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Abstract In this paper, we analyze the invasion and extinction of activity in hetero-
geneous neural fields. We first consider the effects of spatial heterogeneities on the
propagation of an invasive activity front. In contrast to previous studies of front prop-
agation in neural media, we assume that the front propagates into an unstable rather
than a metastable zero-activity state. For sufficiently localized initial conditions, the
asymptotic velocity of the resulting pulled front is given by the linear spreading ve-
locity, which is determined by linearizing about the unstable state within the leading
edge of the front. One of the characteristic features of these so-called pulled fronts
is their sensitivity to perturbations inside the leading edge. This means that standard
perturbation methods for studying the effects of spatial heterogeneities or external
noise fluctuations break down. We show how to extend a partial differential equa-
tion method for analyzing pulled fronts in slowly modulated environments to the
case of neural fields with slowly modulated synaptic weights. The basic idea is to
rescale space and time so that the front becomes a sharp interface whose location
can be determined by solving a corresponding local Hamilton-Jacobi equation. We
use steepest descents to derive the Hamilton-Jacobi equation from the original non-
local neural field equation. In the case of weak synaptic heterogenities, we then use
perturbation theory to solve the corresponding Hamilton equations and thus deter-
mine the time-dependent wave speed. In the second part of the paper, we investigate
how time-dependent heterogenities in the form of extrinsic multiplicative noise can
induce rare noise-driven transitions to the zero-activity state, which now acts as an
absorbing state signaling the extinction of all activity. In this case, the most probable
path to extinction can be obtained by solving the classical equations of motion that
dominate a path integral representation of the stochastic neural field in the weak noise
limit. These equations take the form of nonlocal Hamilton equations in an infinite-
dimensional phase space.
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1 Introduction

Reaction-diffusion equations based on the Fisher-Kolmogorov-Petrovskii-Piskunov
(F-KPP) model and its generalizations have been used extensively to describe the
spatial spread of invading species including plants, insects, diseases, and genes in
terms of propagating fronts [1–7]. One fundamental result in the theory of determin-
istic fronts is the difference between fronts propagating into a linearly unstable (zero)
state and those propagating into a metastable state (a state that is linearly stable but
nonlinearly unstable). In the latter case, the front has a unique velocity that is ob-
tained by solving the associated partial differential equation (PDE) in traveling wave
coordinates. The former, on the other hand, supports a continuum of possible veloci-
ties and associated traveling wave solutions; the particular velocity selected depends
on the initial conditions. Fronts propagating into unstable states can be further parti-
tioned into two broad categories: the so-called pulled and pushed fronts [8] emerging
from sufficiently localized initial conditions. Pulled fronts propagate into an unsta-
ble state such that the asymptotic velocity is given by the linear spreading speed v∗,
which is determined by linearizing about the unstable state within the leading edge
of the front. That is, perturbations around the unstable state within the leading edge
grow and spread with speed v∗, thus ‘pulling along’ the rest of the front. On the other
hand, pushed fronts propagate into an unstable state with a speed greater than v∗,
and it is the nonlinear growth within the region behind the leading edge that pushes
the front speeds to higher values. One of the characteristic features of pulled fronts
is their sensitivity to perturbations in the leading edge of the wave. This means that
standard perturbation methods for studying the effects of spatial heterogeneities [9]
or external noise fluctuations [10] break down.

Nevertheless, a number of analytical and numerical methods have been developed
to study propagating invasive fronts in heterogeneous media. Heterogeneity is often
incorporated by assuming that the diffusion coefficient and the growth rate of a pop-
ulation are periodically varying functions of space. One of the simplest examples
of a single population model in a periodic environment was proposed by Shigesada
et al. [5, 11], in which two different homogeneous patches are arranged alternately
in one-dimensional space so that the diffusion coefficient and the growth rate are
given by periodic step functions. The authors showed how an invading population
starting from a localized perturbation evolves to a traveling periodic wave in the
form of a pulsating front. By linearizing around the leading edge of the wave, they
also showed how the minimal wave speed of the pulsating front could be estimated
by finding solutions of a corresponding Hill equation [11]. The theory of pulsating
fronts has also been developed in a more general and rigorous setting [12–14]. An
alternative method for analyzing fronts in heterogeneous media, which is applicable
to slowly modulated environments, was originally developed by Freidlin [15–17] us-
ing large deviation theory and subsequently reformulated in terms of PDEs by Evans
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and Sougandis [18]. More recently, it has been used to study waves in heterogeneous
media (see for example [9, 12]). The basic idea is to rescale space and time so that
the front becomes a sharp interface whose location can be determined by solving a
corresponding Hamilton-Jacobi equation.

Another important topic in population biology is estimating the time to extinc-
tion of a population in the presence of weak intrinsic or extrinsic noise sources, after
having successfully invaded a given spatial domain [19]. The zero state (which is un-
stable in the deterministic limit) now acts as an absorbing state, which can be reached
via noise-induced transitions from the nontrivial metastable steady state. The most
probable path to extinction is determined in terms of classical solutions of an effec-
tive Hamiltonian dynamical system [20–23]. The latter can be obtained in the weak
noise limit by considering a Wentzel-Kramers-Brillouin (WKB) approximation of
solutions to a master equation (intrinsic noise) or Fokker-Planck equation (extrinsic
noise) [24–26]; alternatively, the Hamilton equations can be obtained from a corre-
sponding path integral representation of the stochastic population model [20].

In this paper, we extend the Hamiltonian-based approaches to invasion and extinc-
tion in reaction-diffusion models to the case of a scalar neural field model. Neural
fields represent the large-scale dynamics of spatially structured networks of neurons
in terms of nonlinear integrodifferential equations, whose associated kernels repre-
sent the spatial distribution of neuronal synaptic connections. Such models provide
an important example of spatially extended dynamical systems with nonlocal inter-
actions. As in the case of reaction diffusion systems, neural fields can exhibit a rich
repertoire of wave phenomena, including solitary traveling fronts, pulses, and spiral
waves [27–29]. They have been used to model wave propagation in cortical slices
[30, 31] and in vivo [32]. A common in vitro experimental method for studying wave
propagation is to remove a slice of brain tissue and bathe it in a pharmacological
medium that blocks the effects of inhibition. Synchronized discharges can then be
evoked by a weak electrical stimulus to a local site on the slice, and each discharge
propagates away from the stimulus at a characteristic speed of about 60 to 90 mm/s
[31, 33]. These waves typically take the form of traveling pulses with the decay of
activity at the trailing edge resulting from some form of local adaptation or refrac-
tory process. On the other hand, a number of phenomena in visual perception involve
the propagation of a traveling front, in which a suppressed visual percept replaces a
dominant percept within the visual field of an observer. A classical example is the
wave-like propagation of perceptual dominance during binocular rivalry [34–37].

In the case of a scalar neural field equation with purely excitatory connections
and a sigmoidal or Heaviside firing rate function, it can be proven that there exists a
traveling front solution with a unique speed that depends on the firing threshold and
the range/strength of synaptic weights [38, 39]. The wave, thus, has characteristics
typical of a front propagating into a metastable state. Various generalizations of such
front solutions have also been developed in order to take into account the effects of
network inhomogeneities [40–42], external stimuli [43, 44], and network competi-
tion in a model of binocular rivalry waves [37]. As far as we are aware, however,
there has been very little work on neural fields supporting pulled fronts, except for an
analysis of pulsating pulled fronts in [41]. One possible motivation for considering
such fronts is that they arise naturally in the deterministic limit of stochastic neural
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fields with a zero absorbing state. Indeed, Buice and Cowan [45] have previously used
path integral methods and renormalization group theory to establish that a stochastic
neural field with an absorbing state belongs to the universality class of directed per-
colation models and consequently exhibits power law behavior suggestive of several
measurements of spontaneous cortical activity in vitro and in vivo [46, 47].

