
Influence of CYP2C9 and VKORC1 on Patient Response to
Warfarin: A Systematic Review and Meta-Analysis
Andrea L. Jorgensen1*, Richard J. FitzGerald2, James Oyee1, Munir Pirmohamed2, Paula R. Williamson1

1 Department of Biostatistics, Shelley’s Cottage, University of Liverpool, Liverpool, United Kingdom, 2 Department of Molecular and Clinical Pharmacology, Block A:

Waterhouse Building, University of Liverpool, Liverpool, United Kingdom

Abstract

Background: Warfarin is a highly effective anticoagulant however its effectiveness relies on maintaining INR in therapeutic
range. Finding the correct dose is difficult due to large inter-individual variability. Two genes, CYP2C9 and VKORC1, have
been associated with this variability, leading to genotype-guided dosing tables in warfarin labeling. Nonetheless, it remains
unclear how genotypic information should be used in practice. Navigating the literature to determine how genotype will
influence warfarin response in a particular patient is difficult, due to significant variation in patient ethnicity, outcomes
investigated, study design, and methodological rigor. Our systematic review was conducted to enable fair and accurate
interpretation of which variants affect which outcomes, in which patients, and to what extent.

Methodology/Principal Findings: A comprehensive search strategy was applied and 117 studies included. Primary
outcomes were stable dose, time to stable dose and bleeding events. Methodological quality was assessed using criteria of
Jorgensen and Williamson and data synthesized in meta-analyses using advanced methods. Pooled effect estimates were
significant in most ethnic groups for CYP2C9*3 and stable dose (mutant types requiring between 1.1(0.7–1.5) and 2.3 (1.6–
3.0)mg/day). Effect estimates were also significant for VKORC1 and stable dose for most ethnicities, although direction
differed between asians and non-asians (mutant types requiring between 0.8(0.4–1.3) and 1.5(1.1–1.8)mg/day more in
asians and between 1.5(0.7–2.2) and 3.1(2.7–3.6)mg/day less in non-asians). Several studies were excluded due to
inadequate data reporting. Assessing study quality highlighted significant variability in methodological rigor. Notably, there
was significant evidence of selective reporting, of outcomes and analysis approaches.

Conclusions/Significance: Genetic associations with warfarin response vary between ethnicities. In order to achieve
unbiased estimates in different populations, a high level of methodological rigor must be maintained and studies should
report sufficient data to enable inclusion in meta-analyses. We propose minimum reporting requirements, suggest
methodological guidelines and provide recommendations for reducing the risk of selective reporting.
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Introduction

Warfarin is a highly effective [1–5] and commonly used

anticoagulant. However its effectiveness relies on attaining and

maintaining a patient’s International Normalised Ratio (INR), a

measure of clotting capability, within a therapeutic range.

Predicting the dose necessary to achieve this, the so called ‘stable

maintenance dose’, is difficult due to the drug’s narrow therapeutic

index [6] and the large inter-individual variability in maintenance

dose requirements [7].

Many clinical and environmental factors contributing to this

variability have been identified, including age, body size, vitamin

K intake, co-morbidities and co-medications. The focus of

research over the last decade has shifted towards identifying

genetic determinants of dose requirements, with several pharma-

cogenetic studies of warfarin response published annually. Many

of these studies have identified significant associations with two

genes in particular, the cytochrome-P450 gene CYP2C9 and the

vitamin K epoxide reductase complex subunit 1 gene, VKORC1.

Indeed, the evidence base for these associations is such that the

FDA announced a change to warfarin labeling in 2007,and

introduced dosing tables in 2010, to improve the dosing and hence

the possible benefit-risk ratio of the drug [8].

Nonetheless, although it is widely accepted that genotype at

CYP2C9 and VKORC1 affect dose requirements, it remains

unclear exactly how genotypic information should be used when

prescribing warfarin in practice. Indeed, the 2008 American

College of Medical Genetics policy statement confirmed that there

was insufficient evidence to recommend routine genotyping in

warfarin-naive patients [9]. Further, the 2008 American College of

Chest Physicians guidelines recommended against pharmacoge-

netic-based dosing until randomised data indicated that it is

beneficial [10].

To determine from the literature how genotype will influence

warfarin response in a particular patient is not an easy task

because of the significant variation between studies in terms of the
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population studied, patient ethnicity, outcomes investigated and

definition of those outcomes. It is perhaps fair to state that there is

significant heterogeneity in study design and analysis approaches,

and it cannot be assumed that all the studies are methodologically

robust [11].

In order to methodically set out and assess the knowledge base

accumulated so far, a systematic review of studies investigating

association between variants in CYP2C9 and VKORC1 and

warfarin response was undertaken. To comprehensively assess the

reliability of each piece of evidence, the checklist of methodolog-

ical quality for pharmacogenetic studies developed by Jorgensen

and Williamson was applied [11]. Subject to the results of this

assessment, data were synthesized by way of meta-analysis

applying the specialist methods of Minelli [12] and Salanti [13],

which represent some of the most advanced methods developed

for synthesising evidence from genetic association studies, to

ensure the most efficient use of available data, thus maximizing

power.

At the time of planning our review, we identified that a

systematic review of the role of CYP2C9 variants on clinical

outcomes in warfarin-treated patients had been undertaken

previously in 2003 [14]. However, a large number of warfarin

pharmacogenetic studies had been published annually since 2003,

meaning that our review included several more studies investigat-

ing CYP2C9 variants as well as those investigating the role of

VKORC1 variants, or both. More recently, an ‘Analytic validity,

Clinical validity, Clinical utility, and Ethical, legal, and social

implications’ (‘ACCE’) review of allele testing to inform warfarin

dosing included meta-analyses estimating the effect of variants in

both CYP2C9 and VKORC1 on response to warfarin [15].

However, although the review is informative and addresses several

key clinical questions, the report does not describe the search

strategy employed in identifying included studies and the

heterogeneity in effect estimates between studies was not evaluated

or investigated. In our systematic review, a structured search

strategy was adopted to ensure that all relevant studies were

identified and that any meta-analyses conducted reflect up to date

information from all available sources.

Variants in another gene, CYP4F2, have also been associated

with warfarin dose requirements in several studies. However, the

evidence base for this gene was very small at the time of planning

our review and consequently we chose to focus our review only on

CYP2C9 and VKORC1. Subsequently, a systematic review and

meta-analysis has been published by another research group on

the influence of CYP4F2 on warfarin dose requirements [16].

It was anticipated that formally reviewing all available evidence

on each SNP-outcome association, including a rigorous assessment

of methodological quality, study design and characteristics, and

setting out the findings in an orderly manner would enable a fair

and accurate interpretation of which variants affect which

outcomes, in which patients, and to what extent. We also hoped

to highlight any gaps requiring further research.

Results

Identification of Included Papers
The search strategy is summarized in Table 1. A Quorum

flowchart is given in Figure 1. 117 studies were included in the

systematic review - the full list, together with study characteristics

and references, is available on request.

Associations Investigated by Included Studies
Details of which variants were investigated for association with

each of the primary and secondary outcomes, and in which

studies, are given in Table 2 and Table 3. Several studies did not

investigate any of the primary or secondary outcomes.

Quality Assessment
Each of the criteria set out by Jorgensen and Williamson [11]

were considered in turn, and the main findings are discussed

below.

