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Abstract
Microbial ecosystems play an important role in nature. Engineering these systems for industrial,
medical, or biotechnological purposes are important pursuits for synthetic biologists and
biological engineers moving forward. Here, we provide a review of recent progress in engineering
natural and synthetic microbial ecosystems. We highlight important forward engineering design
principles, theoretical and quantitative models, new experimental and manipulation tools, and
possible applications of microbial ecosystem engineering. We argue that simply engineering
individual microbes will lead to fragile homogenous populations that are difficult to sustain,
especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial
ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and
temporal resolution needed for truly programmable biology.

Introduction
Microbes constitute the most abundant and diverse set of organisms on Earth1, 2. By
generating and turning over organic material, they play a dominant role in performing key
biochemical reactions essential to sustaining the biosphere3. As such, these micron-sized
cells have evolved an impressive array of strategies that have allowed them to grow in
almost any environment on the planet4. Microbes, however, do not live alone. Rather, they
live in crowded environments in association with other microbes, competing for resources,
sharing metabolism, and forming a complex, dynamic and evolving microbial ecosystem5, 6.

In nature, stable microbial consortia are generally composed of members that have
specialized physiologies and are tasked with different roles. These intertwined roles
transform individuals that would otherwise compete, into a group that lives in concert7.
Many such microbial ecosystems have evolved to be highly refractory to perturbations in the
environment and are able to repopulate themselves when depleted in numbers. We are now
beginning to appreciate the myriad of sophisticated processes and behaviors that manifest in
microbial consortia, some of which mirror many essential features found in higher-level
metazoans and multicellular organisms8. Understanding how individual microbes form
communities will bring new and important insight to the evolution of multicellularity9. A
grand challenge in applied biology is to develop the knowledge and technology necessary to
build these self-adaptive systems that can perform complex tasks at the micron-scale.
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Therefore, engineering microbial communities is an important endeavor, ripe for pursuit by
synthetic biologists.

Over the past decade, the field of synthetic biology has aimed to make biology easier to
engineer10, 11. Under the paradigm of traditional engineering, new conceptual frameworks
were devised to describe the organization of genetic regulation and cellular machinery to
build new metabolisms12, 13. New tools for the synthesis, assembly, and engineering of
genes have been scaled to whole genomes to enable faster prototyping of biological
designs14. Standardized inventories of useful genes and other biological components are
growing rapidly15. All of these efforts help us develop a better understanding of the cell and
the underlying design principles for engineering it. Scaling these efforts to communities of
cells will require the development of new frameworks, methods and technologies.

In this review, we discuss recent advances in biological engineering at the level of cell
populations and microbial consortia. We detail specific parameters that are crucial for
building and engineering communities of cells that can exhibit sophisticated and robust
behaviors and how these parameters can be synthesized into theoretical and predictive
models for forward-design and engineering. We highlight new population measurement
approaches and genome-perturbation techniques that facilitate the functional dissection of
complex interactions occurring in microbial consortia. Finally, we discuss applications of
synthetic and engineered microbial ecosystems in areas of biotechnology, bioenergy, and
medicine.

Engineering Parameters
What goes on in microbial communities can be quite complicated to understand, appearing
almost irreducibly complex. Therefore, engineering such a system is a daunting task. Even
when grossly approximating a cell as a linear input-output unit, we are confronted with the
observation that interactions between cells generate behaviors that are non-linear,
asynchronous, and heterogeneous. Toward building a framework for engineering synthetic
microbial ecosystems, we outline a set of essential parameters that we believe are core
features of a microbial community. These parameters should be the subject of analysis,
perturbation, and optimization when building synthetic ecosystems de novo. Based on recent
literature about natural and engineered ecologies, we highlight these parameters with regard
to their significance, relationship with one another, and tunability from a synthetic
perspective. These parameters help to build a framework for microbial communities where
the individual members interact with one another through exchange of material, energy, and
information (Figure 2).

Metabolic Capabilities and Metabolotypes
Metabolism is the core essence of life at all scales, from individual enzymatic reactions in
each cell all the way to the ecosystem as a whole. In nature, the goal of metabolism is to
extract energy from substrates, use them to synthesize biomass, and leave behind waste
byproducts. For any given environment, we can argue that the residing consortium of cells
performs a set of input-output operations to generate biomass and waste from an initial
source of energy (e.g. sunlight, sugar, other biomass, etc.). The black-box operation that the
consortium performs may in fact be very complicated depending on the metabolic capability
and efficiency of the members, as well as their abundance and diversity. In fact, many
different arrangements can be functionally equivalent because microbes house a staggering
array of metabolic capabilities in a near infinite number of combinations. Over the past
decades, we have cataloged a significant portion of all possible chemical and enzymatic
reactions that biology can perform in databases such as KEGG16 or MetaCyc17. With
computers and in silico models, we can now recreate cellular metabolism for well-studied
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organisms18–22. Therefore, a deeper understanding of how metabolism scales to
communities of cells can now be achieved.