We begin by considering a neural field model that supports propagating pulled
fronts, and determine the asymptotic wave speed by linearizing about the unstable
state within the leading edge of the front (Section 2). We then introduce a spatial
heterogeneity in the form of a slow modulation in the strength of synaptic connec-
tions (Section 3). Using a WKB approximation of the solution of a rescaled version
of the neural field equation and carrying out steepest descents, we derive a local
Hamilton-Jacobi equation for the dynamics of the sharp interface (in rescaled space-
time coordinates). We then use perturbation methods to solve the associated Hamilton
equations under the assumption that the amplitude of the spatial modulations is suffi-
ciently small (Section 4). The resulting solution determines the location of the front as
a function of time, from which the instantaneous speed of the front can be calculated.
In the case of linearly varying modulations, the position of the front is approximately
a quadratic function of time. In the second part of the paper, we investigate how time-
dependent heterogeneities in the form of extrinsic multiplicative noise can induce
rare noise-driven transitions to the zero-activity state, which now acts as an absorb-
ing state signaling the extinction of all activity (on a shorter time scale, noise results
in a subdiffusive wandering of the front [48]). We proceed by first constructing a path
integral representation of the stochastic neural field (Section 5). The most probable
path to extinction can then be obtained by solving the classical equations of motion
that dominate the path integral representation in the weak noise limit; these equations
take the form of nonlocal Hamilton equations in an infinite-dimensional phase space
(Section 6).

2 Neural fields with propagating pulled fronts

We begin by constructing a homogeneous neural field equation that supports a prop-
agating pulled front, and calculate its wave speed. We will adopt the activity-based
rather than voltage-based representation of a neural field by taking

τ
∂a(x, t)

∂t
= −a(x, t) + F

(∫ ∞

−∞
w

(
x − x′)a(

x′, t
)
dx′

)
. (2.1)

For the moment, we consider an unbounded domain with x ∈ R. Here, the field
a(x, t) represents the instantaneous firing rate of a local population of neurons at po-
sition x and time t , w(x) is the distribution of synaptic weights, τ is a time constant,
and F is a nonlinear activation function (for a detailed discussion of different neural
field representations and their derivations, see the reviews [27, 29]). We also have the
additional constraint that a(x, t) ≥ 0 for all (x, t). Note that the restriction to positive
values of a is a feature shared with population models in ecology or evolutionary bi-
ology, for example, where the corresponding dependent variables represent number
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densities. Indeed, Equation 2.1 has certain similarities with a nonlocal version of the
F-KPP equation, which takes the form [49]

τ
∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
+ μp(x, t)

(
1 −

∫ ∞

−∞
K

(
x − x′)p(

x′, t
)
dx′

)
. (2.2)

One major difference from a mathematical perspective is that Equation 2.2 supports
traveling fronts even when the range of the interaction kernel K goes to zero, that
is, K(x) → δ(x), since we recover the standard local F-KPP equation [1, 2]. In par-
ticular, as the nonlocal interactions appear nonlinearly in Equation 2.2, they do not
contribute to the linear spreading velocity in the leading edge of the front. On the
other hand, nonlocal interactions play a necessary role in the generation of fronts in
the neural field equation (Equation 2.1).

Suppose that F(a) in Equation 2.1 is a positive, bounded, monotonically increas-
ing function of a with F(0) = 0, lima→0+ F ′(a) = 1 and lima→∞ F(a) = κ for some
positive constant κ . For concreteness, we take

F(a) =
⎧⎨⎩

0, a ≤ 0,

a, 0 < a ≤ κ,

κ, a > κ.

(2.3)

A homogeneous fixed point solution a∗ of Equation 2.1 satisfies

a∗ = F
(
W0a

∗), W0 =
∫ ∞

−∞
w(y)dy. (2.4)

In the case of the given piecewise linear firing rate function, we find that if W0 > 1,
then there exists an unstable fixed point at a∗ = 0 (absorbing state) and a stable fixed
point at a∗ = κ (see Figure 1a). The construction of a front solution linking the stable
and unstable fixed points differs considerably from that considered in neural fields
with sigmoidal or Heaviside nonlinearities [27, 38], where the front propagates into
a metastable state (see Figure 1b). Following the PDE theory of fronts propagating

Fig. 1 Plots of firing rate function. Intercepts of y = F(W0a) with a straight line y = a determine homo-
geneous fixed points. (a) Piecewise linear rate function (Equation 2.3) showing the existence of an unstable
fixed point at a = 0 and a stable fixed point at a = κ . (b) Sigmoidal rate function F(a) = 2/(1+e−2[a−κ])
showing the existence of two stable fixed points separated by an unstable fixed point.
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into unstable states [8], we expect that there will be a continuum of front velocities
and associated traveling wave solutions. A conceptual framework for studying such
solutions is the linear spreading velocity v∗, which is the asymptotic rate with which
an initial localized perturbation spreads into an unstable state based on the linear
equations obtained by linearizing the full nonlinear equations about the unstable state.
Thus, we consider a traveling wave solution A(x − ct) of Equation 2.1 with A(ξ) →
κ as ξ → −∞ and A(ξ) → 0 as ξ → ∞. One can determine the range of velocities
c for which such a solution exists by assuming that A(ξ) ≈ e−λξ for sufficiently
large ξ .

The exponential decay of the front suggests that we linearize Equation 2.1, which,
in traveling wave coordinates (with τ = 1), takes the form

−c
dA(ξ)

dξ
= −A(ξ) +

∫ ∞

−∞
w

(
ξ − ξ ′)A

(
ξ ′)dξ ′. (2.5)

However, in order to make the substitution A(ξ) ≈ e−λξ , we need to restrict the in-
tegration domain of ξ ′ to the leading edge of the front. Suppose, for example, that
w(x) is given by the Gaussian distribution,

w(x) = W0√
2πσ 2

e−x2/2σ 2
. (2.6)

Given the fact that the front solution A(ξ) is bounded, we introduce a cutoff X with
σ � X � ξ and approximate Equation 2.5 by

−c
dA(ξ)

dξ
= −A(ξ) +

∫ ξ+X

ξ−X

w
(
ξ − ξ ′)A

(
ξ ′)dξ ′. (2.7)

Substituting the exponential solution in Equation 2.5 then yields the dispersion rela-
tion c = c(λ) with

c(λ) = 1

λ

[∫ X

−X

w(y)e−λy dy − 1

]
. (2.8)

Finally, we now take the limit X → ∞ under the assumption that w(y) is an even
function to yield

c(λ) = 1

λ

[
W (λ) − 1

]
, (2.9)

where W (λ) = Ŵ (λ) + Ŵ (−λ) and Ŵ (λ) is the Laplace transform of w(x):

Ŵ (λ) =
∫ ∞

0
w(y)e−λy dy. (2.10)

We are assuming that w(y) decays sufficiently fast as |y| → ∞ so that the Laplace
transform Ŵ (λ) exists for bounded, negative values of λ. This holds in the case of
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the Gaussian distribution (Equation 2.6). In particular,