Choosing Which Genes and SNPs to Genotype
All but one study provided a reason for choosing the gene(s)

investigated, although for one [17] a reason was only provided for

CYP2C9 and not VKORC1, within which SNPs were found

associated with stable dose. For the study [18] where no reason

was provided, the study report was in the form of a letter, hence

necessarily brief. Nonetheless, the genes reported were also

significantly associated with dose. Consequently, both these studies

are deemed at risk of selective reporting. Two further studies

[19,20] are deemed at risk of selective reporting because they

reported results for a subset of investigated genes only.

A further four studies[18,21–23] were also deemed at risk, due

to not providing sufficient justification for their choice of SNPs,

which were all statistically significant, whilst another two [20,24]

are at risk due to reporting results for a subset of investigated SNPs

only, all of which were statistically significant.

Sample Size
The median sample size was 162 (IQR: 91–219), meaning that

most studies were at risk of being underpowered [11]. None of the

Table 1. Search Strategy.

Number Search Term

1 warfarin.mp.

2 s-warfarin.mp.

3 r-warfarin.mp.

4 gene$.mp.

5 geno$.mp.

6 Haplotyp$.mp.

7 variant.mp.

8 allel$.mp.

9 SNP$.mp.

10 polymorphism$.mp.

11 CYP2C9.mp.

12 CYP2C9$.mp.

13 VKORC1.mp.

14 vitamin K epoxide reductase complex subunit.mp.

15 cytochrome p450.mp.

16 cytochrome p-450.mp.

17 cytochrome-p450.mp.

18 1 or 2 or 3

19 4 or 5 or 6 or 7 or 8 or 9 or 10

20 11 or 12 or 13 or 14 or 15 or 16 or 17

21 18 and 19 and 20

Notes.
1. mp = title, original title, abstract, name of substance word, subject heading
word.
2. $ = any ending to the word.
doi:10.1371/journal.pone.0044064.t001
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Figure 1. QUORUM flowchart.
doi:10.1371/journal.pone.0044064.g001
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studies provided details of the a priori power for a range of allele

frequency-effect size combinations, leaving the reader uninformed

about the extent of power available and the likelihood of any non-

significant results being false-negatives.

Study Design
78 studies were retrospective cohorts, 34 were prospective, two

were case-control studies and three were randomised controlled

trials. For the two case-control studies, although the case and

control groups were both clearly defined, there was no mention

that the two groups were genotyped in mixed batches; clearly,

separate genotyping could potentially bias the results.

Reliability of Genotypes
The genotyping methods for some or all genes were not

described in five papers [18,25–28] making it difficult to assess the

Table 2. Studies investigating association between CYP2C9 variants and each outcome.

Outcome Variant

Number of
studies
investigating
association Study(ies) investigated

Stable
maintenance
dose

*2 551 [17],[23],[42],[109],[137],[101],[95],[27],
[107],[73],[93],[66],[43],[114],[138],[31],
[75],[21],[108],[32],[37],[96],
[28,30,39,41,44,46,48,49,51,54,58,62,63,67,68,70,81,82,85,86,89,100,103-
105,110,112,117,120,123,124,139,140]

*3 651 [119],[23],[42],[109],[137],[101],[127],[113],
[39],[100],[95],[27],[141],[112],[107],[93], [66],[89],[43],[19],[138],[75],[21],
[103],[32],[37],[70],[96],
[17,25,28,31,41,44,46,48-51,53,54,56,58,61-
63,65,67,68,73,81,82,85,86,104,105,108,110,117,120,123,124,128,139,140]

*5 1 [31]

*11 1 [38]

Haplotypes 1 [102]

Time to
stable dose

*2 9 [17,32,48,49,61,63,79,82,93]

*3 9 [17,32,48,49,61,63,79,82,118]

*13 1 [118]

*14 1 [118]

Bleeding
Events

*2 12 [32,40,43,48,49,63,79,82,87,116,117,120]

*3 16 [25,32,40,43,48,49,53,61,63,79,82,87,116,117,119,120]

*5 1 [82]

*6 1 [82]

*10 1 [82]

*11 1 [82]

INR.4 during
first week

*2 2 [63,95]

*3 2 [63,95]

Time to
therapeutic
INR

*2 7 [32,40,63,79,82,95,120]

*3 7 [32,40,63,79,82,95,120]

Percentage
time in
therapeutic
range

*2 4 [48,49,79,96]

*3 4 [48,49,79,96]

Warfarin
resistance

*2 1 [63]

*3 1 [63]

Warfarin
sensitivity

*2 1 [63]

*3 1 [63]

Notes.
1.10 of these studies investigated association between CYP2C9*2 and CYP2C9*3 combined genotype and stable dose.
doi:10.1371/journal.pone.0044064.t002
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Table 3. Studies investigating association between VKORC1 and each outcome.

Outcome Variant
Number of studies
investigating association Study(ies) investigated

Stable maintenance
dose

rs9934438 15 [20,36,44,52,56,61,82,86,100,105,119,125,128,137]

rs9923231 17 [18,24,27,50,54,58,63,77,83,88,91,128]

rs7196161 1 [101]

Asp37Tyr 1 [111]

rs8050894 5 [51,82,83,88,105]

rs7294 5 [63,82,105,125,128]

47G.C 1 [127]

113A.C 1 [127]

1338A.G 1 [127]

1442–1443 CCCGC
insertion

1 [127]

1413A.G 1 [113]

136T.C 1 [113]

124C.G 1 [113]

837T.C 1 [113]

343G.A 1 [113]

rs2884737 1 [105]

rs17708472 1 [105]

rs2359612 5 [41,63,82,83,105]

rs17886199 1 [83]

rs17878338 1 [83]

rs10871454 1 [46]

Haplotypes 5 [26,49,72,80,97]

Time to stable dose rs9934438 3 [61,82,118]

rs7294 1 [63]

rs2359612 1 [63]

rs9923231 1 [63]

Haplotypes 1 [49]

Bleeding events rs9934438 2 [61,82]

rs7294 1 [63]

rs2359612 1 [63]

rs9923231 1 [63]

Haplotypes 2 [49,87]

INR.4 during first
week

rs7294 1 [63]

rs2359612 1 [63]

rs9923231 1 [63]

Time to therapeutic
INR

rs9934438 1 [82]

rs7294 1 [63]

rs2359612 1 [63]

rs9923231 1 [63]

Haplotypes 1 [87]

Percentage time in
therapeutic range

Haplotypes 1 [49]

Warfarin resistance rs7294 1 [63]

rs2359612 1 [63]

rs9923231 1 [63]

Warfarin sensitivity rs7294 1 [63]

rs2359612 1 [63]

rs9923231 1 [63]

doi:10.1371/journal.pone.0044064.t003
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Table 4. Definitions of stable dose in included papers.

Study Definition of stable dose

[119] Mean of doses for 3 consecutive clinic visits with INR in range

[23,61] Unchanged dose that gave therapeutic INR for 7 consecutive days (or 6
consecutive days where that didn’t happen)

[128] AC stably controlled with INR between 1.6 and 2.6

[48,111] INR in range at ./ = 4 consecutive clinic visits

[42] Mean weekly dose required across 6 clinic visits after therapeutic INR already
achieved

[20] Unchanged dose for at least 6 months

[80,106] Same dose for .1 month with INR between 2–3

[101] Mean of 2 recent doses over a period when 2 consecutive stable INR values were
documented

[66,125] Dose required to achieve INR in therapeutic range for last 2 clinic visits at the
same daily dose

[24,39] Stable INR (+/210%) for at least 3 months on constant warfarin dose

[26,27] Constant dose taken at 3 consecutive clinic visits over a minimum period of
3 months, with INR within 2–3

[58] Constant dose taken at more than 3 consecutive clinic visits over a minimum
period of 3 months, with INR within 2–3

[77] Constant dose for at least 3 weeks

[112] Not specifically defined although patients were only recruited if they had been on
maintenance therapy for .6 months with a stable INR within range during the
last two clinic visits

[138] Stable dose for at least 3 consecutive clinic visits prior to recruitment, and
remained on that dose throughout the 4 week follow-up period

[31] Average of last 2 doses taken. As mean difference between the 2 doses was
relatively small, authors concluded they were all on stable dose

[108] Stable dose with INR value varying no more than 15% at last 3 visits

[91] A dose that did not vary by more than 10% between 3 consecutive clinic visits,
over a minimum period of 8 weeks. INR had to be in range at those visits,
although at one of those visits INR was allowed to be 0.2 above or below the
target range.

