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Abstract

Background: In previous work, we designed a modified aptamer-free SELEX-seq protocol (afSELEX-seq) for the discovery of
transcription factor binding sites. Here, we present original software, TFAST, designed to analyze afSELEX-seq data, validated
against our previously generated afSELEX-seq dataset and a model dataset. TFAST is designed with a simple graphical
interface (Java) so that it can be installed and executed without extensive expertise in bioinformatics. TFAST completes
analysis within minutes on most personal computers.

Methodology: Once afSELEX-seq data are aligned to a target genome, TFAST identifies peaks and, uniquely, compares peak
characteristics between cycles. TFAST generates a hierarchical report of graded peaks, their associated genomic sequences,
binding site length predictions, and dummy sequences.

Principal Findings: Including additional cycles of afSELEX-seq improved TFAST’s ability to selectively identify peaks, leading
to 7,274, 4,255, and 2,628 peaks identified in two-, three-, and four-cycle afSELEX-seq. Inter-round analysis by TFAST
identified 457 peaks as the strongest candidates for true binding sites. Separating peaks by TFAST into classes of worst,
second-best and best candidate peaks revealed a trend of increasing significance (e-values 4.561012, 2.9610246, and
1.2610273) and informational content (11.0, 11.9, and 12.5 bits over 15 bp) of discovered motifs within each respective
class. TFAST also predicted a binding site length (28 bp) consistent with non-computational experimentally derived results
for the transcription factor PapX (22 to 29 bp).

Conclusions/Significance: TFAST offers a novel and intuitive approach for determining DNA binding sites of proteins
subjected to afSELEX-seq. Here, we demonstrate that TFAST, using afSELEX-seq data, rapidly and accurately predicted
sequence length and motif for a putative transcription factor’s binding site.
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Introduction

Systematic Evolution of Ligands by Exponential Enrichment

(SELEX) is a technique for determining nucleotide binding sites of

transcription factors ([1,2] and reviewed in [3]). SELEX is an

iterative method where the products of one cycle are used to

generate the input for the next (Fig. 1a), enriching strongly

binding sequences in the output. In the past, only the terminal

cycle was analyzed, and typically 50 or fewer members of the

cloned output library were sequenced [1,2]. High-throughput

sequencing has made SELEX-seq possible, in which intermediate

cycles are analyzed and millions of members of each cycle are

sequenced. SELEX-seq improves the detection and analysis of

binding sites over SELEX alone because behavior of the library

can be scrutinized in million-fold greater detail, and between all

cycles instead of only within a terminal cycle. SELEX-seq can

detect the presence of library members and quantify their

representation, making it possible to estimate binding affinities of

many sequences and to compare sequences to one another to

generate motifs [4,5,6,7]. This advance also obviates the need to

run the protocol until only a single sequence predominates in the

terminal cycle. In fact, successful SELEX-seq experiments depend

on multiple species being detectable in the terminal sequenced

cycle to accurately infer binding characteristics [4].

Usually, the library of DNA to be enriched consists of random-

sequence 10–20 bp oligonucleotides, called aptamers. This type of

library is especially useful when a specific subset of aptamers is

itself the desired end-product. Inter-cycle computational compar-

ators (see [4,5,8] for examples) utilize the iterative nature of

SELEX-seq to calculate binding affinity and activity of individual

aptamers or aptamer sets, which is useful in designing therapeutic

aptamers [9,10,11]. However, use of aptameric SELEX-seq for

discovery of genomic binding sites may be problematic. Aptameric

libraries are by definition random, so a given sequence may not be

found within a target genome and thus discovered sequences may

lack physiological relevance. Aptamers also lack genomic context,

so that binding behavior may obscure in vivo findings by too

strongly reflecting in vitro conditions [12].
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To address these potential pitfalls of SELEX-seq, we designed