The total metabolic capability of a microbial community arises from the summation of
capabilities of each individual member. Identification of a cell’s metabolism is not a trivial
task, however. Traditional taxonomic classification of microbial species by 16S rRNA23

profiling is a poor reflector of metabolic functionality. For example, communities that are
only 15% similar as profiled by 16S may be 70% similar in terms of metabolic capability as
determined by metagenomic sequencing24. Furthermore, we have a poor understanding of
how metabolic capabilities that are distributed across different individuals can impact the
community as a whole. We do know that with sufficient functional redundancy in the
population, system-level behavior can be stably maintained even though individuals may
vary in abundance25, 26. Therefore, to have a clear picture of community-level metabolism,
it is essential to identify the total list of metabolic genes, how they are allocated among
individual members, and the level of redundancy in the system. Additionally, to improve the
design of controllable and robust systems, greater understanding of the thermodynamics of
these interacting metabolisms is needed. Individual metabolisms can impact the
physiological environment (e.g. pH or oxygen level), as well as generate compounds that
affect metabolism. These effects combine to shift the thermodynamic environment of cells
with interacting metabolisms, altering the rate of growth and product yields27. We believe
that the metabolotype, or the range of metabolic capabilities of any individual cell, may be a
more relevant identifier of consortium members than the standard 16S phylogenetic
signature. Metabolotype can be derived from the genotype via comparative genomic
analyses28 or from the phenotype via experimental characterizations29. Engineering
metabolotypes may provide important avenues to tune the metabolic capacity, dynamics,
and diversity of the ecosystem.

Intercellular Exchange of Metabolites and Signals
In order to understand intercellular metabolic interactions (i.e. those occurring between
cells), we need to understand the trafficking of metabolites across the cell membrane. The
cell membrane provides an essential function: trapping enzymes and metabolites within the
cytosol to increase their effective local concentration, thereby increasing their rate of
catalysis. Any metabolic interaction between cells must require metabolites and
intermediates to cross the membrane barrier. For most valuable metabolites, passive
diffusion across the membrane barrier is very limited and active transport systems are
needed. These molecular transport pumps vary in terms of specificity (general vs. specific
pumps), directionality (symport, antiport), and energy requirement (ATP-dependency)30–32.
Controlling these transport processes is an important thrust in microbial ecosystem
engineering.

While most cells have a myriad of transporters that import metabolites, far fewer
transporters that export metabolites out of the cell have been identified. It is thought that
most exporters (or efflux pumps) mainly serve to remove toxic or antagonistic compounds
such as antibiotics from the cell33. More recent studies have suggested that these exporters
are important in the maintenance of cellular homeostasis by regulating intracellular
metabolite concentrations34. For example, a number of exporters exist to prevent excessive
accumulation of different amino acids such as R, Y, W, F, L, M, K, I35–40. From the
microbial community perspective, these transport systems are critical in enabling selective,
and potentially programmable, metabolite sharing between cells with different
metabolotypes. In addition to extracellular exchange, other strategies for metabolite sharing
exist. Nano-tubules or pilus-based structures enable direct cell-to-cell exchange by
establishment of cytosolic bridges41, 42. These systems allow larger macromolecules such as
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polypeptides, proteins and DNA/RNA to be exchanged, thus providing additional means to
metabolically connect individual cells within a community.

Microbes interact not only through interdependent metabolisms, but also by coordinated
behaviors. Group behavior differentiates microbial communities that are merely collections
of individuals from those that truly work in a concerted fashion. Coordinating behavior at
the population level requires chemical signals and intercellular communication systems such
as quorum sensing43. Quorum sensing is the ability of cells to detect population density by
measuring the concentration of a membrane-permeable chemical signal. As our knowledge
of the diversity and mechanisms of how these small-molecule sensing systems grow, we are
beginning to appreciate their important role in the formation and maintenance of microbial
communities. For example, indole, a metabolic intermediate in tryptophan biosynthesis,
serves also to promote resistance to antibiotics by generating persisters within a microbial
community through intercellular signaling44, 45. Communication molecules triggering
genetic programs across a population may elicit additional synchronized behaviors, such as
cell division, differentiation, and aggregation46–48. From an engineering perspective, we can
co-opt these chemical communication systems for synthetic ecosystems. Using synthetic
quorum sensing circuits, Weiss et al. generated cell communities that exhibited different
spatially-defined phenotypes in response to chemical gradients49. These circuits have been
further developed for edge detection systems that allow cells to sense the state of adjacent
neighbors and respond accordingly50, as well as for macro-scale synchronization of behavior
across physical distances 1000 times greater than the length of a cell51. These examples of
engineered synthetic communities illustrate that controllable cell-cell signaling can enable
the design of even more complex systems.

Aggregation and Physical Structures
Metabolic exchange and intercellular interactions require cells to be in close proximity.
Cellular aggregation, by cell-cell contact or generation of extracellular matrices (known as
biofilms), is a common strategy that natural microbial communities use to increase their
local cell density52. Often, cell aggregates directly lead to the formation of biofilms53.
Biofilm structures are particularly common as they anchor communities to a surface,
allowing them to thrive more stably than in an otherwise mixed environment. By
strengthening the local interactions in a community, these extracellular structures further
enrich for ecosystems that behave cooperatively and in concert54. Biofilms also decrease
permeability of toxins and antimicrobial compounds thereby protecting the entire
community55. These structures provide tantalizing opportunities for synthetic engineering.
For example, Brenner and Arnold et al. developed an engineered biofilm community with
increased cooperative growth and resilience to fluctuating environments56. These systems
should be further engineered for directed reciprocity – the ability for individuals to
recognize and foster cooperative partners. Directed reciprocity is often found in naturally
structured communities such as plant-mycorrhizal ecosystems57 and other symbiotic
systems58.

