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Abstract
Alteration of lipid metabolism has been increasingly 
recognized as a hallmark of cancer cells. The changes 
of expression and activity of lipid metabolizing enzymes 
are directly regulated by the activity of oncogenic sig-
nals. The dependence of tumor cells on the dysregu-
lated lipid metabolism suggests that proteins involved 
in this process are excellent chemotherapeutic targets 
for cancer treatment. There are currently several drugs 
under development or in clinical trials that are based 
on specifically targeting the altered lipid metabolic 
pathways in cancer cells. Further understanding of dys-
regulated lipid metabolism and its associated signaling 
pathways will help us to better design efficient cancer 
therapeutic strategy.
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INTRODUCTION
Cancer cells reprogram their metabolic pathways to meet 
their abnormal demands for proliferation and survival[1,2]. 
It has long been recognized that cancer cells need a 
higher rate of  metabolism to support their accelerated 
proliferation rate[1,2]. The most known metabolic change 
is a phenomenon called “Warburg effect” first described 
by Otto Warburg in 1920s. He reported that cancer cells 
take up and utilize much more glucose for glycolysis 
compared to normal cells, even in the normoxic condi-
tion[3]. It has been recently proposed that aerobic gly-
colysis is the core cellular metabolism to provide cancer 
cells with not only energy but also the building blocks for 
macromolecule synthesis, such as carbohydrates, proteins, 
lipids and nucleic acids[4]. In the last decade, the altered 
lipid metabolism has increasingly been recognized as an-
other common properties of  malignant cells[2,5]. Like glu-
cose metabolism, lipid metabolism in cancer cells is also 
regulated by the common oncogenic signaling pathways, 
and is believed to be important for the initiation and pro-
gression of  tumors[5]. A number of  lipogenic enzymes 
utilize reduced nicotinamide adenine dinucleotide phos-
phate (NADPH) and acetyl-CoA generated from glucose 
and glutamine metabolism, to synthesize fatty acids and 
their derivatives. Therefore, the exacerbated lipogenesis 
in cancer cells is not only caused by the upregulation of  
lipid metabolizing enzymes, but is also directly coupled to 
other common metabolic pathways and their associated 
cell signaling pathways[1,2] (Figure 1). 
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ALTERED LIPID METABOLISM IS 
IMPORTANT FOR THE PATHOGENESIS 
OF CANCER
Malignant transformation alters both biosynthetic and 
bioenergetic requirements for cancer cells. Continuous 
de novo lipogenesis provides cancer cells with membrane 
building blocks, signaling lipid molecules, posttransla-
tional modifications of  proteins as well as energy sup-
ply to support rapid cell proliferation (Figure 2). First, 
quite a number of  endogenously synthesized fatty acids 
are esterified to phospholipids, which provide pivotal 
structural lipids, facilitate the formation of  detergent-
resistant membrane microdomain for signal transduc-
tion, intracellular trafficking, polarization, and migration 
required for cancer cells[5-7]. Second, the newly generated 
lipids molecules, such as phosphatidic acid (PA), diacyl-
glycerol (DAG), and lysophosphatidic acid (LPA), also 
mediate signal transduction in cancer cells[5-7]. These 
lipids regulate a variety of  cellular functions including 
cell proliferation, survival and migration by either activat-
ing other signaling proteins inside the cells, or binding 
to a series of  G protein-coupled receptors (GPCRs) on 
the cell surfaces. Third, the post-translational protein 
modification with lipid is also a vital process in regulating 
expression, localization and function of  various signaling 
proteins. Phosphatidylinositol (PI)-associated modifica-
tion through a carbohydrate linker to the proteins (GPI-
anchored proteins) directs them toward to cell surface 
from endoplasmic reticulum (ER)[8]. Some GPI-anchored 
proteins, such as urokinase-type plasminogen activator 
(uPA)-receptor (uPAR) and membrane anchored serine 
protease matriptase (also known as MT-SP1 and epithin), 
have strong association with cancer[9,10]. The lipid cova-
lent modification of  Hedgehog and Wnt, two important 
signal molecules, regulates their signaling capacity and 
secretion[11-13]. The Ras small GTPase family members 
are also regulated by their prenylation status. The lipida-
tion controls the trafficking of  Ras GTPases among ER, 
Golgi and plasma membranes and determines the signal-
ing outputs[14-16]. Finally, in response to glucose limitation, 
fatty acid can also be consumed through β-oxidation to 
provide key substitute energy for cancer cell survival. 
It is reported that stimulation of  fatty acid oxidation is 
sufficient to maintain cell survival and protect cells from 
glucose withdrawal-induced death in Akt-overexpressing 
glioblastoma[17]. In some types of  cancers, such as pros-
tate cancer, fatty acid oxidation is proposed to be a domi-
nant bioenergetic pathway[18]. 