W (λ) =
∫ ∞

−∞
w(y)e−λy dy

= W0√
2πσ 2

∫ ∞

−∞
e−y2/2σ 2

e−λy dy

= W0eλ2σ 2/2. (2.11)

Hence,

c(λ) = W0eλ2σ 2/2 − 1

λ
. (2.12)

If W0 > 1 (necessary for the zero-activity state to be unstable), then c(λ) is a positive
unimodal function with c(λ) → ∞ as λ → 0 or λ → ∞ and a unique minimum at
λ = λ0 with λ0 the solution to the implicit equation

λ0
2 = W0 − e−λ2

0σ
2/2

σ 2W0
. (2.13)

Example dispersion curves are shown in Figure 2a for various values of the Gaussian
weight amplitude W0. Combining Equations 2.12 and 2.13 shows that

c0

λ0
= σ 2W0eλ2

0σ
2/2 = σ 2(λ0c0 + 1), (2.14)

so that

λ0 = 1

2

[
− 1

c0
+

√
1

c2
0

+ 4

σ 2

]
. (2.15)

Fig. 2 Velocity dispersion curves and asymptotic front profile. (a) Velocity dispersion curves c = c(λ) for
a pulled front solution of the neural field equation (Equation 2.1) with piecewise linear firing rate function
(Equation 2.3) and a Gaussian weight distribution (Equation 2.6) with amplitude W0. Here, σ = 1.0,
κ = 0.4, and W0 = 1,2,1.5,2.0,2.5,3.0. Black dots indicate a minimum wave speed c0 for each value of
W0. (b) Asymptotic front profile in the case W0 = 1.2. Inset: linear displacement X(t) of a level set of the
front as a function of time t .
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Assuming that the full nonlinear system supports a pulled front, then a sufficiently
localized initial perturbation (one that decays faster than e−λ0x ) will asymptotically
approach the traveling front solution with the minimum wave speed c0 = c(λ0). Note
that c0 ∼ σ and λ0 ∼ σ−1. In Figure 2b, we show an asymptotic front profile obtained
by numerically solving the neural field equation (Equation 2.1) when W0 = 1.2 (see
Section 4.3). The corresponding displacement of the front is a linear function of time
with a slope consistent with the minimal wave speed c0 ≈ 0.7 of the corresponding
dispersion curve shown in Figure 2a. This wave speed is independent of κ .

In the above analysis, we neglected the effects of boundary conditions on front
propagation, which is a reasonable approximation if the size L of the spatial domain
satisfies L  σ , where σ is the range of synaptic weights. In the case of a finite
domain, following passage of an invasive activity front, the network settles into a
nonzero stable steady state, whose spatial structure will depend on the boundary con-
ditions. The steady-state equation takes the form

a(x) = F

(∫ L

0
w

(
x − x′)a(

x′)dx′
)

. (2.16)

In the case of the Dirichlet boundary conditions, a(0, t) = a(L, t) = 0 with L  σ ,
the steady state will be uniform in the bulk of the domain with a(x) ≈ a0 except
for boundary layers at both ends. Here, a0 is the nonzero solution to the equation
a0 = F(W0a0). Examples of steady-state solutions are plotted for various choices of
L in Figure 3. (Note that the sudden drop to zero right on the boundaries reflects
the nonlocal nature of the neural field equation.) Next, we consider a periodic do-
main with w(x) = w(x + L) for all x ∈ [0,L]. One way to generate such a weight
distribution is to take w(x) = ∑

n∈Z
w0(x + nL) with w0(x) given by the Gaussian

distribution of Equation 2.6. In this case, there is a unique nontrivial steady-state so-
lution a(x) = a0 for all x. For both choices of boundary condition, there still exists
the unstable zero-activity state a(x) ≡ 0. Now, we suppose that some source of multi-
plicative noise is added to the neural field equation, which vanishes when a(x, t) = 0.

Fig. 3 Stable steady-state solution a(x, t) = As(x) of neural field equation. Stable steady-state solution
a(x, t) = As(x) of neural field equation (Equation 2.1) on a finite spatial domain of length L with boundary
conditions a(0, t) = a(L, t) = 0. Here, W0 = 1.2, σ = 1, and κ = 0.4. (a) L = 5. (b) L = 25. In the
presence of multiplicative noise, fluctuations can drive the network to the zero absorbing state, resulting in
the extinction of activity (see Section 6).
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It is then possible that noise-induced fluctuations drive the system to the zero-activity
state, resulting in the extinction of all activity since the noise also vanishes there. As-
suming that the noise is weak, the time to extinction will be exponentially large, so it
is very unlikely to occur during the passage of the invasive front.

In the remainder of the paper, we consider two distinct problems associated with
the presence of an unstable zero-activity state in the neural field model (Equation 2.1).
First, how do slowly varying spatial heterogeneities in the synaptic weights affect the
speed of propagating pulled fronts (Sections 3 and 4)? Second, what is the estimated
time for extinction of a stable steady state in the presence of multiplicative extrinsic
noise (Sections 5 and 6)? Both problems are linked from a methodological perspec-
tive since the corresponding analysis reduces to solving an effective Hamiltonian
dynamical system.

3 Hamilton-Jacobi dynamics and slow spatial heterogeneities

Most studies of neural fields assume that the synaptic weight distribution only de-
pends upon the distance between interacting populations, that is, w(x,y) = w(|x −
y|). This implies translation symmetry of the underlying integrodifferential equations
(in an unbounded or periodic domain). However, if one looks more closely at the
anatomy of the cortex, it is clear that it is far from homogeneous, having a structure
at multiple spatial scales. For example, to a first approximation, the primary visual
cortex (V1) has a periodic-like microstructure on the millimeter length scale, reflect-
ing the existence of various stimulus feature maps. This has motivated a number of
studies concerned with the effects of a periodically modulated weight distribution on
front propagation in neural fields [40–42, 50]. A typical example of a periodically
modulated weight distribution is

w(x,y) = w(x − y)
[
1 + K(y/ε)

]
, (3.1)

where 2πε is the period of the modulation with K(x) = K(x + 2π) for all x. In the
case of a sigmoidal or Heaviside nonlinearity, two alternative methods for analyzing
the effects of periodic wave modulation have been used: one is based on homoge-
nization theory for small ε [40, 50], and the other is based on analyzing interfacial
dynamics [41, 42]. Both approaches make use of the observation that for sufficiently
small amplitude modulations, numerical simulations of the inhomogeneous network
show a front-like wave separating high and low activity metastable states. However,
the wave does not propagate with constant speed but oscillates periodically in an
appropriately chosen moving frame. This pulsating front solution satisfies the peri-
odicity condition a(x, t) = a(x + Δ, t + T ), so we can define the mean speed of the
wave to be c = Δ/T .

Recently, Coombes and Laing [41] have analyzed the propagation of pulsating
pulled fronts in a neural field with periodically modulated weights, extending the
previous work of Shigesada et al. on reaction-diffusion models of the spatial spread
of invading species into heterogeneous environments [5, 11]. We briefly sketch the
basic steps in the analysis. First, we substitute the periodically modulated weight
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distribution (Equation 3.1) into Equation 2.1 and linearize about the leading edge of
the wave where a(x, t) ∼ 0:

∂a(x, t)

∂t
= −a(x, t) +

∫ ∞

−∞
w(x − y)

[
1 + K(y/ε)

]
a(y, t) dy. (3.2)

Now, we assume a solution of the form a(x, t) = A(ξ)P (x), ξ = x −ct with A(ξ) →
0 as ξ → ∞ and P(x + 2πε) = P(x). Substitution into Equation 3.2 then gives

−cP (x)A′(ξ) = −P(x)A(ξ)+
∫ ∞

−∞
w(x − y)

[
1 +K(y/ε)

]
P(y)A

(
ξ −[x − y])dy.