an aptamer-free SELEX-seq protocol (afSELEX-seq) that uses

sheared genomic dsDNA as the input library, with which we

successfully identified a novel and unique transcription factor

binding site [6]. Our approach incorporates the advantage of

multiple-round enrichment with a physiologically relevant target

library. In afSELEX-seq, the results of every sequenced cycle are

aligned to a target genome, and alignments are compared between

rounds to predict binding sites. Recently, there has been an

exponential increase in the need for new software to meet the

challenges of high-throughput sequencing output. As sequencing

technologies have evolved and the size of datasets has increased, it

has become necessary to automate data analysis, as by-hand

approaches are becoming rate-limiting [13]. Performing a

literature search through the NCBI for publications related to

new software and sequence analysis reveals that such articles have

nearly doubled every year in the last three years, highlighting the

increased demand and opportunities within the scientific commu-

nity. Unsurprisingly then, to process our results it was necessary to

develop novel software capable of both analyzing the results of

chromosomal alignment and of acting as an inter-cycle compar-

ator. Transcription Factor Analysis using SELEX with High-

Throughput sequencing (TFAST) was written in Java, and once

sequences have been aligned to the genome of the target organism

(for example, with BLASTn [14] or BOWTIE [15]), TFAST

completes analysis in minutes on a personal computer. TFAST

was designed to be useful to a broad range of biologists, so it

employs an uncomplicated graphical interface to streamline its

use. It is easy to install, requiring no special expertise in

bioinformatics.

Methods

Peak identification
afSELEX-seq is performed using sheared genomic fragments,

and the products of each of multiple cycles are subjected to high-

throughput sequencing. Sequence data are aligned to the target

chromosome using either BLASTn or any alignment method

capable of producing output in SAM format (Fig. 1b). TFAST

processes the same number of aligned reads from each cycle, thus

reducing the impact of variability in sample read quality and

completeness, to generate single column tables representing

frequencies of aligned tags at every position within the target

genome. TFAST then uses a modified sliding window algorithm

(see [16] for a review of sliding window algorithms) to identify

peaks in the final round of afSELEX-seq (Fig. 1c). The sliding

window width is set to twice the estimated fragment length of an

average library member and proceeds along the chromosome in

single-nucleotide increments to identify strict maxima. To be

considered peaks, maxima must be greater than two standard

deviations above the mean frequency of the control (unselected)

cycle within a range around the peak (distance set by user). Two

standard deviations outside of the mean of the control (unselected)

cycle frequencies represents the 95% confidence interval, so that

the user may have confidence that peaks picked in this way are

significant (p,0.05). Arguably, peak finding should proceed via

one-tailed statistics, as the user is scoring enrichment specifically

and not merely difference from a mean. Thus, two standard

deviations may provide significance of p,0.025. Minimum

spacing to identify individual peaks is set at a single fragment

length, with the exceptions that deep valleys (,50% adjacent peak

value) between peaks or adjacent peaks within 75% frequency of

one another are both delimited as separate.

Figure 1. Schematic of the TFAST workflow. TFAST analyzes data produced using SELEX and high-throughput sequencing. (A) An overview of
SELEX. Members of an input DNA fragment library compete to bind a protein of interest. Out-competed fragments are washed away and removed.
Fragments that bind competitively are recovered and separated from the protein (e.g., by phenol-chloroform extraction). Recovered fragments are
amplified using low-cycle PCR, and the resultant library becomes the input for the next cycle. n cycles are repeated to enrich for strongly binding
fragments. (B) DNA inputs for each cycle are subjected to high-throughput sequencing. Sequence reads are aligned to the relevant target genome,
producing (C) frequency-position plots for each input sequenced. Shown is a magnified example of a region of the chromosome that behaves as a
true binding site, enriching in frequency with each cycle. ‘‘Cycle 1’’ refers to the initial DNA library. (D) TFAST identifies and evaluates peaks and
compares peak characteristics across all sequenced inputs. TFAST assigns quality scores to peaks and predicts binding site features. TFAST also
generates quality scores on randomly selected regions of the chromosome to act as background controls, to improve downstream motif analysis.
doi:10.1371/journal.pone.0042761.g001
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Peak scoring
Frequencies at each peak position are compared across all cycles

of afSELEX-seq, allowing the program to score peaks based on

rate of enrichment as a proxy for binding affinity consistent with

existing models of enrichment during SELEX (Fig. 1c and d)