[17,30,32,38,46,51,54,62,63,86,95,102,104,114,123] 3 consecutive clinic visits for which INR measurements were within therapeutic
range for the same mean daily dose

[37] ,10% fluctuation in dose over preceding 4 wks prior to recruitment

[70] Stable(+/220%) INR values for at least 4 clinic visits on the same daily dose for at
least 1 month before recruitment

[100] On warfarin for at least 1 month and INR now in range

[65] Constant warfarin dose at visits over a minimum period of 3 months, with INR in
range (2–3)

[50] Constant warfarin dose at visits over a minimum period of 3 months, with INR in
range (1.5–3)

[56] Constant warfarin dose for at least 3 consecutive clinic visits over a minimum
period of 3 months, with INR in range (1.5–3)

[53] Dose patients were on when their INR was between 2–4 at the 6 month follow-up
time-point

[105,117] Dose required to achieve the patient’s target INR

[21] Dose needed for INR to be in range at 2 consecutive clinic visits (within minimum
of 48 hrs interval) provided the dose was the same for the 5 days before first INR
in range

[82] Defined as the first dose that leads to a stable INR over three consecutive visits
following initiation of the drug. These INR measurements encompassed a period
of at least 2 weeks, with a maximum difference between the mean daily dosages
of 10%

[25] Mean dose required to achieve target INR range

[44] The dose achieved on day 8 or later that was associated with $2 INRs within 15%
of therapeutic range measured $1 week apart

[110] Dose leading to therapeutic INR values between 2.5 and 3.5 for at least 3 months

[85] Last three INR measurements considered stable by doctors, whether or not they
correspond to the patient’s target INR.

[83] Average dose after achieving therapeutic INR

[18,19,41,43,52,67,68,72,73,75,88,89,93,96,103,109,113,120,124,127,141] not given

doi:10.1371/journal.pone.0044064.t004

Genetics of Warfarin Response: A Systematic Review

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e44064



accuracy of genotyping. Only 37 studies [17,24,29–63] mentioned

genotype quality control procedures, and therefore the genotyping

results in the remaining 80 studies should potentially be

interpreted with caution. Only 43 studies [17,32,35,39,44,-

45,47,48,51,53,54,56–60,62–88]compared genotype frequencies

of all investigated SNPs to those previously published for the

same population, a relatively simple way of highlighting problems

with genotyping.

Of the 78 retrospective and two case-control studies, only six

[31,47,49,51,89,90] mentioned that genotyping personnel were

blinded to outcome status. A further study [35] mentioned that

those collecting clinical data were blinded to genotype status.

Ideally, genotyping personnel should have been blinded to

outcome status to minimise the risk of introducing bias during

the genotype calling procedure.

Missing Genotype Data
Missing genotype data were mentioned in 20 papers

[22,23,30,36,41,62,63,68,70,72,82,83,86,91–97]. Only one of

these studies [70] described checking that missingness was at

random, therefore the remaining 19 studies were at risk of non-

random missing data, which could bias results. The 97 studies not

describing any missing data were also at risk of this, since if there

were missing data, then they may not have been missing at

random.

Population Stratification
No study mentioned undertaking tests for population stratifica-

tion, and none adjusted for any potential cryptic population

stratification, placing all at potential risk from confounding due to

population stratification. Further, although patients formed more

than one distinct ethnic group in 37 studies [17,23,29,31,35–

37,40,45,47,53–55,58,63,65,66,69,71,76,78,80,81,83,84,87,89,-

91,98–105], only 21[17,31,36,37,47,54,58,63,65,66,76,78,80,81,-

83,97–101,104] stratified their analyses accordingly. The

remaining 16 studies are at particular risk from confounding.

Hardy-Weinberg Equilibrium (HWE)
Only 49 studies [17,19,26,27,30,32,35,36,39,41,42,47,48,51,-

54,56,58–63,67–69,72,73,79,80,82–87,91,95–97,100,102,104–110]

reported testing for HWE at all SNPs investigated, whilst a

further two [24,111] tested for HWE for a subset of SNPs only.

However, tests for HWE were undertaken by us prior to

conducting the meta-analyses.

Mode of Inheritance
Twenty-eight studies made a specific assumption regarding the

underlying mode of inheritance. Of these, only one [51] provided

justification, whilst another [36] chose to assume a dominant mode

on the basis that the number of mutant-types was small. For the

remaining 26 studies [17,23,27,31,32,37,39,40,42,44,49,50,52,63,-

67,69,74,77,78,84,103,104,112–115] there is a risk of within-study

selective reporting where several analyses under different modes of

inheritance may have been conducted with only the most

statistically significant being reported. The same is true for eight

studies [22,35,70,89,95,96,116,117] that compared various com-

binations of genotype groups with no apparent justification.

Choice and Definition of Outcomes
There was large variation in definition of stable dose (Table 4).

Of the 76 studies investigating this outcome, 21 did not provide a

definition whilst for the remaining 55 studies, there were 34

different definitions.

There was also variability in the definition of stable dose for the

studies investigating time to achieving stability (Table 5). Five

studies used the same definition [17,32,36,63,118] whilst the

remaining four [48,61,79,82] each used a different definition. The

definition of a bleeding event also varied (Table 5). Of the fifteen

studies investigating this outcome, one [119] provided no

definition, whilst for the remaining fourteen studies there were

nine different definitions. For the nine studies investigating the

outcome of time to achieving therapeutic INR, one [120] did not

provide a definition, whilst for the other eight studies three

different definitions were used (Table 5). No definition was

required for the outcome of INR.4 during the first week and time

within therapeutic range, whilst only one study [63] investigated

the outcomes of warfarin sensitivity or resistance.

Only nineteen studies [35,45,47,53,56,58,59,63,79,80,82,85–

88,120–123] explicitly justified their choice of outcomes; however

for a further 30 studies [23,26,27,29–31,37,39,41,42,50–

52,60,65,67,68,75,76,78,91,98,100,101,107,111,112,117,124,125-

], although no explicit justification was provided, outcomes were in

line with the main aim of the study as conveyed in the paper’s

introduction. The remaining studies are at a particular risk of

selective reporting of outcomes, although it is not possible to

conclude for sure that any of the studies are completely free from

this risk.

Compliance with Treatment
Only four studies mentioned assessing compliance with

treatment. Of the remaining studies, one [126] stated that

‘compliance was reasonably excluded’, but did not explain how

whilst another [72] stated that a decision was made not to assess

compliance, without justification. A further study [118] included

history of noncompliance as an exclusion criterion. Of the four

studies that assessed compliance, three [57,74,82] did not adjust

their analyses for extent of compliance whilst this was not relevant

in the fourth study [34] due to all patients reportedly being

compliant.