DYSREGULATION OF LIPID 
METABOLIZING ENZYMES IN CANCER 
CELLS
Living cells acquire fatty acids for their metabolic demand 
from two major sources, exogenous dietary and de novo 
endogenous synthesis. Proliferative embryogenic cells 

actively use de novo synthesized fatty acids, whereas most 
adult normal cells preferentially use exogenous fatty ac-
ids. Interestingly, similar to embryonic cells, breast cancer 
cells (and many other types of  cancer cells) endogenously 
synthesize 95% of  fatty acids, despite how abundant 
the extracellular fatty acids are[19]. Moreover, cancer cells 
seem to be highly dependent on de novo lipogenesis for 
their proliferation and survival[1,5]. The expression and ac-
tivity of  many enzymes involved in fatty acid synthesis, i.e., 
ATP citrate lyase (ACL), acetyl-CoA carboxylase (ACC) 
and fatty acid synthase (FASN), are upregulated in many 
types of  cancers[1,5]. It is likely that the newly synthesized 
fatty acids are different in compositions compared to 
the circulating fatty acids and some cellular lipid pools 
require the de novo synthesized fatty acids. It has been well 
recognized that the upregulation of  the fatty acid biosyn-
thetic pathway starts at a relatively early stage in various 
types of  tumors[5,20]. 

ACL converts cytosolic citrate to acetyl-CoA and ox-
aloacetate (OAA). Inhibition of  ACL by small interfering 
RNAs (siRNAs) or the chemical inhibitor SB-204990 
limits proliferation and survival of  tumor cells in vitro 
and reduces tumor growth in vivo[21]. ACL activity is much 
higher in human lung adenocarcinoma compared to nor-
mal lung tissue and is well associated with the differentia-
tion grades and a poorer prognosis[22]. ACC carboxylates 
acetyl-CoA to produce malonyl-CoA, a key intermediate 
in fatty acid synthesis that also serves as an allosteric 
inhibitor of  fatty acid oxidation. The malonyl-CoA is fur-
ther converted by FASN to long-chain fatty acids. Silenc-
ing of  FASN or ACC-α by siRNAs in breast cancer cells 
results in a major decrease in palmitic acid synthesis. Sup-
plementation of  the culture medium with palmitate com-
pletely rescues cells from apoptosis induced by ACC-α 
and FASN knockdown, indicating the importance of  
lipogenesis in cancer cell survival[23]. Increased FASN is 
obviously correlated with a higher risk of  recurrence and 
poor prognosis in human breast carcinoma patients[24]. 
Specific inhibition of  FASN gene by siRNA leads to 
apoptosis of  prostate tumor cells[25]. Overexpression of  
FASN induces invasive adenocarcinomas in human pros-
tate epithelial cells and protects cells from apoptosis. In 
human prostate cancer specimens, FASN expression is 
inversely associated with the apoptotic rate[26]. Exacerbat-
ed endogenous fatty acid biosynthesis induced by FASN 
overexpression in non-cancerous epithelial cells is suffi-
cient to cause a cancer-like phenotype[19]. Increased FASN 
has also been linked to short-term survival in colorectal 
and ovarian cancers[27]. Elevated expression and activity 
of  FASN is one of  the early events in the development 
and progression of  lung squamous cell cancer[20], prostate 
cancer[28] and melanoma[29]. Furthermore, the high FASN 
expression leads to an overall high proliferative index in 
prostate cancer[28] and the intensity of  FASN expression 
is related to prognosis in melanoma[29]. Pharmacologi-
cal inhibition of  fatty acid synthesis is reported to be 
selectively cytotoxic to cancer cells in vivo and in vitro[30,31]. 
Taken together, these evidences strongly support that de 
novo lipogenesis has a significant contribution to tumor 
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pathogenesis.
The increased fatty acid synthesis has been long pro-