[3,4,7,17,18]. Sequences are given a cumulative score for each

round in which they are able to enrich, so that sequences that

remain strongly competitive for binding throughout afSELEX-seq

achieve the highest scores. To reflect the increasing stringency of

competition for binding in later rounds, the user should set scores

for enrichment between cycles to be directly proportional to the

bulk affinity of the library within each cycle. This causes TFAST

to weigh later-round (i.e., more stringent) enrichment more heavily

than early-round enrichment, improving the discrimination of

strongly-binding sequences.

TFAST then generates information on the relative representa-

tion of each peak, annotated as a raw final frequency and fraction

of the area under a given peak in comparison to the total area

under all other peaks in that cycle. TFAST also prints the genomic

sequence under each peak (range determined by user) and outputs

all data in tab-delimited format for downstream analysis. This

format is designed to dovetail smoothly with methods for the

discovery of DNA binding-site motifs. TFAST also automatically

produces and analyzes sets of random sequence positions denoted

‘‘spoof’’ peaks, which can be used to improve motif discovery

through counter-selection and background modeling. TFAST

does not generate negative peaks, which are sometimes used to

refine motif discovery, because counter-selection in afSELEX-seq

produces a background of zero frequency between peaks. This

means that negative peaks are artifacts of variation in control cycle

sequencing and not indicative of especially poor regions of

protein:DNA interaction.

Binding site sequence length prediction
TFAST is designed to estimate the length of a putative region of

protein:DNA interaction. Members of a dsDNA library should

only have specific affinity for the protein of interest if they include

the binding sequence. The full width of any peak over a single

binding site will be twice the length of an average library member

less the length of the binding site. TFAST calculates the full width

of a peak as the range along the chromosome that includes 99% of

the area under the peak, and then uses the width to calculate a

predicted length for any binding site. Predicted length is included

with the output of peak features.

Validation and test data set
It was necessary to test the efficacy of TFAST against additional

data sets. However, our dataset is the only extant set of its kind.

ChIP-seq datasets produce short chromosomal reads, and

SELEX-seq produces short random reads across cycles of

enrichment. Our dataset, however, is the only one to produce

short chromosomal reads across cycles of enrichment. Therefore,

it was necessary to simulate a data set to validate TFAST. To

simulate data, we parameterized our dataset and used the

discovered trends to generate synthetic data. We first scrutinized

the relationship between affinity for a binding site and the

frequency above that site by estimating affinity of any given

sequence within the genome using a simple linear algorithm that

estimates similarity between a given sequence and a positional

weight matrix:

Affinity~A
Xn

i~1

Mi S i½ �½ �

where n is the number of base pairs in the motif, A is a scaling

factor, Mi[c] gives the probability given by the motif of base pair c

at position i in the motif, and S[i] gives the base pair in the

sequence subject to analysis at position i.

We used the positional weight matrix generated in prior work

(the parent motif) [6] and estimated similarity at every given site

within the E. coli CFT073 genome as a function of frequency. All

sites were ranked in order of descending similarity to the parent

motif and binned into groups of 100. The average frequency at

each site within each group of 100 was plotted against estimated

affinity based on sequence similarity to the parent motif.

