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The Erwinia ligand-gated ion channel (ELIC) is a bacterial homologue of vertebrate Cys-loop ligand-gated
ion channels. It is activated by GABA, and this property, combined with its structural similarity to GABAa
and other Cys-loop receptors, makes it potentially an excellent model to probe their structure and
function. Here we characterise the pharmacological profile of ELIC, examining the effects of compounds
that could activate or inhibit the receptor. We confirm that a range of amino acids and classic GABAa
receptor agonists do not elicit responses in ELIC, and we show the receptor can be at least partially
activated by 5-aminovaleric acid and y-hydroxybutyric acid, which are weak agonists. A range of GABAa
receptor non-competitive antagonists inhibit GABA-elicited ELIC responses including oa-endosulfan
(ICs50 = 17 uM), dieldrin (IC59 = 66 uM), and picrotoxinin (ICsp = 96 pM) which were the most potent.
Docking suggested possible interactions at the 2’ and 6’ pore-lining residues, and mutagenesis of these
residues supports this hypothesis for a-endosulfan. A selection of compounds that act at Cys-loop and
other receptors also showed some efficacy at blocking ELIC responses, but most were of low potency
(IC50 > 100 puM). Overall our data show that a number of compounds can inhibit ELIC, but it has limited

GABA

pharmacological similarity to GLIC and to Cys-loop receptors.

© 2012 Elsevier Ltd. Open access under CCRY license

1. Introduction

The Cys-loop family of ligand-gated ion channels are membrane
proteins responsible for fast excitatory and inhibitory synaptic
neurotransmission in the central and peripheral nervous systems.
Members of this family share a common quaternary structure of
five subunits that can be homomeric or heteromeric. Each of the
subunits has three distinct regions that are known as the extra-
cellular, transmembrane and intracellular domains. The N-terminal
extracellular domain contains the neurotransmitter binding sites,
which are located at subunit interfaces. They are created by the
convergence of three amino acid loops (loops A—C) from the
principal subunit and three -sheets (loops D—F) from the adjacent
complementary subunit (Brejc et al., 2001; Unwin, 2005). The
transmembrane domain consists of 4 transmembrane o-helices
from each subunit (M1—M4) that span the membrane, with the M2
helices surrounding the central ion pore. The intracellular domain

Abbreviations: nACh, nicotinic acetylcholine; AChBP, acetylcholine binding protein;
GABA, y-aminobutyric acid; ELIC, Erwinia ligand-gated ion channel; GLIC, Gloeobacter
ligand-gated ion channel; 5-AV, 5-aminovaleric acid; GHB, gamma-hydroxybutyric
acid; PXN, picrotoxinin; ACh, acetylcholine; 5-HT, 5-hydroxytryptamine.
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is largely unstructured, and is responsible for receptor trafficking,
regulation by intracellular modulators, and has a role in channel
conductance (Hales et al., 2006; Deeb et al., 2007; Carland et al.,
2009).

One of the major problems in understanding the mechanisms of
action of this family of channels is the paucity of high resolution
structures. Nevertheless the identification of prokaryotic Cys-loop
receptor homologues has significantly improved our under-
standing of many structural details (Tasneem et al., 2005). An X-ray
crystal structure of a Cys-loop receptor homologue from Erwinia
chrysanthemi (Erwinia ligand-gated ion channel or ELIC) was solved
in 2008, and one from Gloeobacter violaceous (Gloeobacter ligand-
gated ion channel, or GLIC) in 2009 (Hilf and Dutzler, 2008, 2009;
Bocquet et al., 2009). These prokaryotic receptors share many of
their structural features with Cys-loop receptors, although they do
not possess an N-terminal a-helix, an intracellular domain, or the
disulphide bonded loop that gives the eukaryotic family its name.
The crystallisation conditions of these proteins (ELIC unliganded;
GLIC at high pH) led to the proposal that ELIC is in a closed
conformation, while GLIC is in an open conformation, although
recent work suggests that the structure of GLIC may represent
a desensitized state (Parikh et al., 2011). GLIC is activated by protons
and ELIC is activated by a range of small amine molecules, including
GABA (Ulens et al., 2011; Zimmermann and Dutzler, 2011). The
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potency of GABA on ELIC is low compared to its eukaryotic coun-
terparts, but work on bacterial receptors in other systems
(e.g. Singh et al., 2007; Zhou et al., 2007), suggest that even if the
potencies are not in the same range, their mechanism of action at
homologous proteins are similar, making ELIC an attractive model
system to understand the molecular mechanisms of Cys-loop
receptors. Although ELIC shows low sequence similarity with Cys-
loop receptors overall, it shows high sequence homology (>60%)
in the M2 region (Fig. 1). The pharmacology of ELIC, however, has
still not been comprehensively explored. Here we report the effects
of a range of compounds that could potentially activate or inhibit
the receptor.