posed to lead to the upregulation of  phospholipid 
synthesis that fits the need of  membrane biogenesis in 
highly proliferative cancer cells. However, very few stud-
ies have experimentally demonstrated the direct connec-
tion between fatty acid and phospholipid syntheses in 
cancer cells. One of  the reasons might be the lack of  a 
relatively simple method that allows investigators to ana-
lyze the very complex phospholipids. A recent mass spec-
trometry-based phospholipid analysis revealed that the 
tumor tissues with increased FASN expression displayed 
a consistent increase in saturated and mono-unsaturated 
acyl chains and a decrease in polyunsaturated species 
compared with normal tissues[32]. Inhibition of  enzymes 
involved in fatty acid synthesis by the small molecule in-
hibitor soraphen A and siRNAs markedly decreases the 
saturated and mono-unsaturated phospholipid species. 
The more saturated acyl chains appear to protect cancer 
cells from oxidative stress- and doxorubicin-induced cell 
death[32]. In another global phospholipid analysis of  breast 
cancer tissues, the increase of  a saturated phosphatidyl-

choline (14:0/16:0) is also found to correlate with the ag-
gressiveness of  breast cancer[33]. 

To date, the majority of  research on cancer lipid me-
tabolism has focused on the increase of  fatty acid synthe-
sis. Interestingly, lipolytic remodeling of  lipid species has 
also recently been reported to promote the tumorigenic 
properties of  cancer cells[34]. Using a functional screen, 
the activity of  a lipolytic enzyme, monoacylglycerol lipase 
(MAGL), was unexpectedly found to be highly elevated 
in aggressive cancer cells from multiple tissues of  origin. 
MAGL hydrolyzes monoacylglycerols (MAGs) to release 
glycerol and a free fatty acid. Furthermore, the more ag-
gressive cancer cell lines and high grade primary tumors 
contain increased free fatty acid levels, which could be 
reduced by the MAGL inhibitor JZL184 and short hair-
pin RNAs, suggesting MAGL-dependent lipolysis is a 
major source of  intracellular free fatty acids. The MAGL-
regulated lipid hydrolysis appears to be important for 
the transformed properties of  tumor cells. Inhibition 
of  MAGL inhibits migration, invasion and survival of  
cancer cells in vitro and xenograft tumor growth in mice. 
Strikingly, the functional defects of  MAGL inhibition 
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Figure 1  Signaling pathways regulating lipogenesis in cancer cells. This scheme represents the main regulation of lipogenesis in cancer cells. Lipid metabolizing 
enzymes are regulated by oncogenic signals. Growth factor-activated PI3K-AKT or hypoxia-induced HIF stimulates glucose transporters and hexokinases to promote 
glycolysis, providing more synthetic precursors for fatty acid synthesis. Akt also activates the lipogenic enzyme activity and expression through direct phosphoryla-
tion or SREBP-mediated transcription enhancement of lipogenic genes. The tumor suppressor, p53, plays a role in glucose uptake, pentose phosphate pathway and 
anaplerosis of citrate. As a transcription factor, p53 also enhances the expression of glucose transporters and Glutaminase 2. The inductive effect on TIGAR and the 
activity inhibition of G6PDH caused by catalytic effect of p53 constitute a complex regulation on pentose phosphate pathway imposed by p53. LKB1/AMPK pathway, 
the master regulator in cellular energetic metabolism, modulates ACC activity either by direct phosphorylation or through SREBP-1. Myc is involved in lipid metabolism 
and promotes citrate anaplerosis through increasing glutamine transporters and glutaminase 2 expression. The activity and expression of lipogenic enzyme, ACL, 
ACC and FASN, are regulated at multiple levels through mTOR, MAPK, USP2a, Sp1, etc. Glut: Glucose transporter; HK: Hexokinase; G-6-P: Glucose-6-phosphate; 
F-6-P: Fructose-6-phosphate; FBP: Fructose-1,6-bisphosphate; GFR: Growth factors receptor; PI3K: Phosphatidylinositol 3-kinase; MAPK: Mitogen activated protein 
kinase; SREBP-1: Sterol-regulatory element-binding protein-1; TIGAR: TP53-induced glycolysis and apoptosis regulator; OAA: Oxaloacetate; ACL: ATP citrate lyase; 
ACC: Acetyl-CoA carboxylase; FASN: Fatty acid synthase; FA: Fatty acids; G6PDH: Glucose-6-phosphate dehydrogenase; αKG: α-ketoglutarate; PFK: Phospho-
fructokinase; NADPH: Nicotinamide adenine dinucleotide phosphate; Mal: Malate; ME: Malic enzyme; Ac-CoA: Acetyl-CoA; mTOR: Mammalian target of rapamycin; 
USP2a: Ubiquitin-specific protease-2a; IDH3: Isocitrate dehydrogenase 3; R-5-P: Ribose-5-phosphate; HIF: Hypoxia-inducible factor; EMS: Extracellular microenvi-
ronmental stress.
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were reversed by exogenous addition of  saturated fatty 
acids in vitro or feeding mice a high-fat diet. Finally, the 
authors demonstrated that the production of  signaling 
lipids, such as PA, LPA, and prostaglandin E2 (PGE2), 
mediates at least part of  the oncogenic properties of  
MAGL. The question raised from this study is why both 
lipogenesis and lipolysis are increased in cancer cells. Fur-
ther studies need to be performed to test whether fatty 
acids derived from de novo synthesis versus lipolytic release 
differ in both compositions and functions. 