Meta-analyses
CYP2C9*2 and stable dose. 45 studies investigated this

association. 29 were excluded: four because data was only

presented graphically [41,62,82,124], 18 because insufficient data

was presented [21,27,28,31,42,44,46,47,49,58,66,75,81,85,86,-

105,123,124], although for one of these [46] the patients were

from a study already included in the meta-analysis [32], and seven

[17,30,93,95,104,114,120] since data was summarised as medians

rather than means. Results from these twenty-nine studies are

qualitatively consistent with the conclusions of the meta-analysis.

Data for the remaining 16 studies are presented in Figure 2.

For the White and African-American ethnic origin group the

pooled effect was significant for the first genotype contrast

(21.90(23.51;20.29) mg/day), but not for the second. The

pooled effect estimate for the two cohorts including Indian,

Chinese and Malay patients was not-significant, as were the two

genotype contrasts for the White ethnic group. However, for the

latter group there was significant heterogeneity between studies for

the heterozygotes versus wild-types contrast (I2:53%).

CYP2C9*3 and stable dose. 55 studies investigated associ-

ation between CYP2C9*3 and stable dose. 30 were excluded: 27

[41,124], [105], [42], [31,66,75], [17,93,95] [27], [21],

[28,44,46,47,49,58,62,81,82,85,86,104,120,123,124] were also ex-

cluded from the meta-analyses for CYP2C9*2, for the same

reasons, two [56,113] since they reported medians rather than

means, whilst one [19] presented data graphically only. Again,

results from these studies are qualitatively consistent with the

Genetics of Warfarin Response: A Systematic Review
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conclusions of the meta-analyses. Data for the remaining 25

studies are presented in Figure 3.

The pooled effect estimate for heterozygotes versus wild-types

were similar for the Chinese and Japanese ethnic groups, and were

statistically significant (21.13 (21.52;20.75)mg/day and

21.18(21.78;20.58) mg/day respectively). For the two cohorts

including Indian, Chinese and Malay patients, the pooled estimate

was again significant but slightly greater (21.47 (22.16; 20.78)

Table 5. Definitions of time to stable dose, bleeding events and time to therapeutic INR.

Outcome Studies Definition

Time to stable dose [61] Unchanged dose that gave therapeutic INR for 7
consecutive days, or 6 consecutive days where that
didn’t happen

[82] Average dose after achieving therapeutic INR

[48] INR in range at ./ = 4 consecutive clinic visits

[17,32,36,63,118] 3 consecutive clinic visits for which INR measurements
were within therapeutic range for the same mean daily
dose

[79] Two consecutive INR values, 7 days apart, in
therapeutic range, without any intervening dose
alteration

Bleeding Events [32,49] Serious and life-threatening bleeds as defined in Fihn
et al. [142]

[53] Three separate analyses undertaken: mild (bleeding
not requiring additional testing, referral and outpatient
visits); moderate (bleeding requiring medical
evaluation/blood transfusion of 2 units or less); serious
(bleeding requiring surgical or angiographic
intervention, transfusion of 3 or more units of blood, or
leading to irreversible sequale)

[43] Three separate analyses undertaken: minor bleeds
(hematoma, microhematuria, mild epistaxis); moderate
bleeds (hematoma, abundant epistaxis, hematuria) and
severe complications (melena, macrohematuria)

[25,61,79,116,120] Any bleeding events during follow-up

[117] Serious bleeding requiring hospital care but excluding
anyone having had thrombolysis, surgery or trauma
immediately before bleed

[40,48] Bleeding requiring re-hospitalisation or death

[84] Two separate analyses undertaken, one of minor
bleeds (minor nosebleeds, microscopic hematuria, mild
bruising, and mild hemorrhoidal bleeding) and one of
major bleeds (serious, life-threatening and fatal bleeds
as defined by Fihn et al. [142])

[63] All adverse events assessed for causality and events
categorized as definitely, probably, possibly or unlikely
to be related to warfarin. Haemorrhagic complications
defined as major or minor according to classification
provided by Fihn et al [142]. Only events considered to
be possibly, probably or definitely associated with
warfarin included in the analyses. Two separate
analyses undertaken: one for all bleeding events and
one for major bleeding events only.

[87] Major or minor bleeding event, according to criteria of
the Second Copenhagen Atrial Fibrillation, Aspirin and
Anti-coagulation study [143]

[119] No definition given

Time to therapeutic INR [32,48,63,73,79,87] Time to first occurrence of an INR in therapeutic range

[95] Time to the first in a series of at least 3 consecutive
therapeutic INRs on a stable dose

[40] Time to at least 2 consecutive INRs between 1.8 and 3.2
measured at least 7 days apart whilst on the same dose

[120] Not given

Warfarin sensitivity [63] A dose of #1.5 mg/day on three successive clinic visits.

Warfarin resistance [63] A dose of .10 mg/day on three successive clinic visits.

doi:10.1371/journal.pone.0044064.t005
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Figure 2. Forest plots for association between CYP2C9*2 and stable dose. Effect estimates are differences in means and 95% confidence
intervals. ": Ethnicity of patients is unclear, although likely to be predominantly White so included in sensitivity analysis of White ethnic group. 1:
Paper does not mention genotype quality control procedures, so reliability uncertain.{: Paper does not mention tests for population stratification,
which is of concern since more than one ethnic group included.{: Paper does not mention assessing compliance with treatment. ¥: Studies reported
results assuming a dominant mode of inheritance. The effect size estimated is therefore for heterozygotes and mutant-type homozygotes combined
versus wild-type homozygotes.
doi:10.1371/journal.pone.0044064.g002

Figure 3. Forest plots for association between CYP2C9*3 and stable dose. Effect estimates are differences in means and 95% confidence
intervals. ": Ethnicity of patients is unclear, although likely to be predominantly White so included in sensitivity analysis of White ethnic group. 1:
Paper does not mention genotype quality control procedures, so reliability uncertain.{: Paper does not mention tests for population stratification,
which is of concern since more than one ethnic group included.{: Paper does not mention assessing compliance with treatment. ¥: Studies reported
results assuming a dominant mode of inheritance. The effect size estimated is therefore for heterozygotes and mutant-type homozygotes combined
versus wild-type homozygotes.
doi:10.1371/journal.pone.0044064.g003
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mg/day). For the White ethnic group, statistically significant

pooled effect estimates were obtained for both genotype contrasts

(21.79(23.30;20.27) mg/day and 22.29(22.98,21.60)mg/day),

although for the mutants versus wild-types contrast there was

significant heterogeneity (I2:75%).

It was suspected that studies investigating only one of

CYP2C9*2 or *3 could be at risk of selective reporting on the

basis that the hypothesis for genotyping both variants is the same.

However, in the two studies reporting results for CYP2C9*2 but

not *3 there were no patients with a *3 allele in one study [30]

whilst for another [114] the one patient with the *1/*3 genotype

and another with the *3/*3 genotype were excluded from analysis.

Of the twelve studies reporting results for CYP2C9*3 but not *2,

no *2 allele was present in any patients for seven

[19,53,65,102,113,119,127], whilst a further four studies

[50,56,61,128] did not genotype for the *2 allele, which is not

surprising since all eleven studies included patients of East Asian

origin, within which the *2 allele has not been observed. In the

twelfth study [25], it is unclear whether the *3 allele was also

genotyped, therefore there is a risk of selective reporting in this

study.