An extreme case of cell-cell association is endosymbiosis59. The engulfment of one cell by
another and the sustainment of such association can lead to the development of
complementary physiologies. It is thought that eukaryotic organelles such as the chloroplast
and the mitochondria were the result of endosymbiosis60. Metabolic interdependency of
endosymbionts often rely on exchange of essential metabolites (e.g. amino acids) as is the
case for insect endosymbionts such as Tremblaya & Moranella in mealybugs61, Buchnera in
aphids62 and Sulcia in cicadas63. While these systems clearly present fascinating examples
of extreme interdependency, we have yet to fully understand the evolutionary processes that
lead to endosymbiosis64. Therefore, forward engineering of such systems remains a
significant challenge.
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Mutation and Gene Flow
The genetic makeup of the cell is not static but subject to constant change. In a microbial
consortium, an individual’s metabolic capabilities can change over time due to evolution and
horizontal gene transfer (HGT)65, 66. Small changes to the genome arise from mutations
generated during replication or from DNA-damaging agents. Larger changes may arise from
mobile genetic elements that move around the same genome and between different
genomes66. Small-scale mutations (e.g. point mutations, indels) generally affect the activity,
specificity, or expression of proteins, so they are more likely to impact the cell’s physiology
incrementally67. Truly novel traits rarely evolve independently and are more likely to be
acquired horizontally from another cell66, 68. HGT enables the cell to adopt new traits that
require large leaps in sequence space, such as new biosynthesis capabilities. These processes
can occur via conjugation, natural transformation, recombination, or transduction67. So what
influences the rate of genetic exchange in communities? Using comparative genomics,
Smillie et al. argued that shared ecology is the most important factor that facilitates genetic
exchange69. The rate of HGT can also be accelerated in structured environments when
neighboring cells are in close proximity and are more related phylogenetically69. The level
at which Darwinian selection occurs will affect the distribution and abundance of
metabolotypes in the population. In order to effectively engineer ecosystems that behave
predictably and stably over time, we must be able to either insulate the system from genetic
mutations or harness natural selection to help maintain the engineered and desired state.

An Ecosystem Engineering Example
Here, we provide an example of microbial community engineering based on the parameters
discussed above. We focus on biosynthesis because it is an important component of
metabolism. On the population level, just as for individual cells, biosynthesis is optimized
relative to cost and utility70. Redundant or unnecessary biosynthetic pathways may reduce
the metabolic efficiency of the population and are likely removed through Darwinian
evolution59. Using comparative genomics, we can computationally predict the biosynthetic
capabilities of organisms that have fully sequenced genomes. Presence or absence of genes
needed for biosynthesis of essential metabolites can be tabulated. Using the Integrated
Microbial Genomes (IMG) database of sequenced organisms71 (3062 Bacteria, 121 Archaea,
124 Eukarya) and an algorithm for biosynthesis prediction, we discovered huge variation in
biosynthetic capabilities for essential metabolites such as amino acids. The algorithm
annotates an organism’s biosynthetic capabilities based on sequence homology of its
genome to genes in established databases72–75. When plotting a histogram of organisms that
are capable of biosynthesizing zero to all 20 standard amino acids, we find a wide
distribution (Figure 3a). The Bacteria domain tends to have organisms that on average can
completely biosynthesize 7.9 out of 20 amino acids de novo. The average is 8.3 amino acids
for Archaea and 4.1 for Eukarya. The histogram for Bacteria seems to be bimodal (Figure
3a), suggesting that further classification is needed. Organisms in the Archaea domain on
average have a slightly higher biosynthetic range for amino acids. This perhaps is due to
their more ancient origin as a domain. Unsurprisingly, organisms in the Eukarya domain
appear to make fewer amino acids since they derive most essential amino acids from
nutrient-rich diets. As a reference, humans can only make 10 out of the 20 amino acids. It is
important to note that these computational estimates of prototrophy are likely to be at the
low end. More accurate comparative genomic analysis using better populated and more
annotated databases will likely identify more biosynthetic genes. Nonetheless, the
observation that most organisms cannot make all of their essential metabolites importantly
highlights the interrelatedness of ecosystems. For each amino acid, we can further analyze
whether the full biosynthetic pathway is intact across different organisms (Figure 3b). We
find that glutamic acid (E), glycine (G), and asparagine (N) tend be synthesized in most
organisms while tyrosine (Y), phenylalanine (F), lysine (K), and histidine (H) tend to be
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made in few organisms. These trends appear to hold across Bacteria, Archaea, and Eukarya
suggesting more universal processes at play. It is interesting to note that the more
infrequently synthesized amino acids are also more costly to produce than those that are
synthesized by most organisms, suggesting a level of cost-to-utility optimization76.

Amino acid exchange has in fact been used to build synthetic microbial ecosystems. Hosoda
et al. built a syntrophic cross-feeding community composed of E. coli strains that were
either auxotrophic for isoleucine or leucine77. Wild-type E. coli (e.g. K12 lineage) can
normally make all 20 amino acids, but when genetically manipulated can be made
auxotrophic (i.e. ΔilvE, or ΔleuB). Neither cell-type is able to grow independently, but
when placed together in sufficient abundance will grow synergistically. Such a system has
also been built to exchange arginine and tyrosine between engineered yeast strains78.
Wintermute and Silver more systematically quantified this syntrophic exchange using 46
auxotrophic E. coli strains to generate 1035 cross-feeding interactions79. Metabolites that
exchanged across different biosynthetic pathways led to more growth than those that
exchanged along the same pathway. By examining the energetic cost and benefits of
metabolite exchange, it was determined that syntrophic pairs achieved higher growth when
the exchanged metabolite is less expensive to produce and is required in low amounts79.
These and other design principles enable us to model the effects of metabolite exchange and
supply on biomass generation for forward engineering. Therefore, amino acids are a
versatile set of metabolites whose exchange can enrich for consortium-level associations.
Interdependencies can be engineered by exploiting biosynthetic configurations of these
essential metabolites, which can further be tuned with transporters systems. These
engineered communities present a framework for programming structures and dynamics into
microbial ecosystems and serve to improve our ability to engineer metabolism at the
population-level.