(3.3)
Taking A(ξ) ∼ e−λξ and substituting into the above equation yield a nonlocal version
of the Hill equation:

(1 + cλ)P (x) =
∫ ∞

−∞
eλ[x−y]w(x − y)

[
1 + K(y/ε)

]
P(y)dy. (3.4)

In order to determine the minimal wave speed, it is necessary to find a bounded peri-
odic solution P(x) of Equation 3.4, which yields a corresponding dispersion relation
c = c(λ), whose minimum with respect to λ can then be determined (assuming it
exists). One way to obtain an approximate solution to Equation 3.4 is to use Fourier
methods to derive an infinite matrix equation for the Fourier coefficients of the pe-
riodic function P(x), and then to numerically solve a finite truncated version of the
matrix equation. This is the approach followed in [41]. The matrix equation takes the
form

(1 + cλ)Pm = W (λ − im/ε)Pm + W (λ − im/ε)
∑

l

KlPm−l , (3.5)

where K(x/ε) = ∑
n Kneimx/ε and P(x) = ∑

n Pneimx/ε . One finds that the mean
velocity of a pulsating front increases with the period 2πε of the synaptic modu-
lations [41]. This is illustrated in Figure 4, where we show space-time plots of a
pulsating front for ε = 0.5 and ε = 0.8.

In this section, we develop an alternative method for analyzing pulled fronts in
heterogeneous neural fields, based upon the Hamilton-Jacobi dynamics of sharp in-
terfaces, which is particularly applicable to slowly varying spatial modulations [9,
15–18]. That is, we consider a heterogeneous version of the neural field equation
(Equation 2.1) of the form

∂a(x, t)

∂t
= −a(x, t) + F

(∫ ∞

−∞
w

(
x − x′)J (

εx′)a(
x′, t

)
dx′

)
, (3.6)

in which there is a slow (nonperiodic) spatial modulation J (εx) of the synaptic
weight distribution with ε � 1. The synaptic heterogeneity is assumed to occur on
a longer spatial scale than the periodic-like microstructures associated with stimu-
lus feature maps. Although we do not have a specific example of long wavelength
modulations in mind, we conjecture that these might be associated with inter-area
cortical connections. For example, it has been shown that heterogeneities arise as one
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Fig. 4 Space-time contour plots. Space-time contour plots of a pulsating front solution of the neural
field equation (Equation 3.2) with piecewise linear firing rate function (Equation 2.3), Gaussian weight
distribution (Equation 2.6), and a 2πε-periodic modulation of the synaptic weights, K(x) = cos(x/ε).
(a) ε = 0.5 and (b) ε = 0.8. Other parameters are W0 = 1.2, σ = 1.0, and κ = 0.4.

approaches the V1/V2 border in the visual cortex, which has a number of effects in-
cluding the generation of reflected waves [51]. It is not yet clear how sharp is the
transition across the V1/V2 border.

The first step in the Hamilton-Jacobi method is to rescale space and time in Equa-
tion 3.6 according to t → t/ε and x → x/ε [9, 17, 18]:

ε
∂a(x, t)

∂t
= −a(x, t) + F

(
1

ε

∫ ∞

−∞
w

([
x − x′]/ε)J (

x′)a(
x′, t

)
dx′

)
. (3.7)

Under this hyperbolic rescaling, the front region where the activity a(x, t) rapidly
increases as x decreases from infinity becomes a step as ε → 0 (see Figure 2b). This
motivates introducing the WKB approximation

a(x, t) ∼ e−G(x,t)/ε (3.8)

with G(x, t) > 0 for all x > x(t) and G(x(t), t) = 0. The point x(t) determines the
location of the front and c = ẋ. Substituting Equation 3.8 into Equation 3.7 gives

−∂tG(x, t) = −1 + 1

ε

∫ ∞

−∞
w

([
x − x′]/ε)J (

x′)e−[G(x′,t)−G(x,t)]/ε dx′. (3.9)

We have used the fact that for x > x(t) and ε � 1, the solution is in the leading edge
of the front, so we can take F to be linear.

In order to simplify Equation 3.9, we use the method of steepest descents. First,
we introduce the Fourier transform of the weight distribution w(x) according to

w(x) =
∫ ∞

−∞
w̃(k)eikx dk

2π
. (3.10)

Substituting into Equation 3.9 and reversing the order of integration give

−∂tG(x, t) = −1 + 1

ε

∫ ∞

−∞

∫ ∞

−∞
w̃(k)J

(
x′)e−S(k,x′;x,t)/ε dx′ dk

2π
, (3.11)
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where

S
(
k, x′;x, t

) = ik
(
x′ − x

) + G
(
x′, t

) − G(x, t). (3.12)

Exploiting the fact that ε is small, we perform steepest descents with respect to the
x′ variable with (k, x, t) fixed. Let x′ = z(k, t) denote the stationary point for which
∂S/∂x′ = 0, which is given by the solution to the implicit equation

ik + ∂xG
(
x′, t

) = 0. (3.13)

Taylor expanding S about this point (assuming it is unique) gives to second order

S
(
k, x′;x, t

) ≈ S
(
k, z(k, t);x, t

) + 1

2

∂2S

∂x′2

∣∣∣∣
x′=z(k,t)

(
x′ − z(k, t)

)2

= ik
[
z(k, t) − x

] + G
(
z(k, t), t

) − G(x, t)

− 1

2
∂xxG

(
z(k, t), t

)(
x′ − z(k, t)

)2
. (3.14)

Substituting into Equation 3.11 and performing the resulting Gaussian integral with
respect to x′ yield the result

−∂tG(x, t) = −1 + 1

ε

∫ ∞

−∞

√
2πε

∂xxG(z(k, t), t)
w̃(k)J

(
z(k, t)

)
× e−(ik[z(k,t)−x]+G(z(k,t),t)−G(x,t))/ε dk

2π
. (3.15)

This can be rewritten in the form

−∂tG(x, t) = −1 + 1√
2πε

∫ ∞

−∞
w̃(k)J

(
z(k, t)

)
e−Ŝ(k;x,t)/ε dk, (3.16)

where

Ŝ(k;x, t) = ik
[
z(k, t)− x

]+G
(
z(k, t), t

)−G(x, t)+ ε

2
ln ∂xxG

(
z(k, t), t

)
. (3.17)

The integral over k can also be evaluated using steepest descents. Thus, we Taylor
expand Ŝ to second order about the stationary point k = k(x, t), which is the solution
to the equation

0 = ∂Ŝ

∂k
= i

[
z(k, t) − x

]
+ ∂z(k, t)

∂k

[
ik + ∂xG

(
z(k, t), t

) + ε

2

∂xxxG(z(k, t), t)

∂xxG(z(k, t), t)

]
. (3.18)

It follows from Equations 3.13 and 3.18 that z(k(x, t), t) = x + O(ε), so

k(x, t) = i∂xG(x, t) + O(ε). (3.19)
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Moreover,

Ŝ(k;x, t) ≈ 1

2

∂2Ŝ

∂k2

∣∣∣∣
k=k(x,t)

(
k − k(x, t)