THE DYSREGULATED LIPID METABOLISM 
IN CANCER CELLS IS REGULATED BY 
ONCOGENIC SIGNALS
The alteration of  lipid metabolism in cancer is down-
stream of  many known oncogenes and tumor suppres-
sors, such EGFR, phosphatidylinositol 3-kinase (PI3K), 
MAPK, Myc, p53[1,5]. In addition to their recognized roles 
in regulating cell proliferation and survival, these onco-
genic signals also promote the expression and activity 
of  enzymes involved in fatty acid synthesis. It has been 
reported that oncogenic signaling pathways regulate lipid 
metabolism at multiple steps, including transcriptional, 
translational and post-translational levels. FASN and ACC 
are used here as two examples to depict the complex-
ity of  oncogenic signal regulation of  lipid metabolizing 
enzymes. The major controller of  FASN expression in 
tumor cells is growth factor receptor-associated signaling 
pathways, including the PI3K-Akt pathway and the mito-
gen-activated protein kinase (MAPK) pathway[35,36]. PI3K-
Akt and MAPK pathways regulate FASN expression 

through the sterol regulatory element-binding protein-1 
(SREBP-1) transcription factor, which is the master regu-
lator of  fatty acid metabolism[35,37]. Sp1, a transcription 
factor of  the Sp/KLF family, regulates FASN expres-
sion in colon and prostate cancer cells through interact-
ing with Sp1 binding sites in FASN promoter[38]. Recent 
reports show that FASN expression is also modulated 
by other transcription factors, such as the members of  
p53 family and the lipogenesis-related nuclear protein 
SPOT14[39,40]. Furthermore, posttranslational regula-
tion also contributes to the regulation of  FASN expres-
sion in cancer cells. In prostate cancer, the isopeptidase 
ubiquitin-specific protease-2a (USP2a) has been found to 
interact with and stabilize FASN protein through remov-
ing ubiquitins from FASN. Functional inactivation of  
USP2a results in reduced FASN protein expression and 
decreased cell proliferation and enhanced apoptosis[41]. In 
prostate adenocarcinoma, the significant gain in FASN 
gene copy number is supposed to cause the resultant in-
crease in FASN protein expression[42]. 