Theoretical and Quantitative Models
Theoretical and quantitative models are valuable analysis tools for studying natural and
synthetic microbial ecosystems80, 81. While numerous important contributions have been
made in this area, they have been for the most part limited by analytical, computational or
algorithmic complexity. Since natural ecosystems are highly heterogeneous and nonlinear,
molecular-resolution simulations of population-level interactions remain infeasible with
current computational resources. Nonetheless, significant progress has been made for in
silico reconstruction of cell physiology82. Scaling these models from single cells to
ecosystem, however, often demands a compromise in generality. Certain models may
highlight individual population-level behavior better than others, but are doing so by
sacrificing consideration of another important parameter. Here, we describe four classes of
quantitative models that have been developed for understanding microbial ecosystems
(Figure 4) and highlight the importance of each.

Dynamic Models
Dynamic models are used to predict changes in a system as a function of time. They can be
used at various scales from individual metabolites, to proteins, all the way to groups of
cells83. In general, concentration or abundance of each component in the system is tracked
over time as they interact with one another. In dynamic models, every process in the system
is described by a differential equation. Variables in the equations represent the time-varying
parameters being modeled. Coefficients in the equations define the type (e.g. positive or
negative) and strength of each interaction. The classical example of such a model is the
Lotka-Volterra predator-prey system84. In this system, two subpopulations exist, the
predator and the prey. The predator consumes the prey, which leads to depletion of the prey
population. A significant depletion of the prey population leads to starvation and decline of
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the predator population. When the predator population is low, the prey population is then
able to thrive, thereby bringing the ecosystem through cycles of boom and bust. The
dynamic model is able to capture the expected phasic oscillation in abundance of predator
and prey subpopulations and determine parameters in which such associations may exist
(Figure 4a)85. This model can be scaled to whole populations as long as proper assumptions
are made (e.g. linear vs. nonlinear parameter relationships). For example, dynamic models
have been successfully applied to study macro-scale systems such as freshwater lake
ecosystems86. These models also enable perturbation studies where starting conditions (such
as population size) can be varied, and solutions are obtained. The largest limitation to these
models is that analytical solutions for most nonlinear differential equations with more than
two variables are not readily available. Numerical solutions require additional mathematical
and computational tools that need to be further developed. Nonetheless, these models are
helpful for us to develop first order intuition about the dynamics of the system.

Stoichiometric Metabolic Models
Stoichiometric models have been developed to study metabolism at the cellular level87.
These models describe metabolism of individual cells using matrices containing
stoichiometric coefficients of all metabolic reactions and sets of optimization constraints.
Stoichiometric representation of metabolism can be analyzed by various approaches88, 89

such as Flux Balance Analysis (FBA)90. In contrast to dynamic models, FBA assumes that
the system is at steady state such that all metabolite concentrations are time-invariant. This
assumption is likely valid for cells grown in exponential phase91. The solution to the system
is described by a series of steady state fluxes for each reaction. By combining all possible
fluxes, we can generate a multidimensional flux space that describes the entire metabolic
capacity of the cell (Figure 4b). An objective statement is used to define a given flux or
criterion, such as flux to biomass (approximating growth rate), for which the
multidimensional flux space can be optimized. Through linear optimization, the model
predicts metabolic fluxes that maximize the objective function (e.g. biomass). This model
has been extensively applied to in silico metabolic reconstruction of a variety of
organisms18–22. Stolyar et al. used a FBA model to describe a methanogenic community of
M. maripaludis and D. vulgaris that exchanged metabolites hydrogen and formate92. The
metabolisms of the two strains are divided into two separate compartments which exchange
metabolites via a third common compartment. This model successfully predicted the ratio of
M. maripaludis to D. vulgaris during growth and suggested that hydrogen was essential for
syntrophy while formate could be removed from the co-culture interaction92.

Two developments have greatly improved stoichiometric models of microbial communities:
the application of multi-level objective statements87, 93, and inclusion of dynamics94. Multi-
level objective statements can be formulated to describe different and potentially competing
flux conditions. This approach has been used to model synthetic ecosystems of three or more
members, where objective statements are defined separately for both the strain and the
community93. By simultaneously optimizing these objective functions, the model captures
the selective forces that act on individuals and the community. For example, growth of
individual species can be sacrificed to promote maximal community growth93. Thus, models
with multi-level objectives more accurately describe metabolite exchange. To account for
dynamics in the system, population abundance and metabolite concentrations can be
separated into different FBA models and solved independently at every time step in an
approach called dynamic multi-species metabolic modeling (DMMM)95. As substrate
concentrations change over time, DMMM is able to adjust the substrate utilization mode of
each strain to the present conditions by switching to the appropriate stoichiometric matrix.
This method is able to capture scenarios of resource competition and identify metabolites
whose limited exchange affect population dynamics95. These and other stoichiometric
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models, such as elementary mode analysis (EMA)96, enable full-scale quantitative models of
ecosystems that are predictive and important for forward engineering.

Evolutionary Game Models
In contrast to dynamic and metabolic models, evolutionary game models focus on describing
strategic decision-making of interacting agents and successfulness of their strategies (Figure
4c)97. Rules of the evolutionary game define the payout that each player receives for every
possible combination of strategies (e.g. cooperate, cheat). Each player’s payout represents
the individual’s fitness, and the highest value “wins” the game. For example, microbial
phenotypes can often be described as altruistic (A) or selfish (S); evolutionary games can
model how such behaviors arise97. While we would assume that selfish exploitation of the
environment may be a winning strategy, the natural world is paradoxically filled with
organisms that exhibit cooperative behavior98. For microbial communities, the fitness of
every individual in a population is determined by the net payout from all pairwise games
with all other individuals. The initial proportion of individuals adopting a given strategy is
an input for this model. These games are then iterated over time with a given strategy
changing in abundance based on the fitness of individuals who hold the strategy compared
to the average population fitness. As the marginal cost of cooperating and benefit of
cheating lead to changing payouts, the two strategies will dynamically vary and affect the
outcome of the game99. From these models, we find that populations that are dominated by
altruists will often have a higher fitness than those dominated by selfish exploiters100.