CYP2C9*2 and CYP2C9*3 combined and stable dose (0

copies vs. 1 copy vs. 2 copies of mutant allele). Data for this

association was available in six studies [39,54,89,107,112,117]

(Figure 4). Genotypes in each of these studies were in HWE.

For the Israeli-Jewish ethnic group, the pooled effect estimates

for both genotype contrasts were statistically significant

(21.20(21.41;20.99) mg/day and 23.60(23.99;23.21) mg/

day), as were those for the White ethnic group

(21.55(22.38;20.72) mg/day and 23.35(24.29;-2.41) mg/day

respectively).

CYP2C9*2 and CYP2C9*3 combined and stable dose (0

copies versus 1 or more copies of mutant allele). Four

studies [48,68,100,103] investigated this association. Three were

excluded: one [103] since it was a case-control study, with cases

defined as those with high INR and controls as those with INR

within the normal range, and therefore did not represent the

general warfarin patient population, and two [68,100] because

insufficient data were reported. Their results were qualitatively

consistent with the conclusions of the meta-analyses above. For the

fourth study [48] there was a significant difference between the

two groups, with those with one or more copies of a mutant-type

allele requiring 1.11 (0.11, 2.09) mg less than those with no copies.

VKORC1 rs9934438 and stable dose. Fifteen studies

investigated this association. Nine were excluded: five

[20,44,83,100,106] reported insufficient data, two [36,56] report-

ed medians rather than means, one [105] presented data as the

least square mean dose for each genotype category, after adjusting

for clinical covariates, and one reported data graphically only [82].

Results from all these studies were qualitatively consistent with the

conclusions of the meta-analysis. Data for the remaining six studies

are summarised in Figure 5.

For the Japanese ethnic group, there was a significant difference

in dose requirements between heterozygotes and wild-types, with

wild-types requiring approximately 0.81(0.37, 1.25) mg/day more.

There was also a statistically significant difference for the White

ethnic group, with heterozygotes requiring 1.68(0.51, 2.85) mg/

day more and mutant-types requiring 3.14(2.67, 3.61)mg/day

more.

VKORC1 rs9923231 and stable dose. Twelve studies

investigated this association. One [83] was excluded from meta-

analyses as it reported insufficient data; however its results are

consistent with those from included studies. Genotypes in all

studies were in HWE, and data are summarised in Figure 6.

The pooled effect estimate for the white ethnic group was

statistically significant for both genotype contrasts

(21.45(22.18;20.72) mg/day and (22.86(23.23;22.49) mg/

day respectively), although there was significant heterogeneity for

Figure 4. Forest plots for association between CYP2C9*2 and *3 combined and stable dose. Effect estimates are differences in means and
95% confidence intervals. ": Ethnicity of patients is unclear, although likely to be predominantly White so included in sensitivity analysis of White
ethnic group. 1: Paper does not mention genotype quality control procedures, so reliability uncertain.{: Paper does not mention tests for population
stratification, which is of concern since more than one ethnic group included.{: Paper does not mention assessing compliance with treatment.
doi:10.1371/journal.pone.0044064.g004

Genetics of Warfarin Response: A Systematic Review

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e44064



both contrasts (I2:64% and 60% respectively). The pooled effect

estimate for the Japanese ethnic group was non-significant for

heterozygotes versus wild-types, but heterogeneity was again

substantial (I2:88%), and there were no mutant type homozygotes

present. For the Chinese ethnic group, the difference between

wild-types and mutant-allele carriers combined was significant,

with mutant-allele carriers requiring 1.45(1.12, 1.77) mg/day less.

VKORC1 rs7196161 and stable dose. One paper compris-

ing two separate cohorts [101], including patients of Indian,

Chinese and Malay ethnic background investigated this associa-

tion. Combining data from both cohorts, the difference in stable

dose was significant for both genotype contrasts (1.24(0.83; 1.65)

mg/day and 2.79(1.93, 3.65) mg/day respectively). A further study

also investigated this outcome, but was excluded as it reported

insufficient data.

VKORC1 rs7294 and stable dose. Five studies

[63,82,105,125,128] investigated this association. Two were

excluded: one [105] reported the least square mean dose for each

genotype category after adjusting for clinical covariates, one [82]

presented data graphically only. Data for the remaining three

studies are presented in Figure 7. For the White ethnic group, the

pooled effect estimate was non-significant for heterozygotes versus

wild-types, but was statistically significant for mutant-types versus

wild-types (1.80(0.70; 2.90) mg/day).

VKORC1 rs8050894 and stable dose. Five studies investi-

gated the association with rs8050894, however three were

excluded: one [105] reported the least square mean dose for each

genotype category after adjusting for clinical covariates, one

presented data graphically only [82], and one reported insufficient

data [83]. Of the remaining two studies, patients in one [51] were

a subset of African-American patients from the other [88]. In the

larger of these two, the difference was not statistically significant

for either genotype contrast. This study also included a group of

White patients, and the difference was significant for both

genotype contrasts, with heterozygotes requiring 1.86(1.34, 2.38)

mg/day less than wild-types and mutant-types requiring 3.14(2.72,

3.36) mg/day less.

Other VKORC1 SNPs investigated in more than one study

for association with stable dose. A further five studies

[41,63,82,83,105] investigated association with rs2359612. How-

ever, one [105] reported the least square mean dose for each

genotype category after adjusting for clinical covariates rather than

the mean stable dose whilst another two [41,82] provided data

graphically only. A further study [83] reported insufficient data to

be considered for meta-analysis.

In addition, one study conducted a GWAS analysis and

therefore investigated several SNPs within the VKORC1 gene.

However, as the study report only presented p-values for the most

statistically significant SNPs there was insufficient data to include

this study in the meta-analyses.

CYP2C9*2 and *3 combined and time to stable dose (no

mutant-type alleles versus at least one). Nine studies

[17,32,48,49,61,63,79,82,118] investigated this outcome. Five

were excluded: one [79] presented data graphically only, another

two [48,61] presented median or mean time to event rather than

hazard ratios, one [49] presented hazard ratios from an adjusted

analysis only, two studies [82,118] classed a mutant allele as any

amongst several SNPs, including *2 and *3. Genotypes for the

remaining four studies were in HWE, but the pooled hazard ratio

was not significant for either of the two included ethnic groups,

White and African-American (forest plot not shown).

VKORC1 rs9934438 and time to stable dose. Three

studies investigated this outcome, however one [61] was excluded

as only median time to stable dose was reported as opposed to

Figure 5. Forest plots for association between VKORC1 rs9934438 and stable dose. Effect estimates are differences in means and 95%
confidence intervals. ": Ethnicity of patients is unclear, although likely to be predominantly White so included in sensitivity analysis of White ethnic
group. 1: Paper does not mention genotype quality control procedures, so reliability uncertain.{: Paper does not mention tests for population
stratification, which is of concern since more than one ethnic group included.{: Paper does not mention assessing compliance with treatment. ¥:
Studies reported results assuming a dominant mode of inheritance. The effect size estimated is therefore for heterozygotes and mutant-type
homozygotes combined versus wild-type homozygotes.
doi:10.1371/journal.pone.0044064.g005
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hazard ratios. Of the remaining two studies, one included patients

of African-American and of European-American ethnic back-

ground [82], whilst the other [118] included patients of Korean

ethnic background. The hazard ratios were not statistically

significant in any of the ethnic groups.