)2
. (3.20)

Substituting into Equation 3.16 and performing the Gaussian integral with respect to
k give to leading order in ε

−∂tG(x, t) = −1 + 1√
i∂xxG(x, t)∂kz(k(x, t), t)

w̃
(
k(x, t)

)
J (x). (3.21)

Finally, setting x′ = z(k, t) in Equation 3.13 and differentiating with respect to k

show that ∂xxG(z(k, t), t)∂kz(k, t) = −i; hence,

−∂tG(x, t) = −1 + w̃
(
i∂xG(x, t)

)
J (x). (3.22)

Equation 3.22 is formally equivalent to the Hamilton-Jacobi equation

∂tG + H(∂xG,x) = 0 (3.23)

with corresponding Hamiltonian

H(p,x) = −1 + w̃(ip)J (x), (3.24)

where p = ∂xG is interpreted as the conjugate momentum of x, and

w̃(ip) = Ŵ (p) + Ŵ (−p) ≡ W (p) (3.25)

with Ŵ (p) as the Laplace transform of w(x). It follows that the Hamilton-Jacobi
equation (Equation 3.23) can be solved in terms of the Hamilton equations

dx

ds
= ∂H

∂p
= J (x)W ′(p) = J (x)

[
Ŵ ′(p) − Ŵ ′(−p)

]
, (3.26)

dp

ds
= −∂H

∂x
= −J ′(x)W (p). (3.27)

Let X(s;x, t) and P(s;x, t) denote the solution with x(0) = 0 and x(t) = x. We can
then determine G(x, t) according to

G(x, t) = −E(x, t)t +
∫ t

0
P(s;x, t)Ẋ(s;x, t) ds. (3.28)

Here,

E(x, t) = H
(
P(s;x, t),X(s;x, t)

)
, (3.29)

which is independent of s due to conservation of ‘energy,’ that is, the Hamiltonian is
not an explicit function of time.
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4 Calculation of wave speed

4.1 Homogeneous case: J (x) ≡ 1

Let us begin by rederiving the wave speed for a homogeneous neural field (see Sec-
tion 2) by setting J (x) ≡ 1. In this case, dp/ds = 0, so p = λ0 independently of s.
Hence, x(s) = xs/t , which implies that

W ′(λ0) = x

t
. (4.1)

By construction, the location x(t) of the front at time t is determined by the equation
G(x(t), t) = 0. Differentiating with respect to t shows that ẋ∂xG + ∂tG = 0 or

ẋ = − ∂tG

∂xG
= −1 + W (λ0)

λ0
. (4.2)

It follows that λ0 is given by the minimum of the function

c(λ) = −1 + W (λ)

λ
(4.3)

and c0 = c(λ0). This recovers the result of Section 2. Thus, in the case of a Gaussian
weight distribution, λ0 is related to c0 according to Equation 2.15.

4.2 Synaptic heterogeneity: J (x) = 1 + βf (x), 0 < β � 1

Suppose that there exists a small amplitude, slow modulation of the synaptic weights
J (x) = 1+βf (x) with β � 1. We can then obtain an approximate solution of Hamil-
ton’s equations (Equations 3.26 and 3.27) and the corresponding wave speed using
regular perturbation theory along analogous lines to a previous study of the F-KPP
equation [9]. We introduce the perturbation expansions

x(s) = x0(s) + βx1(s) + O
(
β2), p(s) = p0(s) + βp1(s) + O

(
β2) (4.4)

and substitute into Equations 3.26 and 3.27. Taylor expanding the nonlinear function
f (x) about x0 and W (p) = Ŵ (p) + Ŵ (−p) about p0 then leads to a hierarchy of
equations, the first two of which are

ṗ0(s) = 0, ẋ0(s) = W ′(p0), (4.5)

and

ṗ1(s) = −f ′(x0)W (p0), ẋ1(s) = W ′′(p0)p1(s) + f (x0)W ′(p0). (4.6)

These are supplemented by the Cauchy conditions x0(0) = 0, x0(t) = x, and xn(0) =
xn(t) = 0 for all integers n ≥ 1. Equations 4.5 have solutions of the form

p0(s) = λ, x0(s) = W ′(λ)s + B0 (4.7)
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with λ and B0 independent of s. Imposing the Cauchy data then implies that B0 = 0
and λ satisfy the equation

W ′(λ) = x/t. (4.8)

At the next order, we have the solutions

p1(s) = −W (λ)
t

x
f (xs/t) + A1, (4.9)

x1(s) = −W ′′(λ)W (λ)
t2

x2

∫ xs/t

0
f (y)dy

+
∫ xs/t

0
f (y)dy + W ′′(λ)A1s + B1, (4.10)

with A1 and B1 independent of s. Imposing the Cauchy data then implies that B1 = 0
and

A1 = A1(x, t) = W (λ)
t

x2

∫ x

0
f (y)dy − 1

t W ′′(λ)

∫ x

0
f (y)dy. (4.11)

Given these solutions, the energy function E(x, t) is

E(x, t) = −1 + [
1 + βf (x0 + βx1 + · · · )]W (λ + βp1 + · · · )

= −1 + W (λ) + β
[

W ′(λ)p1(s) + f
(
x0(s)

)
W (λ)

] + O
(
β2). (4.12)

Substituting for x0(s) and p1(s) and using the condition W ′(λ) = x/t , we find that

E(x, t) = −1 + W (λ) + β
x

t
A1(x, t) + O

(
β2), (4.13)

which is independent of s as expected. Similarly,∫ t

0
p(s)ẋ(s) ds = λx + βW ′(λ)

∫ t

0
p1(s) ds + O

(
β2)

= λx + β
W ′(λ)

W ′′(λ)

∫ t

0

[
ẋ1(s) − W ′(λ)f

(
W ′(λ)s

)]
ds + O

(
β2)

= λx − β
W ′(λ)

W ′′(λ)

∫ x

0
f (y)dy + O

(
β2). (4.14)

Hence, to first order in β ,

G(x, t) = t − W (λ)t + λx − βW (λ)
t

x

∫ x

0
f (y)dy. (4.15)

We can now determine the wave speed c by imposing the condition G(x(t), t) = 0
and performing the perturbation expansions x(t) = x0(t) + βx1(t) + O(β2) and λ =
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λ0 + βλ1 + O(β2). Substituting into Equation 4.15 and collecting terms at O(1) and
O(β) lead to the following result:

x(t) = c0t + βW (λ0)

c0λ0

∫ c0t

0
f (y)dy + O

(
β2). (4.16)

Here, c0 is the wave speed of the homogeneous neural field (β = 0), which is given by
c0 = c(λ0) with λ0 obtained by minimizing the function c(λ) defined by Equation 4.3
(see Equation 2.15). Finally, differentiating both sides with respect to t and inverting
the hyperbolic scaling yield

c ≡ ẋ(t) = c0 + βW (λ0)

λ0
f (εc0t) + O

(
β2). (4.17)

4.3 Numerical results

In order to compare our analytical results with computer simulations, we numerically
solve a discretized version of the neural field equation (Equation 3.6) using a direct
Euler scheme. We take −L ≤ x ≤ L with free boundary conditions and an initial
condition given by a steep sigmoid

a(x,0) = 0.5

1 + exp(−η(x − l))
, (4.18)

with η = 5, where l determines the approximate initial position of the front. For con-
creteness, L = 100 and l = 10. Space and time units are fixed by setting the range
of synaptic weights σ = 1 and the time constant τ = 1. In Figure 5a, we show snap-
shots of a pulled front in the case of a homogeneous network with Gaussian weights
(Equation 2.6) and piecewise linear firing rate function (Equation 2.3). A correspond-
ing space-time plot is given in Figure 5b, which illustrates that the speed of the front