In addition to the intracellular signaling pathways, 
FASN expression is also affected by extracellular micro-
environmental stresses. The hostile microenvironment 
of  solid tumors, such as hypoxia, low pH, and nutrient 
starvation could activate several intracellular signaling 
pathways to promote FASN expression[36]. Hypoxia in-
duces FASN expression through the activation of  Akt 
and HIF1 followed by the induction of  SREBP-1 gene[43]. 
In addition, extracellular acidosis can upregulate the tran-
scriptional expression of  FASN gene in breast cancer 
cells via an epigenetic fashion[44].

In HER2-overexpressing breast cancer cells, such 
as BT-474 and SK-BR-3 cells, the increased expres-
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Figure 2  The functions of lipids in cancer cells. Lipids provide cancer cells with membrane building blocks, signaling molecules, posttranslational modifications of 
proteins and energy supply to support rapid cell proliferation. GPCRs: G protein-coupled receptors; uPAR: Urokinase-type plasminogen activator-receptor. 
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sion of  FASN and ACCα proteins are not mediated by 
SREBP-1, but is regulated via the activation of  the PI3K-
mTOR signaling pathway at translational level[45]. The 
best known regulator of  ACC is AMPK. AMPK phos-
phorylates and inactivates ACC in vitro and in vivo[46,47]. In 
human lung adenocarcinoma, the expression patterns 
and levels of  LKB1 and phospho-ACC are relevant, sug-
gesting ACC activity is regulated through LKB1-AMPK 
pathway[48]. In colon cancer cells, IGF-1 reduces ACCα 
phosphorylation via an ATM/AMPK signaling path-
way whereas suppresses ACCα expression through an 
ERK1/2-dependent signaling pathway[49]. The protein 
level of  ACCα is also determined by its interaction with 
aldo-keto reductase family 1 member B10 (AKR1B10), 
which associates with ACCα and blocks its ubiquitination 
and proteasome degradation[50]. 

LIPOGENESIS IS DIRECTLY COUPLED 
TO GLUCOSE AND GLUTAMINE 
METABOLISM IN CANCER CELLS
De novo lipid biosynthesis is directly supported by the 
generation of  acetyl-CoA and NADPH from glucose and 
glutamine metabolism, which is regulated by a number of  
oncoproteins and tumor suppressors. Glycolysis provides 
the carbon source, acetyl-CoA, for the de novo fatty acid 
synthesis. During aerobic glycolysis, glucose is broken 
down to pyruvate. A series of  enzymes are involved in the 
glycolytic reaction and considered to be highly relevant to 
tumorigenesis, such as glucose transporter 1 (GLUT1), 
hexokinase (HK), pyruvate kinase (PK)[51,52]. Glucose-
derived pyruvate sequentially enters the mitochondria and 
is decarboxylated to acetyl-CoA by pyruvate dehydroge-
nase (PDH), an enzyme located in the inner mitochon-
drial membrane. OAA in mitochondria condenses with 
glucose-derived acetyl-CoA to form citrate through TCA 
cycle. A part of  citrate generated from the TCA cycle 
exits mitochondria and is catalyzed by ACL to cytosolic 
acetyl-CoA, as the precursor of  fatty acids biosynthesis[53]. 
Akt regulates the level of  acetyl-CoA by directly phos-
phorylating and activating ACL[54]. To maintain TCA cycle, 
the citrate exported to cytosol from mitochondria must 
be replenished. The recurrence of  citrate is through gluta-
minolysis. p53 enhances the expression of  glutaminase-2, 
which catalyzes glutamine to glutamate in mitochondria, 
to promote citrate regeneration[55]. Glutaminase-2 mRNA 
is induced in HCT116, MCF-7, and U2OS by oxidative 
genotoxic damage treatment that activates p53 and pro-
tects cells from ROS-sensitive apoptosis[56]. Myc also plays 
critical role in glutamine metabolism. It promotes gluta-
minolysis and triggers cellular addiction to glutamine by 
direct and indirect transcriptional regulation of  genes in-
volved in glutamine metabolism. On one hand, Myc binds 
to the promoters and induces the expression of  SLC38A5 
and SLC1A5, two high affinity glutamine transporters, to 
promote cellular glutaminolysis[57,58]. Suppression of  Myc 
expression using small hairpin RNAs in human SF188 
glioma cells leads to a significant reduction in glutami-