Regression analysis was performed to generate an exponential

model of the relationship between frequency and similarity. The

scaling factor A was derived from observations of maximum and

minimum affinity for species within the published afSELEX-seq

data set estimated by this method, and set so that simulated

sequences would enrich at similar cutoffs as that observed within

the afSELEX-seq dataset (a value approximating 50% of

maximum sequence identity). Additionally, for each of 100 best-

quality peaks picked at random, the maximum frequency, mean

frequency, and standard deviation was calculated and a Gaussian

(normal) curve was generated from those values. Goodness of fit of

each parent peak was compared to its derivative Gaussian

distribution by least-squares regression analysis. An r2 was

reported for each peak as it compared to its corresponding

Gaussian derivative as an estimate for the normality of the

distribution of peaks within our afSELEX-seq data set, to establish

the distribution characteristics of our peaks for use in simulating

peaks in our synthetic data sets.

Test data sets were generated from these values. For each test

data set, a 56106 random bp genome is generated and a random

15–30 bp region of the synthetic genome is selected as the motif of

interest. All sites are graded within the genome for their similarity

to the randomly generated motif. The trend of similarity to parent

motif to the frequency at that position derived from our afSELEX-

seq dataset is then used to generate frequencies at each location

within the chromosome, and Gaussian peaks are generated at each

site. Total frequency within each test data set is normalized to

206106 reads to approximate the fixed number of reads in our

afSELEX-seq data set per cycle sequenced.

100 test datasets were generated and TFAST was used to

process each. The results of TFAST were compared to the actual

motif that had been generated within each set by analyzing the

highest peak in TFAST as well as the positional weight matrix

generated from the most strongly enriching 100 best-quality peaks

and motif discovery is performed by MEME [19].

Results and Discussion

TFAST accurately discriminates peaks in afSELEX-seq data
To validate our peak calling method, we compared peak

detection between TFAST and MACS [20] in an afSELEX-seq

dataset generated in prior work [6]. We elected to compare to

MACS because it is an established and well-vetted peak finding

program designed for use with aligned high-throughput sequence

data. For a recent discussion of MACS, see [21] and references

within. TFAST called 96% of regions identified by MACS as

peaks, and subdivided large peaks into multiple smaller ones

(Fig. 2a). In detection of enriched regions, TFAST and MACS

Transcription Factor Analysis Using TFAST

PLoS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e42761



had a simple agreement of 0.98 and a k value of 0.89, values

generally considered to indicate near perfect agreement. The

simple agreement of 0.98 and the k of 0.89 between MACS and

TFAST were calculated under the simplifying assumption that the

5,231,428 bp genome of E. coli strain CFT073 is divided into

26,157 candidate peak regions of 200 bp. Analysis assuming

13,079 candidate peak regions of 400 bp yields a simple

agreement of 0.96 and a k value of 0.88.

TFAST peak grading correlates with informational density
of discovered motifs

When TFAST was used to process our dataset, 2,628 total peaks

were identified, of which 457 achieved the highest weight (‘‘Best’’

peaks), or 17.4% of the total peaks called. When peaks are called

without using the last or last two enrichment cycles, 4,255 and

7,274 peaks are identified, respectively, with a concurrent loss in

specificity in identifying the ‘‘Best’’ peaks (31% and 100%,

respectively) (Table 1). This demonstrates TFAST’s unique

advantage of using iterative cycles over simply the final set of

peaks. Additionally, we instructed MEME [19] to discover 15 bp

positional weight matrices (motifs) from peaks picked by TFAST

or MACS (Fig. 2b–k). Peaks with the best, second best and worst

weight scores identified by TFAST had e-values (an estimate for

likelihood of a motif arising by chance) of 1.2610273, 2.9610246

and 4.561012, respectively, and informational content of 12.5,

11.9 and 11.0 bits, respectively (Fig. 2b–e). This indicates that

TFAST was successful at stratifying classes of peaks over consistent

sequences in the genome, and that positional weight matrix

reliability was greatest in the ‘‘Best’’ peaks.