Fig. 5 Propagating front in a homogeneous network with Gaussian weights (Equation 2.6) and piecewise
linear rate function (Equation 2.3). Parameter values are W0 = 1.2, σ = 1, and κ = 0.4. (a) Snapshots of
wave profile at time intervals of width Δt = 5 from t = 10 to t = 40. (b) Space-time contour plot. Wave
speed asymptotically approaches the minimum c0 of the velocity dispersion curve given by Equation 2.12.
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Fig. 6 Propagating front in a network with a linear heterogeneity in the synaptic weights,
J (x) = 1 + ε(x − l), l = 10, and ε2 = 0.005. Other parameters as in Figure 5. (a) Snapshots of wave
profile at time intervals of width Δt = 5 from t = 10 to t = 40. (b) Space-time contour plot. Wave speed
increases approximately linearly with time, so the position x(t) of the front evolves according to a down-
ward parabola. Theoretical curve based on the perturbation calculation is shown by the solid curve. The
trajectory of the front in the corresponding homogeneous case (see Figure 5b) is indicated by the dashed
curve.

Fig. 7 Propagating front in a network with a linear heterogeneity in the synaptic weights,
J (x) = 1 + ε(x − l), l = 10, and ε2 = 0.01. Other parameters as in Figure 5. (a) Snapshots of wave
profile at time intervals of width Δt = 5 from t = 10 to t = 40. (b) Space-time contour plot. Wave speed
increases approximately linearly with time, so the position x(t) of the front evolves according to a down-
ward parabola. Theoretical curve based on the perturbation calculation is shown by the solid curve. The
trajectory of the front in the corresponding homogeneous case (see Figure 5b) is indicated by the dashed
curve.

asymptotically approaches the calculated minimal wave speed c0. (Note that pulled
fronts take an extremely long time to approach the minimal wave speed at high levels
of numerical accuracy since the asymptotics are algebraic rather than exponential in
time [52].) In Figures 6 and 7, we plot the corresponding results in the case of an
inhomogeneous network. For the sake of illustration, we choose the synaptic hetero-
geneity to be a linear function of displacement, that is, J (x) = 1 + ε(x − l), where
we have set β = ε. Equation 4.16 implies that

x(t) = l + c0t + ε2 W (λ0)

2c0λ0

[
(c0t)

2 − 2c0lt
]
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= l +
[
c0 − ε2l(c0λ0 + 1)

λ0

]
t + ε2c0(c0λ0 + 1)

2λ0
t2, (4.19)

where we have used Equation 4.3. We assume that the initial position of the front is
x(0) = l. Hence, our perturbation theory predicts that a linearly increasing modula-
tion in synaptic weights results in the leading edge of the front tracing out a down-
ward parabola in a space-time plot for times t � O(1/ε2). This is consistent with
our numerical simulations for ε2 = 0.005, as can be seen in the space-time plot of
Figure 6b. However, our approximation for the time-dependent speed breaks down
when t = O(1/ε2), as illustrated in Figure 7b for ε2 = 0.01.

5 Path integral formulation of a stochastic neural field

We now turn to the second main topic of this paper, namely noise-induced transitions
to extinction in the presence of a zero absorbing state. Therefore, let us modify the
scalar neural field equation (Equation 2.1) by adding extrinsic multiplicative noise.
The resulting Langevin equation is

dA =
[
−A + F

(∫ L

0
w(x − y)A(y, t) dy

)]
dt + εg(A)dW(x, t), (5.1)

for 0 ≤ t ≤ T and initial condition A(x,0) = Φ(x). We take dW(x, t) to represent
an independent Wiener process such that〈

dW(x, t)
〉 = 0,〈

dW(x, t) dW
(
x′, t ′

)〉 = 2LC
([

x − x′]/λ)
δ
(
t − t ′

)
dt dt ′. (5.2)

Here, λ is the spatial correlation length of the noise such that C(x/λ) → δ(x) in
the limit λ → 0, and ε determines the strength of the noise, which is assumed to be
weak. We will assume that g(0) = 0, so the zero-activity state A = 0 is an absorbing
state of the system; any noise-induced transition to this state would then result in the
extinction of all activity. An example of multiplicative noise that vanishes at A = 0
is obtained by carrying out a diffusion approximation of the neural master equation
previously introduced by Buice et al. [45, 53] (see Bressloff [54, 55]). Before con-
sidering the problem of extinction, a more immediate question is how multiplicative
noise affects the propagation of the invasive pulled fronts analyzed in Section 2. Since
this particular issue is addressed in some detail elsewhere [48], we only summarize
the main findings here.

In the case of the F-KPP equation with multiplicative noise, it has previously been
shown that the stochastic wandering of a pulled front about its mean position is sub-
diffusive with varΔ(t) ∼ t1/2, in contrast to the diffusive wandering of a front prop-
agating into a metastable state for which varΔ(t) ∼ t [10]. Such scaling is a conse-
quence of the asymptotic relaxation of the leading edge of the deterministic pulled
front. Since pulled front solutions of the neural field equation (Equation 2.1) exhibit
similar dynamics, it suggests that there will also be subdiffusive wandering of these
fronts in the presence of multiplicative noise. This is indeed found to be the case [48].
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Fig. 8 Plot of variance σ 2
X

(t).

Plot of variance σ 2
X

(t) of the
position of a stochastic pulled
front as a function of time for
noise amplitude ε = 0.005 and
g(A) = A/

√
L. Other

parameters are W0 = 1.2,
κ = 0.8, and σ = 1.

More specifically, the multiplicative noise term in Equation 5.1 generates two distinct
phenomena that occur on different time scales: a diffusive-like displacement of the
front from its uniformly translating position at long time scales, and fluctuations in
the front profile around its instantaneous position at short time scales. This can be
captured by expressing the solution A of Equation 5.1 as a combination of a fixed
wave profile A0 that is displaced by an amount Δ(t) from its uniformly translating
mean position ξ = x − ct , and a time-dependent fluctuation Φ in the front shape
about the instantaneous position of the front:

A(x, t) = A0
(
ξ − Δ(t)

) + εΦ
(
ξ − Δ(t), t

)
. (5.3)

Here, c denotes the mean speed of the front. (In the Stratonovich version of multi-
plicative noise, there is an ε-dependent shift in the speed c.) Numerical simulations
of Equation 5.1 with F given by the piecewise linear firing rate (Equation 2.3) and
g(A) = A are consistent with subdiffusive wandering of the front, as illustrated in
Figure 8. The variance σ 2

X(t) is obtained by averaging over level sets [48]. That is,
we determine the positions Xz(t) such that A(Xz(t), t) = z for various level set val-
ues z ∈ (0.5κ,1.3κ) and then define the mean location to be X(t) = E[Xz(t)], where
the expectation is first taken with respect to the sampled values z and then averaged
over N trials. The corresponding variance is given by σ 2

X(t) = E[(Xz(t)−X(t))2]. It
can be seen that the variance exhibits subdiffusive behavior over long time scales.