For microbial ecosystems, evolutionary game theory models allow us to investigate how
system parameters impact microbial interactions and dynamics of competing strategies.
These models have been used to predict the evolutionary steady state of engineered yeast
populations that exhibit altruistic or selfish strategies through the snowdrift game101. In such
a game, the altruists secrete an invertase enzyme that hydrolyses a polysaccharide to
generate diffusible glucose products that are available to the entire population. The selfish
individuals forgo the cost of secreting the enzyme, but rely on the glucose generated by the
altruistic strains. Modulating the cost of cooperation resulted in shifts in the final population
structure. Altruists dominated when cost of cooperation was very low. Altruists and cheaters
coexisted at median costs of cooperation, while cheaters dominated at high costs101. To
further take into account spatial structures, agent-based game models are used to restrict
interactions to individuals in close physical proximity102. Clusters of cells that exhibit
cooperative strategies will derive more benefit due to spatial confinement, and thus will be
further enriched in the population. These and other evolutionary game models100 will be
important quantitative tools to guide ecosystem engineering.

Digital Evolution
Long-term bacterial evolution experiments have been used to track how phenotypes and
genotypes change in a constantly selective environment103. Similarly, in silico simulations
of evolution have been developed (Figure 4d)104. Earlier forms of these simulations derive
from cellular automata approaches, such as the Game of Life105. Cells in the cellular
automata live in a two-dimensional environment. Reproductive success or cell death is
governed by the density and configuration of the local population. Discrete time steps are
iterated over the population to simulate the process of life. A more sophisticated
implementation of digital evolution, called Avida, has been described106. Avida is inspired
by an earlier system Tierra, in which digital organisms contain computer programs that
compete for Central Processing Units (CPUs) and access to memory in order to
reproduce107. In Avida, digital organisms have their own memory space and virtual CPUs to
perform tasks108. Each digital organism has a circular “genome” composed of a collection of
26 possible discrete basic programs (Nand, IO, swap etc.) that are executed in series. When
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certain combinations of these basic programs are executed in the correct order, one of
several logic operations is performed. Strains able to execute higher complexity operations
are rewarded with more energy and therefore replicate faster. As cells replicate, mutations
are introduced, which result in programs being added, removed, or moved. This leads to new
operational capabilities. Because the history of each organism’s genotype and phenotype are
chronicled, digital evolution models enable better understanding of how individuals traverse
a fitness landscape as complex traits evolve. These artificial life models also enable the
reversion of individual and combinations of mutations to study epistasis. Key conclusions106

reinforced by these models include: 1) deleterious mutations may be needed to develop
complex traits; 2) even though complex traits are fragile to mutations, they fix in the
population because they provide significant fitness benefit, and 3) development of
complexity requires selection of traits with intermediate complexity to allow gradual
transition through the fitness landscape. Since complex phenotypes are a hallmark feature of
microbes, this framework will likely provide useful insights to improve engineering of
ecosystems through digital simulations. These approaches are now being extended to
simulation population-level behavior109, 110.

Experimental Tools
Over the last decade, the field of microbial ecology has been swept by a wave of new
technologies, significantly reshaping the traditional investigative approach. These advances
have centered on key developments in microfabrication, high-throughput sequencing,
genome engineering, and synthetic circuit design. These new methods allow for better in
vitro and in vivo models, culture-independent identification and quantification of individual
species across populations, and generation of targeted genotypes for functional studies
(Figure 5). Forward engineering of synthetic microbial ecosystems will rely heavily on these
techniques.

In vitro Models
Going beyond traditional cultivation techniques using petri dishes and culture flasks,
advances in microfabrication and microfluidics have produced a variety of cheap lab-chip
devices that can be used to cultivate and analyze microbes grown in massively parallel
micron-sized chambers and channels111, 112. These devices are particularly useful for
generating physicochemical conditions found in heterogeneous ecological niches to study
behaviors such as quorum sensing or antibiotic susceptibility. For example, Zhang et al.
developed a microfluidic chip that contained 1200 interconnected wells to probe the
development of ciprofloxacin antibiotic resistance113. Local antibiotic gradients generated
“Goldilocks points” in the microchamber where motile strains gathered and developed
notable ciprofloxacin resistance (10 mg/ml) – 200 times the minimum inhibitory
concentration. This phenomenon was not observed in the absence of such antibiotic
gradients when grown in standard flasks as no resistance strains developed. This work
highlights the importance of local heterogeneity in the evolution of microbial populations
and development of antibiotic resistance.

Microfluidic chambers can also be used to study chemical signaling and nutritional cross-
feeding between different microbes. Hyun et al. developed a fluidic chip that contained
arrays of spatially separated micro-wells with selectively permeable bottoms placed over a
common liquid reservoir114. Through size exclusion, metabolites could diffuse to
neighboring wells while the bacteria producing them remained in each well. Using this
system, the authors built a synthetic consortium of three bacteria, Azotobacter vinelandii,
Bacillus licheniformis, and Paenibacillus curdlanolyticus, which normally do not grow
together in nature. In a defined environment that is nitrogen and carbon depleted, and in the
presence of antibiotics, the consortium exhibited reciprocal syntrophy because each species
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performed a specialized function that benefited the entire group. A. vinelandii fixed gaseous
nitrogen into amino acids. B. licheniformis degraded the antibiotic penicillin. P.
curdlanolyticus generated carbon sources needed by the consortium by degrading
carboxymethyl-cellulose. In this co-culture, spatial structures and local interactions amongst
the members defined the viability of the ecosystem. These interactions can be further
elucidated at the single-cell level by using agarose tracks in channels that are the width of
one cell115, 116. Through optical microscopy, growth of individual cells by linear extension
along the channel can be tracked over 40 generations. Syntrophic exchange between strains
of E. coli auxotrophic for different amino acids enabled growth in separate parallel
channels115. Highlighting the importance of locality in syntrophic exchange, the co-culture
growth rate was shown to decrease sharply when the distance between complementary
strains in neighboring channels increased by more than a few cell lengths.