All peaks discovered by TFAST pooled together generated a

positional weight matrix with an e-value of 2.56102107, an

intermediate value that was less significant than ‘‘Best’’ peaks

selected by TFAST (Fig. 2e). Furthermore, pooled peaks picked

by MACS produced a logo with an e-value of 0.54, which was not

significant. Using the 200 MACS peaks with the lowest false

discovery rate (FDR), MEME was able to generate a positional

weight matrix with an e-value of 1.861023 and informational

content of 9.8 bits (Fig. 2f). No other subset of MACS peaks (i.e.,

peaks with lowest p-value, greatest fold enrichment, etc) generated

a logo with an e-value less than 1. This is a substantially larger e-

value than that generated from the peaks discovered in TFAST,

likely because the average width of peaks picked by MACS was

5036a standard error of 9.71, whereas all peaks picked by TFAST

were under 200 bp wide. These findings support the use of the

method employed by TFAST of picking many narrow peaks based

on absolute local maxima, coupled with fragment length, rather

than statistical modeling of aligned sequences.

Background models derived from TFAST improve motif
discovery

To validate the use of spoof peaks (described in methods) to

improve motif discovery, we generated a zero-order Markov

model from the spoof output of TFAST. When we incorporated

the model into our motif discovery using MEME, the information

content of the motifs rose by an average of 0.78 bits or 6.3%, and

e-value fell by an average of 8.26102133 for peaks picked by

TFAST (Fig. 2g–j). Additionally, the Markov-corrected 15 bp

motif from the ‘‘Best’’ weight sequences picked by TFAST most

accurately predicted the 15 bp core of the previously validated

binding site GTTATTTTAAC [6]. Use of the Markov model also

strengthened the motif generated from MACS, improving

information content from 9.8 to 10.0 bits or 2.0% and the e-

value from 1.861023 to 2.3610287 (Fig. 2f, 2k). Overall, this

supports the notion that using an accurate background model

generated from TFAST can improve the ability to discover

significant motifs in downstream peak analysis, and improves total

motif informational content.

TFAST can accurately predict binding site sequence
length

In our data set, TFAST predicted a binding site width for the

‘‘Best’’ peaks of 20.88 bp 6 a standard deviation of 10.33 bp,

consistent with the motifs discovered. Additionally, TFAST

predicted the binding site for the peak in the flhD promoter of

CFT073 for PapX to be 28 bp. Experimentally, PapX binds a

29 bp fragment of the flhD promoter, but not a truncated 21 bp

fragment [6]. The consistency between the prediction made by

TFAST and the experimentally verified binding site indicates that

TFAST is capable of predicting binding site length from

afSELEX-seq data.

TFAST reliably discovers motifs in synthetic datasets
To generate our simulated afSELEX-seq datasets, we sought to

determine trends in peak distribution and shape to accurately

simulate real afSELEX-seq data. To determine shape, we

analyzed 100 random best-quality peaks from the fourth cycle of

enrichment from our afSELEX-seq dataset generated in previous

work [6] for Gaussian fit by a least-squares regression analysis.

52% of peaks had an r2 value of 0.99 or better, and the average r2

of all the peaks was 0.92 with a standard deviation of 0.18. These

results support the use of Gaussian distributions for the peaks

generated in our synthetic dataset.

We reasoned that the similarity of sites to the true binding motif

would directly correlate with affinity, so that sites with relatively

high similarity to the true binding site would have relatively high

affinity, and sites with relatively low similarity would have

relatively low affinity. It follows that sites with relatively high

affinity would undergo selection during afSELEX-seq and thus

enrich in frequency, and sites with relatively lower affinity would

not enrich as well and thus their frequency would be less well

represented. To test our hypothesis, we computed similarity scores

for each region of the E. coli CFT073 genome to the binding site

motif discovered for PapX in previous work [6] for each cycle of

afSELEX-seq sequenced using a linear matching algorithm (see

methods). Each region was ranked for similarity, and the average

similarity and frequency for groups of 100 regions with

sequentially lower similarity were compared for each sequenced

cycle of afSELEX-seq (fig. 3a–d). In the control (unselected)