Figure 6. Forest plots for association between VKORC1 rs9923231 and stable dose. Effect estimates are differences in means and 95%
confidence intervals. ": Ethnicity of patients is unclear, although likely to be predominantly White so included in sensitivity analysis of White ethnic
group. 1: Paper does not mention genotype quality control procedures, so reliability uncertain.{: Paper does not mention tests for population
stratification, which is of concern since more than one ethnic group included.{: Paper does not mention assessing compliance with treatment. ¥:
Studies reported results assuming a dominant mode of inheritance. The effect size estimated is therefore for heterozygotes and mutant-type
homozygotes combined versus wild-type homozygotes.
doi:10.1371/journal.pone.0044064.g006

Figure 7. Forest plots for association between rs7294 and stable dose. Effect estimates are differences in means and 95% confidence
intervals. ": Ethnicity of patients is unclear, although likely to be predominantly White so included in sensitivity analysis of White ethnic group. 1:
Paper does not mention genotype quality control procedures, so reliability uncertain.{: Paper does not mention tests for population stratification,
which is of concern since more than one ethnic group included.{: Paper does not mention assessing compliance with treatment.
doi:10.1371/journal.pone.0044064.g007

Genetics of Warfarin Response: A Systematic Review

PLOS ONE | www.plosone.org 12 August 2012 | Volume 7 | Issue 8 | e44064



CYP2C9*2 and bleeding events. Five studies

[32,43,63,116,120], all including patients of White ethnic origin,

investigated this association (Figure 8). Genotypes were in HWE

for all studies.

Even though some of the studies undertook two or more

separate analyses, each for a different severity of bleed (Table 5),

all bleeding events were combined into a single analysis for meta-

analysis. A sensitivity analysis was also undertaken excluding the

study by Higashi et al. [32] that only counted serious or life-

threatening bleeds as a bleeding event. Two of the studies [43,120]

included exactly the same patients, and so data from the first only

was included. The pooled effect estimate was not significant for

either of the two genotype contrasts; however heterogeneity was

significant for the mutant versus wild-types contrast (I2:59%).

CYP2C9*3 and bleeding events. Eight studies investigated

this association (Figure 9), five of which [32,43,63,116,120] also

investigated CYP2C9*2. Again, for the White ethnic group, the

pooled effect estimate was not significant for either of the genotype

contrasts, although when including the one study where ethnicity

was unclear in a sensitivity analysis, a significant effect was

observed for mutant versus wild-types (odds ratio: 1.18(0.04; 2.31))

only.

CYP2C9*2 and *3 combined and bleeding events. Seven

studies [40,48,49,79,82,87,117] investigated association between

CYP2C9*2 and *3 combined and bleeding events. Two were

excluded: one [49] reported the hazard ratio for bleeding risk as

opposed to the number of bleeding events, and one [82] classed a

mutant allele as a mutant allele at any of several SNPs, including

*2 and *3. In a pooled analysis of the two studies including White

patients [79,117], there was no significant difference between

heterozygotes and wild-types. The remaining three studies all

included patients of a different ethnic background. Only three

studies included mutant-type patients, and they all included

patients from different ethnic backgrounds.

VKORC1 rs9934438 and bleeding events. Two studies

investigated this outcome, one [61] conducted in a Chinese

population and the other [84] in a white and African-American

mixed population. The odds ratio for the heterozygotes versus

wild-types was not significant in either study, whilst there were no

events in the mutant-type patient groups.

CYP2C9*2 and *3 combined and INR.4 during the first

week. Two studies [63,95] investigated association between

variants in CYP2C9 and the occurrence of INR.4 during the first

week of treatment. One included patients of White ethnic

background whilst the ethnicity of patients in the other study

was unclear. Effect estimates were not significant in either study.

CYP2C9*2 and *3 combined and time to therapeutic INR

(no copies versus 1 or more copies of mutant-type

allele). Seven studies [32,40,63,79,82,95,120] investigated this

association. Four were excluded: one [79] presented data

graphically only, another two [95,120] presented median time to

therapeutic INR rather than hazard ratios, and one [82] classed a

mutant allele as a mutant allele at any of several SNPs, including

*2 and *3. Of the three remaining studies, two included patients of

White ethnic origin and the third included patients of White,

African-American and other unknown ethnic background. Geno-

types in all studies were in HWE, and the effect estimate was not

significant for either of the two ethnic groups. A further study

including White, African-American and Hispanic patients [87]

also investigated this association, but tested the two genotype

contrasts separately, although the hazard ratios for both were

again not significant.

CYP2C9*2 and *3 combined and time in therapeutic INR

range. Four studies investigated this association [48,49,79,96].

Two provided data graphically only [49,79], and one provided

insufficient information to include it within a meta-analysis [96].

Figure 8. Forest plots for association between CYP2C9*2 and bleeding events. Effect estimates are odds ratios and 95% confidence
intervals. ": Ethnicity of patients is unclear, although likely to be predominantly White so included in sensitivity analysis of White ethnic group. 1:
Paper does not mention genotype quality control procedures, so reliability uncertain.{: Paper does not mention tests for population stratification,
which is of concern since more than one ethnic group included.{: Paper does not mention assessing compliance with treatment.
doi:10.1371/journal.pone.0044064.g008
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Discussion

The evidence base for the effect of CYP2C9 and VKORC1

genotype on response to warfarin is substantial; however

navigating through the literature to ascertain what effect a

particular variant has on which outcomes in which patients, and

to what extent, is difficult. This is not least due to significant

variability between studies in terms of ethnic background of

Figure 9. Forest plots for association between CYP2C9*3 and bleeding events. Effect estimates are odds ratios and 95% confidence
intervals. ": Ethnicity of patients is unclear, although likely to be predominantly White so included in sensitivity analysis of White ethnic group. 1:
Paper does not mention genotype quality control procedures, so reliability uncertain.{: Paper does not mention tests for population stratification,
which is of concern since more than one ethnic group included.{: Paper does not mention assessing compliance with treatment.
doi:10.1371/journal.pone.0044064.g009

Figure 10. Key to colours used in forest plots.
doi:10.1371/journal.pone.0044064.g010
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participants, study design, statistical analysis approaches, method-

ological rigour, and choice of outcomes and their definition. To

address this, a systematic review was undertaken which provided a

structured framework within which all evidence accumulated to

date could be identified and methodically allocated to a particular

patient subgroup. A key element was a rigorous assessment of

methodological quality, in accordance with a previously published

checklist [11]. This enabled each piece of evidence to be

considered in light of the robustness of the study from which it

was derived, with particular caution taken in the event that the

assessment suggested a significant risk of bias.

Methodological Quality and Risks of Bias
As anticipated, the methodological rigor of studies was highly

variable, with many areas of concern. Most studies were

significantly smaller than typically required to provide sufficient

power, and the reader was left uninformed about the likelihood of

false-negatives in all studies due to the lack of reporting of a priori

power calculations. There was also uncertainty around the

reliability of genotypes in several studies, since 68% did not

describe any genotype quality control procedures. Further, there

was a risk of bias from non-random missing genotype data, which

is highly probable since heterozygotes are notoriously more

difficult to call than homozygotes, due to a lack of information

on missing data. Further many of the studies were at risk of

confounding from population differences with only 57% of the 37

studies including more than one ethnic group adjusting for this in

their analyses.

Importantly, our review identified a significant risk of selective

reporting amongst pharmacogenetic studies. This risk comes from

several different sources including the huge number of known

genetic variants available to investigate, the several possible

assumptions regarding the underlying mode of inheritance

available to those analysing the data and since the choice of

outcomes and definitions in pharmacogenetic studies is often

subjective. The large variability in outcome definitions also caused

difficulties in replicating findings, comparing results between

studies and also introduced heterogeneity to the meta-analyses.