In order to develop a framework to study rare extinction events in the weak noise
limit, we construct a path integral representation of the stochastic Langevin equa-
tion (Equation 5.1). We will assume that the multiplicative noise is of Ito form [56].
For reviews on path integral methods for stochastic differential equations, see [57–
59]. Discretizing both space and time with Ai,m = A(mΔd, iΔt), Wi,m

√
Δt/Δd =

dW(mΔd, iΔt), and Δdwmn = w(mΔd,nΔd) gives

Ai+1,m − Ai,m =
[
−Ai,m + F

(
Δd

∑
n

wmnAi,n

)]
Δt

+ ε

√
Δt√
Δd

g(Ai,m)Wi,m,
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with i = 0,1, . . . ,N , T = NΔt , and

〈Wi,m〉 = 0, 〈Wi,mWi′,m′ 〉 = Lδi,i′δm,m′ . (5.4)

Let A and W denote the vectors with components Ai,m and Wi,m, respectively. For-
mally, the conditional probability density function for A given a particular realization
of the stochastic process W and initial condition A0,m = Φm is

P [A|W] =
∏
n

N∏
i=0

δ

(
Ai+1,m − Ai,m +

[
Ai,m − F

(
Δd

∑
n

wmnAi,n

)]
Δt

− ε

√
Δt√
Δd

g(Ai,m)Wi,m

)
. (5.5)

Inserting the Fourier representation of the Dirac delta function,

δ(Ai,m) = 1

2π

∫
e−iÃi,mAi,m dÃi,m, (5.6)

gives

P [A|W] =
∫ ∏

n

N∏
j=0

dÃj,n

2π
exp

{
−i

∑
i,m

Ãi,m(Ai+1,m − Ai,m)

}

× exp

{
−i

∑
i,m

Ãi,m

[
Ai,m − F

(
Δd

∑
n

wmnAi,n

)]
Δt

}

× exp

{
i
∑
i,m

Ãi,m

(
ε

√
Δt√
Δd

g(Ai,m)Wi,m

)}
. (5.7)

For a Gaussian white noise process, Wi,n has the probability density function

P(Wi,m) = (2πL)−1/2e−W 2
i,m/2L. Hence, setting

P [A] =
∫

P [A|W]
∏
j,n

P (Wj,n) dWj,n

and performing the integration with respect to Wj,n by completing the square, we
obtain the result

P [A] =
∫ ∏

n

N∏
j=0

dÃj,n

2π
exp

{
−i

∑
i,m

Ãi,m(Ai+1,m − Ai,m)

}

× exp

{
−i

∑
i,m

Ãi,m

[
Ai,m − F

(
Δd

∑
n

wmnAi,n

)]
Δt

}

× exp

{
ε2L

∑
i,m

(iÃi,m)2g2(Ai,m)
Δt

2Δd

}
. (5.8)
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Finally, taking the continuum limits Δd → 0 and Δt → 0, N → ∞ for fixed T with
Ai,m → A(x, t) and iÃi,m/Δd → Ã(x, t) gives the following path integral represen-
tation of a stochastic neural field:

P [A] =
∫

DÃe−S[A,Ã] (5.9)

with

S[A, Ã] =
∫ L

0
dx

∫ T

0
dtÃ(x, t)

[
At(x, t) + A(x, t) − F

(∫
w(x − y)A(y, t) dy

)
− ε2L

2
Ã(x, t)g2(A(x, t)

)]
. (5.10)

Given the probability functional P [A], we can write down path integral representa-
tions of various moments of the stochastic field A. For example, the mean field is〈〈

A(x, t)
〉〉 = ∫

DADÃA(x, t)e−S[A,Ã], (5.11)

whereas the two-point correlation is〈〈
A(x, t)A

(
x′, t ′

)〉〉 = ∫
D[A]DÃA(x, t)A

(
x′, t ′

)
e−S[A,Ã]. (5.12)

In particular, introducing the conditional probability p[A1, t |A0,0] for the initial state
A(x,0) = A0(x) to be in the final state A(x, t) = A1(x) at time t , we have

p[A1, t |A0,0] ≡
〈〈∏

x

δ
(
A1(x) − A(x, t)

)〉〉 =
∫

DADÃe−S[A,Ã]
∣∣∣∣A(t)=A1

A(0)=A0

. (5.13)

6 Hamiltonian-Jacobi dynamics and population extinction in the weak-noise
limit

We now use the path integral representation of the conditional probability (Equa-
tion 5.13) in order to estimate the time to extinction of a metastable nontrivial state.
We proceed along analogous lines to our previous study of a neural master equation
with x-independent steady states [54, 55], where the effective Hamiltonian dynam-
ical system obtained by extremizing the associated path integral action can be used
to determine the most probable or optimal path to the zero absorbing state. Alter-
natively, one could consider a WKB approximation of solutions to the correspond-
ing functional Fokker-Planck equation or master equation, as previously applied to
reaction-diffusion systems [20, 23–26]. The connection between the two approaches
is discussed in [20].

The first step is to perform the rescaling Ã → Ã/Lε2 so that Equation 5.13 be-
comes

p[A1, t |A0,0] =
∫

DADÃe−S[A,Ã]/Lε2
∣∣∣∣A(t)=A1

A(0)=A0

. (6.1)
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In the limit ε → 0, the path integral is dominated by the ‘classical’ solutions q(x, t),
p(x, t), which extremize the exponent or action of the generating functional:

δS[A, Ã]
δA(x, t)

∣∣∣∣
Ã=p,A=q

= 0,
δS[A, Ã]
δÃ(x, t)

∣∣∣∣
Ã=p,A=q

= 0. (6.2)

These equations reduce to the form

∂q(x, t)

∂t
= δH[q,p]

δp(x, t)
,

∂p(x, t)

∂t
= −δH[q,p)

δq(x, t)
, (6.3)

where we have set

S[q,p] =
∫ T

0
dt

[∫
dxp(x, t)q̇(x, t) − H[q,p]

]
,

such that

H[q,p] =
∫

dxp(x, t)

[
−q(x, t) + F

(∫
w(x − y)q(y, t) dy

)
+ 1

2
p(x, t)g2(q(x, t)

)]
. (6.4)

Equations 6.3 take the form of a Hamiltonian dynamical system in which q is a ‘coor-
dinate’ variable, p is its ‘conjugate momentum’ and H is the Hamiltonian functional.
Substituting for H leads to the explicit Hamilton equations:

∂q(x, t)

∂t
= −q(x, t) + F

(∫
w(x − y)q(y, t) dy

)
+ p(x, t)g2(q(x, t)

)
, (6.5)

∂p(x, t)

∂t
= −p(x, t) +

∫
F ′

(∫
w(y − z)q(z, t) dz

)
w(y − x)p(y, t) dy

+ p2(x, t)g
(
q(x, t)

)
g′(q(x, t)

)
. (6.6)

It can be shown that q(x, t) and p(x, t) satisfy the same boundary conditions as the
physical neural field A(x, t) [19]. Thus, in the case of periodic boundary conditions,
q(x +L, t) = q(x, t) and p(x +L, t) = p(x, t). It also follows from the Hamiltonian
structure of Equations 6.5 and 6.6 that there is an integral of motion given by the
conserved ‘energy’ E = H[q,p].