In addition to microchambers and microchannels, microdroplet technology is also useful in
probing interspecies interactions117. Groups of cells can be encapsulated in monodispersed
aqueous-phase droplets using a T-junction microfluidic channel with an oil-phase. Through
syntrophic cross-feeding, auxotrophic E. coli strains can grow in these microdroplets and be
analyzed by microscopy117. These approaches will improve cultivation of new microbes by
recapitulating microenvironments in which otherwise unculturable microbes can grow in the
presence of metabolically compatible partners.

In vivo Models
Experimental models that recapitulate natural environments lend crucial insights into
structure and function of microbial communities in their native habitats. Tractable live
animal models, such as gnotobiotic germ-free (GF) mice, have been used extensively to
investigate the relationship between the mammalian gut and the resident microbial
community118. Gnotobiotic mice can be inoculated with defined and sequenced microbes
that are trackable to investigate processes of gut colonization, food metabolism, and
community stability. In one such recent study, Faith et al. introduced 10 representative
strains of the human microbiota into GF mice that are fed with defined diets of
macronutrients119. Four classes of foods were given to mice: proteins, fats, polysaccharides,
and sugars. The 10-member microbial consortium was tracked by analysis of fecal samples
after transition to different diets. The researchers found that a simple linear model could
predict over 60% of the variation in species abundance due to diet perturbations. The use of
synthetic microbial communities in live animal models provides a feasible way to untangle
the web of complex interactions that may go on in the population. Furthermore, in vivo mice
models are amenable to genetic modifications to produce important disease phenotypes such
as ob/ob120 or Tlr2(−/−)121, which can be used to tease out host-microbe interactions.

Simple evolutionary models of antibiotic antagonism, such as the classic non-transitive
rock–paper–scissors (RPS) game, have also been demonstrated by studying engineered E.
coli strains in GF-mice. Kirkup and Riley122 used three types of strains: one that produces
bactericidal colcins (P) that preferentially kill off sensitive strains (S) versus resistant strains
(R). Sensitive strains can outcompete resistant strains, which in turn can outcompete colcin-
producing strains. GF-mice associated with the microbial consortium showed cycling
between the three phenotypes, which illustrated the RPS model and the in vivo role of colcin
as an antibiotic. More interestingly this synthetic consortium model suggests that antibiotic-
mediated antagonism can serve to promote microbial diversity in the mammalian gut.

Population Quantification Techniques
Precipitous reduction in cost and exponential growth in throughput of next-generation DNA
sequencing technologies have revolutionized molecular biology123. Sequencing has been
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used extensively for cataloging the composition, abundance, and metabolic potential of
microbes from a variety of natural environments such as soil124, ocean125, acid mines126,
and the human body127. Molecular barcoding allows large numbers of samples to be
multiplexed and can be combined with time-series measurements to capture temporal
changes across the entire population128, 129. Furthermore, transcriptome sequencing methods
such as RNA-seq allow us to measure detailed transcriptional profiles of consortium
members under different environmental conditions130. Resequencing genomes from long-
term evolution studies have also increased in popularity103. These investigations help to
identify genetic mutations that arise due to adaptation to new environments131, 132 and help
to reveal genetic heterogeneity within the population133. Goodarzi et al. developed the
genetic footprinting technique, array-based discovery of adaptive mutations (ADAM), which
enabled selective identification of mutations that provide a competitive advantage within a
cell population134. Combining sequencing and functional measurements, this method
reconstructs beneficial phenotypes to increase the scope of adaptive lab evolution studies
and enhance understanding of genetic interactions in complex populations.

Genome engineering
Construction and engineering of sophisticated synthetic ecosystems require facile
modification of microbial genomes. Transposable elements have long been used as an
efficient way to produce mutants of various phenotypes by random insertion into the
genome135. Libraries of such transposon-mutated strains diverge in genotype and phenotype,
but when pooled together can begin to resemble a microbial consortium. Using high-
throughput DNA sequencing, large libraries of transposon mutants can be interrogated
efficient. Goodman et al. combined the use of transposon mutagenesis, high-throughput
sequencing and gnotobiotic mice in a technique called Insertion Sequencing (IN-Seq) to
probe the function of Bacteroides thetaiotaomicron in the mouse gut136. Populations of B.
thetaiotaomicron cells that were mutated by Himar1 mariner transposons were assessed by
Illumina sequencing. The modified Himar1 inverted repeat sites contained MmeI-
compatible sequences. Upon MmeI digestion of genomic DNA from the mutant population,
high-throughput sequencing can be used to determine two 18-bp pairwise genomic
fragments that correspond to the transposon insertion. Abundance levels of each mutant can
be tracked and distinguished from one another, as well as from defined microbes in other
phylum such as Firmicutes or Actinobacteria. Other similar techniques for high-throughput
transposon sequencing include Tn-seq137, high-throughput insertion tracking by deep
sequencing (HITS)138 and transposon-directed insertion-site sequencing (TraDIS)139 have
also been developed.