2. Materials and methods
2.1. Cell culture and oocyte Maintenance

Xenopus laevis oocyte-positive females were purchased from NASCO (Fort
Atkinson, Wisconsin, USA) and maintained according to standard methods. Har-
vested stage V—VI Xenopus oocytes were washed in four changes of ND96 (96 mM
NaCl, 2 mM KCI, 1 mM MgCl,, 5 mM HEPES, pH 7.5), de-folliculated in 1.5 mg ml~!
collagenase Type 1A for approximately 2 h, washed again in four changes of ND96
and stored in ND96 containing 2.5 mM sodium pyruvate, 50 mM gentamycin,
0.7 mM theophylline.

2.2. Receptor expression

The ELIC sequence (Genbank accession number POC7B7) was purchased from
Genscript as a synthetic gene with optimized codon usage for expression in
Escherichia coli. For electrophysiological recordings from Xenopus oocytes, the
mature sequence of ELIC (residue numbers 8-322) was cloned into pGEMHE with
the signal sequence (MRCSPGGVWLALAASLLHVSLQ) of the human &7 nACh receptor
(Liman et al., 1992). cRNA was in vitro transcribed from linearised pGEMHE cDNA
template using the mMessage mMachine T7 Transcription kit (Ambion, Austin,
Texas, USA). Stage V and VI oocytes were injected with 20 ng cRNA, and currents
recorded 1—3 days post-injection.

2.3. Electrophysiology

Using two-electrode voltage-clamp, Xenopus oocytes were clamped at —60 mV
using an OC-725 amplifier (Warner Instruments, Connecticut, USA), Digidata 1322A
and the Strathclyde Electrophysiology Software Package (Department of Physiology
and Pharmacology, University of Strathclyde, UK). Currents were recorded at 5 kHz
and filtered at a frequency of 1 kHz. Micro-electrodes were fabricated from boro-
silicate glass (GC120TF-10, Harvard Apparatus, Edenbridge, Kent, UK) using a one
stage horizontal pull (P-87, Sutter Instrument Company, California, USA) and filled
with 3 M KCL. Pipette resistances ranged from 1.0 to 2.0 MQ. Oocytes were perfused
with ND96 at a constant rate of 12 ml min~'. Drug application was via a simple
gravity fed system calibrated to run at the same rate. Inhibition by test compounds
was measured at the GABA ECsg (1.6 mM).

Analysis and curve fitting was performed using Prism v4.03 (GraphPad Software,
San Diego, California, USA). Concentration—response data for each oocyte were
normalised to the maximum current for that oocyte. The mean and S.E.M. for a series
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Fig. 1. An alignment of channel-lining residues for a range of eukaryotic Cys-loop
receptors and prokaryotic homologues. As is common for these receptors, a prime
notation is used to facilitate comparison between different subunits, with 0’ being the
conserved charged residue at the start of M2. Grey indicates residue conservation.
Accession numbers are: ELIC POC7B7, GLIC Q7NDNS, 5-HT3; P46098, nACh o1 P02708,
Gly P23415, GABA, o1 P14867, GABA, B2 P47870, GABAA Y2 P18507, GluCl Q94900.

of oocytes were plotted against agonist or antagonist concentration and iteratively
fitted to the following equation:

Imax — Imin (1)

Ia = Inin + 1 + 107n(logAso—logA)

where A is the concentration of ligand present; I4 is the current in the presence of
ligand concentration A; Imin is the current when A = 0; Imax is the current when
A = =, Asg is the concentration of A which evokes a current equal to (Imax + Imin)/2;
and ny is the Hill coefficient. The relative current amplitudes (Rpyax) were expressed
as the maximal current amplitude evoked by the test compound divided by the
maximal current amplitude evoked by GABA.