The particular form of H implies that one type of solution is the zero-energy so-
lution p(x, t) ≡ 0, which implies that q(x, t) satisfies the deterministic scalar neu-
ral field equation (Equation 2.1). In the t → ∞ limit, the resulting trajectory in
the infinite-dimensional phase space converges to the steady-state solution Q+ =
[qs(x),0], where qs(x) satisfies Equation 2.16. The Hamiltonian formulation of ex-
tinction events then implies that the most probable path from [qs(x),0] to the absorb-
ing state is the unique zero-energy trajectory that starts at Q+ at time t = −∞ and
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approaches another fixed point P = [0,pe(x)] at t = +∞ [19, 20]. In other words,
this so-called activation trajectory is a heteroclinic connection Q+P (or instanton so-
lution) in the functional phase space [q(x),p(x)]. It can be seen from Equation 6.6
that the activation trajectory is given by the curve

p(x) = Fx[q] ≡ −−q(x) + F(
∫ L

0 w(x − y)q(y) dy)

g(q(x))2
(6.7)

so that

pe(x) = lim
q→0

Fx[q]. (6.8)

Note that the condition that pe(x) exists and is finite is equivalent to the condition that
there exists a stationary solution to the underlying functional Fokker-Planck equation
- this puts restrictions on the allowed form for g. For the zero-energy trajectory ema-
nating from Q+ at t = −∞, the corresponding action is given by

S0 =
∫ ∞

−∞
dt

∫ L

0
dxp(x, t)q̇(x, t), (6.9)

and up to pre-exponential factors, the estimated time τe to extinction from the steady-
state solution qs(x) is given by [19, 20]

ln τe ≈ ε−2 S0

L
. (6.10)

For x-dependent steady-state solutions qs(x), which occur for the Dirichlet boundary
conditions and finite L, one has to solve Equations 6.5 and 6.6 numerically. Here,
we consider the much simpler problem of x-independent transitions from a uniform
steady-state, which occurs for periodic boundary conditions or Dirichlet boundary
conditions in the large L limit, to the absorbing state. In this case, q(x, t) → q(t),
p(x, t) → p(t) so that

H
L

= p(t)

[
−q(t) + F

(
W0q(t)

) + 1

2
p(t)g2(q(t)

)]
, (6.11)

and the optimal path is determined by the x-independent form of the Hamilton Equa-
tions 6.5 and 6.6:

q̇ = −q + F(W0q) + pg2(q), (6.12)

ṗ = −p + W0F
′(W0q)p + p2g(q)g′(q). (6.13)

Assuming that F(q) ∼ q as q → 0, we have

pe = −2(W0 − 1) lim
q→0

q

g2(q)
. (6.14)

In Figure 9, we plot the various constant energy solutions of the Hamilton equa-
tions (Equations 6.12 and 6.13) for the differentiable rate function F(q) = tanh(q)
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Fig. 9 Phase portrait of constant energy trajectories for the Hamiltonian system. Phase portrait of constant
energy trajectories for the Hamiltonian system given by Equations 6.12 and 6.13 with F(q) = tanh(q) and
g(q) = βqs . Parameters are W0 = 1.2 and β = 1. Zero-energy trajectories are indicated by thick curves.
The stable and unstable fixed points of the mean-field dynamics are denoted by Q+ and Q− . (a) s = 1/2:
There exists a nonzero fluctuational fixed point P that is connected to Q+ via a zero-energy hetero-
clinic connection. The curve Q+P is the optimal path from the metastable state to the absorbing state.
(b) s = 1/4: There is no longer a fluctuational fixed point P , so the optimal path is a direct heteroclinic
connection between Q+ and Q− .

and multiplicative noise factor g(q) = βqs with β constant. The zero-energy trajecto-
ries are highlighted as thicker curves. Let us first consider the case s = 1/2 for which
pe = 0.4β−2 (see Figure 9a). As expected, one zero-energy curve is the line p = 0
along which Equation 6.12 reduces to the x-independent version of Equation 2.1.
If the dynamics were restricted to the one-dimensional manifold p = 0, then the
nonzero fixed point Q+ = (q0,0) with q0 = F(W0q0) would be stable. However, it
becomes a saddle point of the full dynamics in the (q,p) plane, reflecting the fact that
it is metastable when fluctuations are taken into account. A second zero-energy curve
is the absorbing line q = 0 which includes two additional hyperbolic fixed points de-
noted by Q− = (0,0) and P = (0,pe) in Figure 9. Q− occurs at the intersection with
the line p = 0 and corresponds to the unstable zero-activity state of the deterministic
dynamics, whereas P is associated with the effects of fluctuations. Moreover, there
exists a third zero-energy curve, which includes a heteroclinic trajectory joining Q−
at t = −∞ to the fluctuational fixed point P at t = +∞. This heteroclinic trajec-
tory represents the optimal (most probable) path linking the metastable fixed point
to the absorbing boundary. The extinction time τe is given by Equation 6.10 with
S0/L = ∫ P

Q+ p dq ≈ 0.15, where the integral is evaluated along the heteroclinic tra-
jectory from Q+ to P , which is equal to the area in the shaded regions of Figure 9a.
For s < 1/2, pe = 0 and the optimal path is a heteroclinic connection from Q+ to

Q−. Hence, S0/L = ∫ Q−
Q+ p dq ≈ 0.05.

Note that since the extinction time is exponentially large in the weak noise limit,
it is very sensitive to the precise form of the action S0 and thus the Hamiltonian H.
This implies that when approximating the neural master equation of Buice et al. [45,
53] by a Langevin equation in the form of Equation 5.1 with σ ∼ 1/

√
N , where N

is the system size, the resulting Hamiltonian differs from that obtained directly from
the master equation and can thus generate a poor estimate of the extinction time. This
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can be shown either by comparing the path integral representations of the generating
functional for both stochastic processes or by comparing the WKB approximation of
the master equation and corresponding Fokker-Planck equation. This particular issue
is discussed elsewhere for neural field equations [54, 55].

7 Discussion

In this paper, we have explored some of the consequences of having an unstable
zero-activity state in a scalar neural field model. First, we considered invasive activ-
ity fronts propagating into the unstable zero state. These waves exhibit a behavior
analogous to pulled fronts in reaction-diffusion systems, in which the wave speed
is determined by the spreading velocity within the leading edge of the front. Con-
sequently, front propagation is sensitive to perturbations in the leading edge, which
we investigated within the context of spatial heterogeneities in the synaptic weights.
We showed how time-dependent corrections to the wave speed could be estimated
using a Hamilton-Jacobi theory of sharp interface dynamics combined with pertur-
bation theory. Second, we considered a stochastic version of the neural field model,
in which the zero-activity fixed point acts as an absorbing state. By constructing an
integral representation of the neural Langevin equation, we showed how to estimate
the time to extinction from a nontrivial steady state using a Hamiltonian formulation
of large fluctuation paths in the weak noise limit.

It is clear from the results of this paper that neural fields with an unstable zero-
activity state exhibit considerably different behaviors compared to models in which
the zero state (or down state) is stable. Of course, one important question is whether
or not real cortical networks ever exist in a regime where the down state is unstable.
From a mathematical viewpoint, one has to choose a very specific form of the fir-
ing rate function F for such a state to occur (see Figure 1). Nevertheless, Buice and
Cowan [45] have demonstrated that a stochastic neural field operating in a regime
with an absorbing state belongs to the universality class of directed percolation mod-
els and consequently exhibits power law behavior suggestive of several measure-
ments of spontaneous cortical activity in vitro and in vivo [46, 47]. On the other
hand, the existence of power law behavior is still controversial [60]. Irrespective of
these issues, exploring the connections between nonlocal neural field equations and
reaction-diffusion PDEs is likely to be of continued mathematical interest.
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