nolysis, indicated by glutamine consumption and am-
monia production[58]. On the other hand, Myc represses 
the transcription of  miR-23a and miR-23b, leading to 
greater expression of  their target protein, mitochondrial 
glutaminase, in human P-493 B lymphoma cells and PC3 
prostate cancer cells[59], therefore, enhancing cancer cell 
glutaminolysis indirectly. Moreover, Myc-stimulated mi-
tochondrial glutamine metabolism results in a decreased 
contribution of  glucose to the mitochondrial-dependent 
synthesis of  phospholipids[57]. 

NADPH is another essential component required 
for fatty acid biosynthesis. Large amounts of  NADPH 
are consumed during de novo lipid synthesis. Enhanced 
lipogenesis in cancer cells has also been proposed to 
be required to balance the redox potential through the 
use of  NADP oxidase[60]. There are several manners to 
generate NADPH in living cells. The predominant one 
is through the pentose phosphate pathway (PPP). In 
PPP, glucose-6-phosphate is diverted from the glycolytic 
pathway to generate pentose sugars and NADPH[61]. 
Glucose-6-phosphate dehydrogenase (G6PDH), which is 
the rate-limiting step in the oxidative pentose phosphate 
pathway (ox-PPP), is involved in NADPH production[62]. 
Recently, it was demonstrated that p53 inhibits the entry 
point to the PPP by direct intervention of  G6PDH ac-
tivity. The inhibition effect of  p53 is independent of  its 
transcriptional activity and is through directly controlling 
the enzymatic activity of  G6PDH[63]. The deficiency of  
p53 results in a significant increase in NADPH level in 
HCT116 and U2OS cells[63]. The flux of  PPP is also af-
fected by another p53 target protein, known as TIGAR 
(TP53-induced glycolysis and apoptosis regulator), an 
enzyme that dephosphorylates fructose-2,6-bisphosphate 
(FBPs) to fructose-6-phosphate. The activity of  TIGAR 
counteracts that of  phosphofructokinase (PFK), a key 
regulatory enzyme in glycolysis. Thus, activation of  TI-
GAR supports the shuttling of  glucose-6-phosphate 
into PPP instead of  ongoing glycolysis, to produce more 
NADPH for biosynthesis[64]. Significant induction of  
TIGAR mRNA was observed in U2OS and RKO cells 
after treatment with actinomycin D, a p53 agonist[64]. In 
addition, PPP is regulated by pyruvate kinase isoform 
M2 (PKM2), which is predominantly expressed in self-
renewing cells such as embryonic and adult stem cells 
and tumor cells[65]. PKM2 controls the conversion of  
phosphoenolpyruvate (PEP) to pyruvate, the rate-limiting 
step of  glycolysis. PKM2 promotes PPP by inhibiting 
glycolysis and slowing the passage of  metabolites through 
glycolysis, so that these substrates can be shuttled into 
other subsidiary pathways such as PPP to generate more 
NADPH. Knockdown of  PKM2 expression in human 
cancer cell lines and replacing it with PKM1 reduced tu-
mor formation in nude mouse xenografts, correlated with 
the decreased lactate production and increased oxygen 
consumption[66]. Apart from PPP, some other pathways 
are also involved in NADPH generation in proliferative 
cells. Citrate derived from TCA cycle can be exported to 
cytosol and generate NADPH through two independent 
pathways. One reaction converts citrate to α-ketoglutarate 
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(α-KG) through isocitrate, which is catalyzed by NADP-
dependent isocitrate dehydrogenase 1 (IDH1). IDH1 
is structurally and functionally distinct from the NAD-
dependent enzyme IDH3, which functions in the TCA 
cycle to produce NADH that is consumed for oxida-
tive phosphorylation. The gain of  function mutations 
of  IDH1 were found in a high frequency in adult grade 
Ⅱ and grade Ⅲ gliomas and acute myeloid leukemia 
(AML)[2]. Another reaction related to NADPH produc-
tion from citrate is through malate conversion. OAA de-
rived from cytosolic citrate is catalyzed to malate, which 
is converted to pyruvate by malic enzyme concurrently 
generating NADPH. Malate circulating in TCA cycle 
can also be exported to cytosol directly to participate 
in NADPH production. In both routes, malic enzyme 
is necessary for NADPH generation. Therefore, malic 
enzyme is considered to be a lipogenic enzyme whose 
activity correlates with de novo fatty acid synthesis[67] and is 
found to be highly expressed in tumor cells[68].