2.4. Docking

Docking was performed using an ELIC crystal structure (pdbid: 2VL0O) down-
loaded from the RCSB Protein Data Bank. A three-dimensional structure of
B-endosulfan was extracted from the Cambridge Structural Database (Ref. code:
B-Endosulfan = ENSULF). B-Endosulfan was converted into the o conformer and the
protonated form constructed in Chem3D Ultra 7.0 and energy-minimized using the
MM2 force field.

Docking of the protonated ligand into ELIC was carried out using GOLD 3.0
(The Cambridge Crystallographic Data Centre, Cambridge, UK). The binding site was
constrained as a docking sphere with a 20 A radius surrounding the C, of the
6’ residues in chains A and C. These amino acids were chosen based on the binding
locations of ligands in eukaryotic Cys-loop receptors, but the docking sphere covered
the full length of the transmembrane region of the channel. Ten genetic algorithm
runs were performed on each docking exercise using default parameters. The
structures were visualised using PyMOL v 1.3 and ViewerLite v 5.0.

3. Results
3.1. ELIC agonists

Application of GABA produced large, reversible inward currents
(Fig. 2). These will be predominantly Na© currents, given the
composition of our buffers and the fact that ELIC is cation-selective
(Zimmermann and Dutzler, 2011). Plotting current amplitude
against a range of GABA concentrations yielded an ECsg of 1.6 mM
(pECsp = 2.78 + 0.04, n = 6) and Hill slope of 2.1 +0.6. At 1 mM, the
amino acid Ala, Arg, Asn, Asp, Cys, GlIn, Glu, His, Ile, Leu, Lys, Met,
Phe, Pro, Ser, Thr, Trp, Tyr, Val) had no effect on ELIC. At 10 mM
several native Cys-loop receptor ligands (ACh, Gly and 5-HT) also
yielded no ELIC responses (Table 1).
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Fig. 2. GABA and 5-AV agonist concentration—response curves (A) and example
responses (B). The black bar is the application of agonist. Data = mean + SEM, n > 4.
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Table 1

Potential ELIC Agonists.
Compound PECs0 (ECs0) Hill Slope n
Cys-loop Agonists
1 mM ACh NE - 3
1 mM 5-HT NE — 3
GABA 2.78 4+ 0.04 (1.6 mM) 21+06 6
1 mM Glycine NE — 3
GABA Analogues
30 pM muscimol NE — 3
10 mM 3-indole acetic acid NE - 5
100 mM 3-aminophosphonic acid NE — 5
10 mM B-alanine NE - 3
5-aminovaleric acid?® 17 £ 1% of Rpax at 100 MM — 3
y-hydroxybutyric acid® 8.2 & 3% of Rmax at 100 mM — 3
Quorum Sensing
10 mM succinic acid NE — 3
10 mM o-ketoglutarate NE - 3
10 mM a-aminobutyrate NE — 3
10 mM tr-glutamate NE - 3
10 mM pyroglutamate NE - 3
10 mM y-butyrolactone NE — 3
10 mM sodium succinate NE - 3
10 mM a-amino hydroxbutyric acid NE - 3
Amino Acids
10 mM Alanine NE - 4
10 mM Arginine NE — 4
10 mM Asparagine NE - 3
10 mM Aspartate NE - 3
10 mM Cysteine NE - 6
10 mM Glutamine NE - 3
10 mM Glycine NE — 4
10 mM Histidine NE - 4
10 mM Isoleucine NE - 4
10 mM Leucine NE - 3
10 mM Lysine NE — 4
10 mM Methionine NE - 4
10 mM Phenylalanine NE - 3
10 mM Proline NE - 3
10 mM Serine NE - 4
10 mM Threonine NE - 4
10 mM Tryptophan NE — 4
10 mM Tyrosine NE — 4
10 mM Valine NE - 4

NE = No Effect at the concentration shown.
Rmax = maximal current relative to 10mM GABA.