Often, engineering members of a synthetic consortium requires precise genetic manipulation
of the genome instead of random mutagenesis. Recent advances in oligo-mediated genomic
engineering such as Multiplex Automated Genome Engineering (MAGE) has enabled
efficient, parallel, and site-specific modification of genomes across many target sites140–142.
By using pools of oligos, MAGE can generate genetic diversity in the population at a rate of
4.3×109 modified bases per day, which enables combinatorial generation of divergent and
complementary phenotypes within population clades140. MAGE relies on the transformation
of small chemically synthesized oligonucleotides (~50–90 bp) into the genome that then
proceed to integrate into the chromosome during replication in an Okazaki-like fashion.
Single-stranded DNA binding proteins and recombinases greatly facilitate this process and
are often found as a part of viral integration machinery143. Rapid generation of cells that
exhibit a variety of physiologies is not only feasible but can be automated. Therefore, these
approaches are crucial to the construction of viable and stable synthetic communities. Oligo-
mediated genomic engineering has shown promise in a variety of organisms including

Mee and Wang Page 11

Mol Biosyst. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Escherichia coli144, Pseudomonas syringae145, Pantoea ananatis146, and other gram-negative
bacteria147, as well as Mycobacterium tuberculosis148, lactic acid bacteria149, and yeast150.

Synthetic Computing Circuits
Construction of genetic circuits that perform computational operations has been a long-
standing goal in synthetic biology151. Recent advances in genetic circuit design have now
been extended to libraries of cells, which can be modularly combined to perform basic logic
functions. Earlier work demonstrated that population-level behavior can be programmed
using feedback genetic circuits and quorum sensing molecules152, 153 but needed precise
population-synchronization for robust behavior154. More recently, two groups developed
multicellular computing systems155, 156. Regot et al. constructed a library of engineered
yeast cell-types that could sense different extracellular input signals such as NaCl,
doxycycline, galactose, oestradiol and produce chemical ‘wiring molecules’ such as
pheromones to communicate with one another155. These cell-types were made into AND
and inverted IMPLIES logic functions to implement Boolean operations. For example, Cell
1 when presented with an input such as NaCl, will produce the wire molecule, pheromone,
which is received by Cell 2. Cell 2 will produce a detectable fluorescence output only when
it senses the pheromone and a second input such as oestradiol. The NaCl AND oestradiol
operation is achieved with this two-cell implementation. By combining different cell-types,
the authors generated a variety of logic gates (AND, NOR, OR, NAND, XNOR, XOR).
More impressively, complex circuits including a multiplexer and a 1-bit adder with carry
were built using additional chemical wires and cell-types. Based on a similar design scheme,
Tasmir et al. constructed libraries of E. coli cells with simple NOR logic gates and
connected them using quorum sensing molecules156. The NOR gate was built using two
tandem promoters that served as orthogonal inputs to drive the transcription of a repressor
element. This simple implementation was used to build more complex circuits, which the
authors demonstrated by performing logic operations on solid plates with different spatially
defined colony types156. These results support the notion that cellular consortia may be used
to perform complex tasks more efficiently than single-cell implementations, further
advocating the development of synthetic consortia as a platform technology.

Applications of Synthetic Consortia
Microbial consortia can potentially be programmed to perform useful tasks in both natural
and artificial environments at spatial and temporal scales well beyond the capabilities of any
individual member. Numerous applications may warrant such systems, ranging both in
sophistication and in scale. Engineered microbes have long been used for industrial
production of chemicals and pharmaceuticals157. These reactions tend to occur in
fermentation chambers using genetically identical strains. All multi-step reactions need to be
carried out intracellularly or would require separate fermentation pipelines. For complex
feedstocks such as cellulosic biomass, single-strain fermentation reactions are unlikely to
suffice. On the other hand multi-species communities can degrade these complex substrates
efficiently158. Thus, future microbial fermentation systems are likely to shift to more
heterogeneous population of engineered strains with diversified metabolic capabilities159.

Engineered consortia can be designed to degrade complex feedstock while simultaneously
producing valued products. Using a symbiotic co-culture of engineered yeasts and
Actinotalea fermentans, a cellulolytic bacterium, Bayer et al. were able to convert
unprocessed switchgrass, corn stover, sugar cane bagasse, and poplar into methyl halide, a
biofuel precursor160. A. fermentans fermented cellulose to acetate and ethanol, but its
growth was inhibited by these toxic waste products. However, engineered yeast was used to
reduce acetate level by utilizing it for energy to produce methyl halide through heterologous
expression of a methyl halide transferase. Thus, interdependence was established between
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the two strains to alleviate growth inhibition toward production of a biofuel. This type of
division of labor is a powerful approach for processing complex substrates – a strategy
commonly adopted in natural microbial consortia161.

Applications in coordinated toxin detection and bioremediation may also benefit from
synthetic consortia. By engineering auto-synchronization in populations of oscillating cells,
Prindle et al. developed a liquid crystal display (LCD)-like macroscopic clock that could
sense arsenic concentrations and respond by changing the oscillatory period51. The
researchers nested two modes of cell signaling to expand the scale at which coordinated
events manifest across the population. Slower local synchronization proceeded via a well-
established quorum sensing genetic circuit to form colonies called “biopixels.” Arrays of
these small colonies were synchronized across a large scale with a weaker but faster redox
signaling system using hydrogen peroxide. Using an extra positive-feedback element that
was linked to an arsenic-responsive promoter, the oscillatory system became a macroscopic
arsenic biosensor that fluoresced at different periods depending on the arsenic concentration.
By combining the two modes of cellular communication across thousands of microwell
channels, the authors developed a proof-of-principle biochip that may potentially be used as
a handheld arsenic detector.