LIPID METABOLISM AS TARGETS FOR 
CANCER THERAPY
Many enzymes involved in lipid metabolism are selec-
tively overexpressed in cancer cells, making them good 
targets for cancer therapy. Indeed, a variety of  agents 
have been developed to target lipogenic enzymes and 
the key regulators involved in lipid metabolism in cancer 
cell for therapeutic purpose. One of  the most attractive 
targets for inhibition in cancer chemotherapy is FASN, 
due to its high degree of  overexpression in cancer cells. 
The development of  several FASN inhibitors have been 
reported from both academic labs and industries, such as 
Cerulenin, C75, orlistat, C93, C247, and GSK837149A[69]. 
When used in in vitro, xenograft and genetically induced 
mouse model studies, these inhibitors have supported 
FASN as an excellent target[1,69]. They killed cancer direct-
ly or sensitized them to other therapies such as 5-fluoro-
uracil and trastuzumab[70-73]. A potential negative aspect 
of  FASN inhibition might be its effect on food intake 
and body weight. Mice treated with cerulenin and C75 
exhibited decreasing eating and consequent rapid weight 
loss, which may be caused by the inhibition of  carnitine 
palmitoyltransferase 1 (CPT-1) in the hypothalamus[74-76]. 

In addition to FASN, other lipogenic enzymes are also 
promising targets for cancer therapy. Stable knockdown 
of  ACL by RNAi significantly impairs glucose-dependent 
lipid synthesis and decreases cytokine-stimulated cell 
proliferation in vitro and prevents Akt-mediated tumori-
genesis in vivo[53]. Selective inhibition of  ACL by chemical 
inhibitor SB-204990 limits proliferation and survival of  
tumor cells in vitro and in vivo[21,22]. Knockdown the ex-
pression of  ACC-α by RNAi leads to inhibition of  cell 
proliferation and induction of  caspase-mediated apop-
tosis in highly lipogenic LNCaP prostate cancer cells[77]. 
In preclinical studies, 6-amino-nicotinamide (6-An) that 
inhibits G6PDH, have demonstrated anti-tumorigenic 
effects in leukemia, glioblastoma and lung cancer cell 

lines[78]. Furthermore, targeting fatty acid oxidation also 
appears to be promising. Inhibition of  CPT-1 by shRNA 
or its inhibitor etomoxir sensitizes human leukemia cells 
to chemotherapy[79]. Additionally, MAGL inhibitors sup-
press the pathogenesis of  aggressive cancer cells[34]. 

CONCLUSION
There are increasing evidences to support that oncopro-
teins directly reprogram the metabolism of  cancer cells, 
and make them addict to certain metabolic pathways. 
Therefore, the signaling pathways controlling the altered 
metabolism in cancer cells are attractive targets for can-
cer therapy. Like the Warburg effect, alteration of  lipid 
metabolism is another nearly ubiquitous change in tumor 
cells. However, there is a lack of  clear understanding of  
lipid metabolism in cancer cells. The increased de novo 
lipogenesis in cancer cells has been well described. Inter-
estingly, recent studies also reported that lipolysis and lip-
id oxidation are upregulated in cancer cells[18,31,34]. In fact, 
fatty acid oxidation is a dominant bioenergetic pathway 
in prostate cancer cells[18]. It is still unclear why both lipid 
biosynthetic and mobilizing activities are upregulated in 
cancer cells. Further investigation on the regulation of  
these pathways will offer new therapeutic opportunities 
for the development of  anticancer agents. Meanwhile, 
these tumor-associated lipid metabolism features may be 
used in the diagnosis and prognosis of  human cancers.
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