This was a particular issue for the outcome of stable dose where 34

different definitions were used across 55 studies, and a further 21

studies failed to provide any definition and made interpreting the

results of the meta-analyses difficult. Ioannidis et al. [129] made

similar findings when examining the variability of definitions of

outcomes across studies addressing the association of the Arg16Gly

and/or Gln27Glu polymorphisms of the b2-adrenergic receptor

gene with clinical response to b2-agonist therapy in asthma,

suggesting that this may be a widespread problem across the field

of pharmacogenetics.

Our assessment of the methodological rigour of included studies

was intentionally qualitative, since quantitative methods which

typically weigh each issue of quality equally was not deemed

appropriate on the basis that a study weak in terms of one very

important issue of quality could score better than a study found to

be weak in terms of several, more trivial, issues [130]. However,

one consequence of this is that the quality of a study is not readily

recognisable from a single summary score, and studies cannot be

ordered in terms of overall rigour. It is also important to note that

we were only able to assess the quality of studies based on

information published in the study reports, and this will always be

a limitation for investigators involved in systematic reviews.

Meta-analyses
Where possible, meta-analyses were undertaken in an attempt

to improve power to estimate a genetic effect. This also provided

an opportunity for potential sources of heterogeneity to be

investigated. The advanced meta-analysis methods adopted

allowed more precise estimates of effect than undertaking two

separate meta-analyses (one for heterozygotes versus wild-type and

one for mutant-type versus wild-type) since they accounted for the

inherent correlation between the two genotype contrasts, whilst

not requiring a specific assumption regarding mode of inheritance.

They also enabled studies making different assumptions regarding

the underlying mode of inheritance to be included in the same

meta-analysis, thus improved power.

In terms of the conclusions arrived at in the meta-analyses, no

significant associations were found between CYP2C9*2 and stable

dose requirements for either Asian or white patients. However, for

the group including white and African-American patients, the

difference between heterozygotes and wild-types was statistically

significant with heterozygotes requiring almost 2 mg/day less.

Significant associations were observed between CYP2C9*3 and

stable dose for the White, Chinese, Japanese and a mixed Indian,

Chinese and Malaysian population. For the heterozygotes versus

wild-type contrast the largest difference was observed for the white

population with heterozygotes requiring almost 1.80 mg/day less.

For the Japanese and Chinese populations the estimates were

similar at around 1.20 mg/day less, with the difference for the

mixed Indian, Chinese and Malaysian population being in

between these two estimates at around 1.50 mg/day less. An

effect size for the other genotype contrast was only estimable in the

white population, with mutant types requiring almost 2.30 mg/

day less.

Holding two copies of the mutant allele at the CYP2C9*3 SNP

was also found to increase the risk of bleeding, with the odds ratio

for mutants relative to wild-types estimated at 1.18. However, the

effect was only significant when combining data across all ethnic

groups. Bleeding events are relatively rare, and therefore failure to

detect an association in the stratified analyses or for the other

genotype contrasts investigated may be as a result of insufficient

power and the presence of true associations should not be

discounted.

Some studies did not differentiate between the CYP2C9*2 and

*3 SNPs, comparing those with no copies of either *2 or *3

mutant-type alleles to those with one and two copies respectively.

Again, significant associations were observed for both the white

and Israeli-Jewish ethnic groups. For the former, the difference

between heterozygotes and wild-types was just over 1.50 mg/day

less whilst the difference between mutant-types and wild-types was

much larger at 3.35 mg/day less. For the latter, a slightly smaller

difference was observed for the first genotype contrast at 1.20 mg/

day less although the difference for the second genotype contrast

was slightly larger at 3.60 mg/day less. Similar estimates were

observed when combining all studies in a single meta-analysis.

A significant association was also observed between the

VKORC1 rs9923231 SNP and stable dose in both the white

and Chinese ethnic groups, with heterozygotes requiring 1.45 mg/

day less than wild-types in both groups. It was only possible to

calculate a pooled estimate for the difference between mutant-

types and wild-types in the white ethnic group, and this was found

to be almost double this at just under 2.90 mg/day less.

Further, a significant difference was also observed between

mutant and wild-type homozygotes at the rs7294 SNP in the white

population, with the former requiring 1.80 mg/day more than the

latter. A similar estimate was obtained when including data from

all studies in a single meta-analysis.

Often, heterogeneity was significant for one of the genotype

contrasts but not the other. This is surprising, as it is expected that

sources of heterogeneity would influence both contrasts to the
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same extent. One possible explanation could be the small number

of patients in some genotype groups (particularly the mutant type

homozygote group) of some studies. We acknowledge that our

method of exploring potential reasons for heterogeneity using

sensitivity analyses is rather simplistic, and a more formal

exploration of sources of heterogeneity could be achieved by

meta-regression. However, since the number of studies in each

meta-analysis was small this approach was not considered here.

Further, it is worth noting that only aggregate meta-analyses are

considered here, however an alternative approach would be to

conduct an individual patient data (IPD) meta-analysis where raw

data collected within each study is obtained and analysed using

methods such as multi-level modelling to account for study-level

effects. Such methods would allow outcomes to be standardised

across datasets and would also facilitate adjustment for between-

study heterogeneity since patient-level as well as study-level

variability could be accounted for. It would also overcome, at

least in part, the issue of bias from the selective reporting of both

outcomes and genetic variants. Since conducting an IPD meta-

analysis is inherently resource-intensive we were unable to

consider this approach here, however given the additional benefits

it can offer it may be worth considering in the future for warfarin

and other areas of pharmacogenetic research. The work of the

International Warfarin Pharmacogenetic Consortium on develop-

ing a dose prediction model [131] is an example of successfully

utilising IPD, although data from only a subset of all conducted

warfarin pharmacogenetic studies contributed to this analysis.

The advanced meta-analysis methods applied may improve

power and precision, however they do rely on particular pieces of

summary data being reported in the study publication. This data

includes the numbers of patients and events in each of the three

genotype groups for a binary outcome and numbers of patients,

and means and standard deviations per genotype group for a

continuous outcome. Some of this data was omitted from the

report of some studies, whilst others provided only p-values for the

associations investigated, or merely stated that they were non-

significant. Unfortunately, all these studies had to be excluded

from the meta-analyses, although where it was possible to assess so

the results were qualitatively consistent with included studies. It

was also necessary to exclude some studies due to uncertainty

about outcome definition and the ethnic origin of participants.

Recommendations for those Conducting
Pharmacogenetic Research

Given the sparse reporting and concerns regarding methodo-

logical quality observed in some studies, we recommend that

priority should be given towards improving the reporting and

methodological quality of pharmacogenetic studies, since even the

most sophisticated methods of analysis will not compensate for lack

of data and poor methodology. In this regard, we would make a

number of recommendations regarding the conduct and reporting

of pharmacogenetic studies, with a view to making such studies

more amenable to systematic reviews and meta-analyses in the

future. Otherwise, the literature will provide an incomplete picture

of the accumulated evidence on the associations of interest and, as

such, meta-analyses may be biased. These recommendations are

as follows:

i) Studies should adhere to rigorous methodological quality.

