91.7
0.91
83.3
83.3
83.3
0.93
70.8
83.3
58.3
0.88
82.0
Logistic R.
66.7
83.3
50.0
0.76
95.8
91.7
100
0.92
79.2
83.3
75.0
0.85
81.5
Random Forest
79.2
83.3
75.0
0.91
79.2
75.0
83.3
0.86
79.2
75.0
83.3
0.78
80.6
Bayes Net
83.3
75.0
91.7
0.87
83.3
83.3
83.3
0.83
75.0
75.0
75.0
0.67
80.2
KNN
75.0
83.3
66.7
0.85
75.0
91.7
58.3
0.90
75.0
91.7
58.3
0.84
77.8
M5P
75.0
83.3
66.7
0.74
75.0
75.0
75.0
0.79
75.0
75.0
75.0
0.74
75.2
ASC
62.5
66.7
58.3
0.65
79.2
83.3
75.0
0.85
70.8
75.0
66.7
0.76
72.0
J48
62.5
66.7
58.3
0.65
79.2
83.3
75.0
0.85
66.7
75.0
58.3
0.72
70.6
Random Tree
70.8
75.0
66.7
0.70
70.8
75.0
66.7
0.70
66.7
66.7
66.7
0.67
69.3
SLR
70.8
75.0
66.7
0.80
66.7
75.0
58.3
0.77
50.0
50.0
50.0
0.60
65.0
K star
66.7
91.7
41.7
0.83
58.3
100
46.7
0.83
50.0
0.0
100
0.50
64.3
LDA 79.2 83.3 75.0 0.84 61.2 64.5 54.5 0.52 29.2 14.3 100 0.56 62.8

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Average score in % for each algorithms, dnf: Did not Finish”, * denotes Avg. from 3 significance levels. Measures >90% are marked in bold.