For applications in medical therapeutics, engineered microbial gut consortia will likely be an
important area of development. Recent studies have highlighted the important role of
human-associated microbial communities in maintaining health and causing diseases162–164,
especially in the gastrointestinal (GI) tract where food and drugs are metabolized. The gut
environment is home to the highest density of microbes in the body (up to 1011 cells/gram)
and irregularities in the microbial composition are linked to diseases including
Crohn’s165, 166, inflammatory bowel disease167, obesity26, diabetes168, infections169, and
maldigestion170. Traditional therapeutic strategies using probiotics have failed to generate
consistent results largely due to a lack of understanding for the design principles needed to
maintain engineered microbes in vivo. New approaches in synthetic consortia engineering
will likely succeed where previous attempts have failed. Few successes in this area are
already encouraging. Steidler et al. engineered an orally administered Lactococcus lactis
strain that excreted human interleukin-10 in the GI tract171. This engineered probiotic strain
reduced the degree of induced colitis in mice models, paving the way for human clinical
trials for IBD172. Saeid et al. showed that engineered E. coli could detect the human
pathogen Pseudomonas aeruginosa via a quorum sensing pathway173. P. aeruginosa often
colonize the respiratory and GI tracts, leading to chronic and fatal diseases. Upon pathogen
detection, the programmed E. coli self-lyse and release pyocin, a narrow-spectrum
bacteriocin that kills P. aeruginosa. In another study174, the administration of non-
pathogenic engineered E. coli that communicate to coordinate the secretion of cholera
quorum sensing molecules (i.e. autoinducer-1) resulted in increased survival of murine
models to Vibrio cholera infection from 0% to >92%. Future applications of human-
microbiome engineering may include enhancing catabolism of troublesome but common
metabolites (e.g. lactose and gluten), precise microbial modulation of the immune system,
and removal of multi-drug resistant pathogens by selective toxin release.

Concluding Remarks
The prospect is bright for synthetic biologists to build ecosystem that reproducibly exhibit
complex behavior. Yet there remain many challenges ahead that reflect our incomplete
understanding of the many governing principles that underlie microbial physiology, ecology,
and evolution. A better working knowledge of the different parameters that drive social
interaction in cell populations will be needed. As most intercellular interactions exhibit non-
linear relationships based on spatial, temporal, thermodynamic, and energetic constraints,
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we expect that new theoretical frameworks need to be developed to describe these complex,
dynamic, and heterogeneous ecosystems. New techniques that facilitate massively parallel
synthesis, engineering, and analysis of microbial consortia at single-cell resolution will be
critical for predictive programming of synthetic communities. As we progress toward
engineering biological systems of ever-increasing sophistication, social and ethical concerns
surrounding the creation of non-natural life forms and ecosystems will require open dialogue
between researchers and the public on the risks and rewards of these activities in the post-
Darwinian era of biology.
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Figure 1.
Development of synthetic ecology requires insights gained through manipulating simple
biological systems and analyzing complex ecological systems. Evolution must be factored
into these pursuits, not only as a destabilizing force but also as a means to optimize our
engineered designs.
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Figure 2.
A summary of the crucial parameters that impact a microbial ecosystem. These parameters
determine the ecosystem’s ability to convert an energy source into biomass and waste, and
are prime targets for engineering and optimization. Metabolic capabilities are distributed
across different members as defined by metabolotypes (shaded and colored ovals).
Metabolic exchange can occur via metabolite transport across cellular membranes or
through intercellular bridges. Community structure can be tuned by adjusting the degree of
aggregation and formation of extracellular structures such as biofilms. Horizontal gene
transfer enables genomic innovation and the rise of new capabilities within the population.
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Figure 3.
Diversity of amino acid biosynthetic capabilities across all sequenced organisms from the
Integrated Microbial Genomes (IMG) database71, separated based on the three domains
(Bacteria, red, top panel; Archaea, blue, middle panel; Eukarya, orange, bottom panel). (a.)
Predicted frequencies at which species have the ability to synthesize zero to all 20 standard
amino acids. (b.) For each amino acid, frequencies at which complete biosynthetic pathways
are found across each domain are shown in solid colored bars (Bacteria, red, top panel;
Archaea, blue, middle panel; Eukarya, orange, bottom panel). White bars indicate fractions
in each domain where one or more biosynthetic gene is missing. Gray bars indicate
unknown annotations.
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Figure 4.
The four main classes of quantitative models that are used to study microbial ecosystems.
(a.) Kinetic models describe changes in system variables (e.g. abundance) with simple
differential equations that can exhibit interesting dynamics such as oscillations and limit
cycles. (b.) Stoichiometric models can be applied to study optimal metabolic flux using
objective functions to guide the design of intercellular metabolite exchange. (c.)
Evolutionary games can be used to analyze phenotypic strategies within a microbial
community using payoff calculations. These models aid in elucidating key variables that
influence the domination or coexistence of microbial strategies. (d.) Digital evolution
systems help to simulate microbial evolution, traversal of fitness landscapes, development of
complex traits, and contributions of epistatic and pleiotropic effects to fitness.

Mee and Wang Page 24

Mol Biosyst. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Experimental tools enable engineering of microbial ecosystems from the population level
down to the DNA level. In vitro tools such microfluidics and microchambers or in vivo mice
models enable precise control of the environment. High-throughput sequencing and
transcriptomics enable parallel interrogation of phylogeny, composition, and gene
expression of cell populations. Techniques such as multiplexed genome engineering and
transposon mutagenesis enable forward engineering and accelerated evolution of cell
populations at the genetic level. New genetic circuitry and synthetic biology frameworks
enable the development of multi-component genetic programs that are executed across
populations of cells.
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