Guidance in this regard is given in Jorgensen and

Williamson [11];

ii) So that any quality assessment based on the published

paper is a fair reflection of the study’s true underlying

methodological quality, researchers are encouraged to be as

transparent as possible in their study reports in terms of

what has been done;,

iii) The number of patients in each genotype group should be

reported;

iv) For binary outcomes, the number of events in each

genotype group should be reported;

v) For continuous outcomes, the means and standard

deviations should be reported for each genotype group

separately;

vi) The ethnicity of included patients should be reported;

vii) In the event that a study includes more than one ethnic

group, the summary data specified in i)–iii) above should be

provided per ethnic group;

viii) To minimise the risk of selective reporting, researchers

should ensure complete transparency in terms of how their

study is conducted by publication of protocols in advance

and full reporting of all variants and outcomes investigated

and of all analysis approaches undertaken in the study

report.

ix) Consensus should be reached between experts in the fields

on a core set of outcomes that should be investigated in any

pharmacogenetic study of a particular treatment, together

with definitions. An effective way of achieving this is to

encourage communication between groups investigating

the same association such that a prospective meta-analysis

can be planned, with outcomes and methods synchronised

between the research groups. This would facilitate meta-

analyses by reducing heterogeneity, increase the number of

studies combined in a single meta-analysis, as well as

minimise the risk of selective reporting of outcomes. It

would also facilitate the work of consortia such as the

International Warfarin Pharmacogenetic Consortium

[131], where several international datasets contribute to a

single, large, association study.

These recommendations are primarily aimed at improving

reporting of pharmacogenetic studies, specifically with a view to

facilitating future systematic reviews and meta-analyses of

pharmacogenetic studies, however we also recommend that the

reporting guidelines ‘STREGA’ [132], developed primarily with

gene-disease association studies in mind, are also referred to. It is

appreciated, with researchers increasingly using a genome-wide

approach to their investigations thus collecting data on a huge

number of SNPs in any given study, that the level of detail

recommended in ii)–vi) above can be problematic due to limited

journal space, however this reporting could be facilitated by the

use of supplementary data, accessible electronically.

Methods

A protocol describing methods for the review was published on

the HuGENet database [133] in advance.

Inclusion Criteria
Participants were already established on or commencing

warfarin treatment and genotyped for CYP2C9 or VKORC1

variants to investigate their effect on treatment response.

Prospective and retrospective cohort studies, case control studies

and randomized controlled trials were included. Case studies were

excluded. Only studies published as journal articles in the English

language were included.
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Outcomes
The three co-primary outcomes were stable maintenance dose,

time to achieving stable maintenance dose and bleeding events.

Secondary outcomes were INR greater than four during the first

week, time to achieving therapeutic INR, proportion time spent

within therapeutic range, warfarin sensitivity (1.5 mg or less on

three successive clinic visits), and warfarin resistance (10 mg or

more on three successive clinic visits).

Search Strategy
MEDLINE was searched on 30 September 2009 applying the

search strategy summarised in Table 1. Reference lists of all

identified studies were scrutinized for further papers of potential

interest. A list of titles and abstracts for identified studies were

reviewed with any obviously irrelevant studies removed. For the

remaining papers, full text articles were retrieved and each

assessed individually for eligibility. This process was undertaken by

two reviewers (ALJ and RF/JO) independently with differences

resolved by discussion.

Data Extraction
Data were extracted in accordance with the methods set out in

the Cochrane Handbook [134], onto data extraction forms which

were piloted on the first five studies. This included information

pertinent to assessing that review inclusion criteria had been met,

patient demographics, outcome data, study design and data for

assessing methodological quality. Assessment of methodological

quality was qualitative, and undertaken in accordance with

Jorgensen and Williamson [11]. Papers were randomly allocated

between two reviewers for data extraction, although some initial

training was undertaken to ensure consistency.

Statistical Analysis
For each SNP-outcome combination investigated by more than

one study, a meta-analysis was undertaken. Forest plots were

prepared, stratified by ethnicity as recommended by HuGENet

[130], for each genotype contrast separately (heterozygotes versus

wild-type homozygotes (‘wild-types’) and mutant-type homozy-

gotes (‘mutant-types’) versus wild-types). A key to colours used in

the forest plots is provided in Figure 10. For continuous outcomes,

the difference in means was estimated between two genotype

groups; for binary outcomes the odds ratio was estimated.

To estimate a single pooled effect for each genotype contrast,

the genetic model-free approach of Minelli et al. [12] was applied

to each ethnic group separately, and random effects assumed. This

method models the two effect estimates from each study as being

bi-variate normally distributed, thus allowing the two effect sizes to

be estimated separately whilst still accounting for the inherent

correlation between them. It does not require a specific

assumption to be made in advance regarding the underlying

mode of inheritance, but rather estimates this from the data.

Further, this mode is not restricted to one of the classic modes of

dominant, additive or recessive.

The method was applied in Stata (v9.2) and relied on each study

contributing data on both genotype contrasts. Where no mutant-

types were present in a study and the outcome was continuous, the

mean outcome for that genotype group was estimated as the mean

for the mutant-type group across all other studies within the same

ethnic group, whilst the standard deviation was set to be very

large, ensuring the study contributed almost nothing to the

analysis. Where the outcome was binary, this problem was

overcome by adding 0.5 to each cell of the hypothetical

contingency table. Minelli et al. acknowledge that the between-

study covariance is poorly estimated in their proposed method

when the number of studies is small [12], and therefore as they

recommend sensitivity analyses were conducted assuming various

fixed values for the between-study correlation. Unless otherwise

stated, results were robust to this variation. Where mutant-types

were not present in any study within an ethnic group, or where all

studies in an ethnic group assumed a dominant mode of

inheritance, a standard random-effects approach [135] was used

instead. Prior to applying the method of Minelli et al. the data

were explored graphically to confirm that the necessary assump-

tion of a constant mode of inheritance across all studies was

reasonable. If not, a joint pairwise bi-variate approach was

employed instead [12].

Where an ethnic group included studies that differed in terms of

their assumption about mode of inheritance (e.g. where some

made no assumption whilst others assumed a dominant mode of

inheritance), the method of Salanti et al. [13] was used instead to

obtain the pooled effect estimates. This utilises the genetic model-

free approach of Minelli et al. whilst allowing studies making

different assumptions regarding the underlying mode of inheri-

tance to be included together in a single analysis, thus maximizing

power. This method was applied in WinBUGS [136] using a chain

length of 100,000 after discarding the first 10,000 to allow for

convergence. Each analysis was repeated three times using

different initial values, and compared to check for convergence.

Where studies assumed a dominant mode of inheritance in their

analysis, the effect estimate for heterozygotes and mutant

homozygotes combined versus wild-type homozygotes has been

included on the forest plots for both genotype contrasts i.e. for

these studies, the effect estimate will appear the same on both

forest plots.

To assess for heterogeneity, the I2 statistic was calculated and

forest plots inspected. Where heterogeneity was significant

(I2.50%), differences in methodological quality was considered

as a potential contributing factor. To investigate this, sensitivity

analyses were conducted excluding studies with questionable

methodological rigor, with reference to two particular issues of

concern: failure to report usage of any genotype quality control

procedures, and failure to report testing for the presence of

population stratification.

A test for Hardy-Weinberg Equilibrium (HWE) was undertaken

within each study separately. Where genotypes deviated from

HWE (p,0.001) a sensitivity analysis was conducted excluding

that study.

Unless otherwise stated, conclusions from all sensitivity analyses

were consistent with the main analyses.

Studies were investigated for evidence of overlapping datasets

by sorting them according to geographic region, then date, and

scrutinising author names and affiliations. Any two studies found

similar with regard to any of these were scrutinised to identify

whether the same patients had been included in both, in which

case only the largest study was included in the meta-analysis.
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