library, there was no correlation between predicted sequence

affinity for PapX and frequency, consistent with the fact that no

enrichment based on affinity had yet occurred (fig. 3a). In each of

the enriched cycles, an exponential function described the

correlation between predicted affinity of a region and the observed

frequency of enrichment over that site (fig. 3b–d). The r2 values

of the affinity-to-frequency functions indicate that over 90% of the

frequency (and thus enrichment) of a sequence is explainable by its

similarity to a binding site. The similarity-frequency regressions

increase in steepness between rounds, indicating that sequences

with relatively more similarity to the discovered binding motif

consistently display relatively higher affinity across rounds.

Together, these data indicate that sequence similarity to a binding

motif is a reliable predictor for frequency within a cycle afSELEX-

seq, and thus were dependable models for our synthetic data sets.

In addition, the number of peaks generated by this method per

data set was always within the same order of magnitude as those

discovered in our afSELEX-seq data, further supporting the use of

these parameters to simulate afSELEX-seq data.

Transcription Factor Analysis Using TFAST
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We used the parameters discovered from our experimentally

derived afSELEX-seq data set to generate 100 synthetic datasets.

Within each data set, each region of the chromosome was assigned

a frequency that corresponded to that region’s similarity to the

binding motif picked randomly for the given simulated data set,

using the affinity algorithms derived from our afSELEX-seq data

in conjunction with the similarity algorithm (described in

methods). TFAST was then used to process each simulated data

Figure 2. TFAST identifies peaks with discoverable motifs from afSELEX-seq data. TFAST and MACS were used to pick and evaluate peaks
from our data set. (A) TFAST picked a total of 2,628 peaks, of which 2,197 covered 96% of the peaks identified by MACS in the final cycle of afSELEX-
seq. Positional weight matrices generated in MEME instructed to search for a 15 bp motif using 200 sequences from (B) the 457 ‘‘Best’’ weight (most
enriched) peaks, (C) the 888 next-best weight (second most enriched) peaks, (D) the 1,283 worst weight (least enriched) peaks, (E) all peaks called by
TFAST pooled together and (F) 200 peaks called by MACS with the lowest false discovery rate (FDR). Sets of peaks from (B–F) were subjected again to
analysis by MEME under the similar conditions but with the inclusion of a zero-order background Markov model to generate (G–K). E-value (the
chance that a motif arose from a dataset by chance) and bit score (the total information content of a positional weight matrix) are shown below each
logo.
doi:10.1371/journal.pone.0042761.g002
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set and the results were analyzed for accuracy of predicted binding

site length and sequence content of predicted binding site motif.

Across all 100 test data sets, 75% the length of the binding site

was within 2 standard deviations of the average predicted length

derived by TFAST from the 100 most enriched best-quality peaks

from each respective set. 86.7% of binding site length predictions

were within 1 standard deviation of that predicted by TFAST for

motifs 25 bp and shorter. In parallel we analyzed the sequence

motifs derived from the test dataset. Sequences from the 100 most

enriched best-quality peaks detected by TFAST within each

dataset produced motifs when processed by MEME [19] that were

compared to the motif randomly generated for that specific

dataset. Motifs generated by MEME from sequences selected by

TFAST were 94.7% identical to the motifs generated by in the

simulated data set where they aligned. On average, motifs

generated from TFAST covered 87.3% of the length of motifs

overall, and covered 100% of the length of motifs 20 bp or shorter.

Sequence content alone was insufficient to cover entire binding

sites, underscoring the need to pair binding site length predictions

with sequence content predictions to accurately predict binding

sites. We concluded that TFAST is able to reliably discover and

predict binding site motifs out of large afSELEX-seq –like data

Table 1. Incorporation of increased SELEX cycle number improves peak discrimination.

