Skip to main content
. 2012 Jun 21;13:139. doi: 10.1186/1471-2105-13-139

Table 8.

Performance measures of data mining algorithm at different levels of significance on B & D conditions

SIGNIFICANCE
p < 5 x 10-4
p < 5 x 10-3
p < 5 x 10-2
 
Algorithm Acc. Sp Sn AUC Acc. Sp Sn AUC Acc. Sp Sn AUC Avg.
Naïve Bayes
91.7
100
83.3
0.95
91.7
91.7
91.7
0.92
95.8
91.7
100
0.98
93.6
SVM
91.7
100
83.3
0.92
91.7
91.7
91.7
0.92
95.8
100
91.7
0.96
93.1
VFI
87.5
100
75.0
0.93
91.7
100
83.3
0.94
95.8
100
91.7
1.00
92.7
Logistic R.
79.1
83.3
75.0
0.92
100
100
100
1.00
87.5
91.7
83.3
0.97
90.7
MLP
87.5
91.7
83.3
0.94
87.5
83.3
91.7
0.96
dnf
dnf
dnf
dnf
89.3*
K means
87.5
91.7
83.3
0.88
91.4
91.7
91.7
0.92
87.5
83.3
91.7
0.88
89.0
Hyper Pipes
87.5
83.3
91.7
0.89
91.7
91.7
91.7
0.87
83.3
75.0
91.7
0.90
87.8
Bayes Net
83.3
83.3
83.3
0.89
87.5
91.7
83.3
0.86
83.3
83.3
83.3
0.84
85.1
SLR
83.3
83.3
83.3
0.88
79.2
66.7
91.7
0.90
87.5
100
75.0
0.89
84.7
KNN
79.2
75.0
83.3
0.80
83.3
83.3
83.3
0.83
87.5
91.7
83.3
0.90
83.6
Random Forest
83.3
83.3
83.3
0.83
79.2
83.3
75.0
0.84
79.2
83.3
75.0
0.81
81.1
M5P
87.5
91.7
83.3
0.88
79.2
83.3
75.0
0.73
75.0
83.3
66.7
0.69
79.6
ASC
91.7
100
83.3
0.83
75.0
83.3
66.7
0.61
70.8
75.0
66.7
0.64
76.7
J48
91.7
100
83.3
0.83
75.0
83.3
66.7
0.61
70.8
75.0
66.7
0.64
76.7
Random Tree
83.3
91.7
75.0
0.83
70.8
66.7
75.0
0.71
70.8
66.7
75.0
0.71
75.0
K star
70.8
66.7
75.0
0.83
79.2
75.0
83.3
0.82
58.3
100
16.7
0.58
70.7
LDA 62.5 72.3 60.9 0.75 50.0 65.0 48.0 0.71 20.8 42.6 18.6 0.45 52.6

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Average score in % for each algorithms, dnf: Did not Finish”, * denotes Avg. from 3 significance levels. Measures >90% are marked in bold.