Number of cycles useda Total peaks calledb Number of ‘‘Best’’ peaksc Percent ‘‘Best’’ peaks of total

3 2,628 457 17.4

2 4,255 1,350 31.7

1 7,274 7,274 100

a‘‘Number of cycles used’’ does not include control.
b‘‘Total peaks called’’ refers to peaks called using TFAST’s algorithm.
c‘‘Best’’ peaks are peaks with the highest weight scores for that set, as calculated by TFAST.
doi:10.1371/journal.pone.0042761.t001

Figure 3. Similarity score of sequences to a motif is predictive of frequency. Similarity of each chromosomal position to the discovered
(parent) motif was calculated as a stand in for relative affinity using a linear nucleotide position matching algorithm (see methods). All positions
were ranked and the mean similarity score of groups of 100 with serially lower affinity scores were plotted against the mean frequency of those
positions. The x-axis left margin is 5 because a bit score of 0 (the statistical similarity between random sequences) should be 5.25 for the parent motif
under investigation. The rightmost edge of the x-axis represents the discovered highest similarity (11.25) of a single region of the chromosome to the
discovered parent motif, representing a best fit and thus maximal similarity of the set. (a) The similarity scores in the initial (unselected) library did not
produce a statistically significant trend when subjected to regression analysis. (b–d) The similarity scores from sequential sequence cycles of afSELEX-
seq against their corresponding frequencies revealed exponential regression models (black lines) with r2 values all over 0.90.
doi:10.1371/journal.pone.0042761.g003

Transcription Factor Analysis Using TFAST
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sets, and that it is well-suited as a tool for analyzing this type of

data.

Conclusions
Here we present TFAST, an easy-to-use tool for rapidly and

accurately analyzing data generated by afSELEX-seq to discover

and characterize transcription factor binding sites. Currently, no

other software is designed to analyze afSELEX-seq. The peak

finding component of TFAST compares favorably to that of

MACS. For use with afSELEX-seq, TFAST outperforms MACS

in generating significant motifs. The scheme TFAST employs for

grading and analyzing peaks uniquely leverages the cyclical nature

of SELEX and direct protein:genomic dsDNA interactions to

accurately and sensitively predict binding site sequence and length,

as demonstrated by the consistent concurrence between predic-

tions generated by TFAST and our experimental findings [6].

afSELEX-seq offers an alternative to current methods of

discovering DNA binding sites, and requires no antibody

generation (unlike ChIP-seq (reviewed in [22] and references

therein)) or complex biological screens (unlike bacterial 1-hybrid

systems [23]). Large libraries of purified, tagged bacterial proteins

of unknown function currently exist at institutions participating in

the Protein Structure Initiative [24]. This is sufficient material to

run afSELEX-seq, and with only minor modifications the binding

sites of hundreds if not thousands of transcription factors could be

quickly elucidated.

Availability
TFAST is implemented in Java and supported on MS Windows

and Mac OSX. TFAST was designed in compliance with the

GNU GPL. TFAST (file S1), source code (file S2), documen-

tation with instructions for use (files S3 and S4), and example

output (fig. S1) are freely available for download at http://www-

personal.umich.edu/,hmobley/ or http://sourceforge.net/

projects/tfast/files/ and are included in the supplementary

information.

Supporting Information

Figure S1 Example output. The output of TFAST is

generated in a tab-delimited format. Displayed is how a typical

output of TFAST analysis ought to appear.

(JPG)

File S1 Executable files of TFAST. The executable files

needed to run TFAST, compressed in .zip format.

(ZIP)

File S2 Source files of TFAST. The source files for TFAST,

compressed in .zip format.

(ZIP)

File S3 TFAST instructions for use. Documentation and

instructions for implementation and use of TFAST, in .txt format.

(TXT)

File S4 TFAST instructions for use. Documentation and

instructions for implementation and use of TFAST, in .rtf format.

(RTF)
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