2 For 5-AV and GHB, ECs values could not be calculated as the agonist responses
did not saturate.

GABA analogues that activate GABA4 receptors were also tested.
Gamma-hydroxybutyric acid (GHB) and 5-aminovaleric acid (5-AV)
activated ELIC, but required high concentrations (>10 mM) and had
small (Rmax < 20%) current amplitudes (Fig. 2), suggesting that they
are possibly partial agonists. The GABA analogues muscimol
(at 30 uM) a-amino-hydroxybutyric acid, f-alanine, and 3-indole
acetic acid (all at 10 mM), and 3-aminopropylphosphonic acid
(at 100 mM) had no effect (Table 1).

We also explored a range of compounds that are active in
bacterial quorum sensing (White and Finan, 2009). At 10 mM,
succinic acid, a-ketoglutarate, «-aminobutyrate, ir-glutamate,
pyroglutamate, y-butyrolactone and sodium succinate did not
activate ELIC (Table 1).

3.2. ELIC antagonists

A range of compounds that inhibit or modulate eukaryotic Cys-
loop receptors were tested as inhibitors of ELIC (Fig. 3, Table 2). Of
the 25 compounds shown in Table 1, 12 inhibited ELIC responses: 2
had ICs0s < 20 puM, 3 had ICsps 20—100 puM, 5 had ICsps of
100—1000 pM, and 2 had IC5¢s > 1 mM. Proadifen and a-endosulfan
were the most potent, followed by dieldrin, picrotoxinin and
rimantadine. A range of amino acids (Pro, His, GIn and Tyr at 1 mM)

and the GABA4 receptor competitive antagonists bicuculline and
gabazine at 100 uM had no effect when co-applied in the presence
of GABA. We also tested the quaternary ammonium compounds
tetramethylammonium and tetraethylammonium at much higher
concentrations, and these compounds inhibited GABA-evoked ELIC
responses with ICsps close to 20 mM (pECsg = 1.76 + 0.28 and
1.65 + 0.06 respectively, n = 3). None of the compounds had an
effect when applied alone.

We also tested PXN and rimantidine against cysteamine-
induced responses as cysteamine is a slightly more efficacious
agonist (Rmax = 1. 3 = 0.1, n = 3, cf to GABA,; similar to data reported
in Zimmermann and Dutzler, 2011). There were no significant
differences when compared to inhibition of GABA-induced
responses (data not shown).

3.3. Ligand docking

To probe possible locations for ligand binding a-endosulfan was
docked into the ELIC structure (Fig. 4). It docked close to the
6’ location where it was stabilised by hydrogen bond interactions
with Q2’ (2/10 poses) and/or T6' (6/10) pore-lining residues; in
Fig. 4A ten poses are superimposed to show the volume that the
docked ligand occupies.

3.4. Effects of pore mutations on antagonist potency

To test the predictions of ligand docking, conservative substi-
tutions were made within the ELIC pore at the 2’ and 6’ positions,
and the effect on inhibition of the two most potent compounds
were examined (Table 3). At both Q2’'N and T6’S mutant receptors,
the IC5p of a-endosulfan was increased >10 fold, supporting
a binding location in the pore close to these two residues (Fig. 4D).
In contrast, ICsgs for proadifen were close to wild type, consistent
with this compound not being a channel blocking antagonist, as
reported for other Cys-loop receptors. At both Q2’'N and T6'S
mutant receptors GABA ECsos and Hill slopes were similar to wild
type receptor values.

4. Discussion

ELIC is a cationic GABA-gated prokaryotic ligand-gated ion
channel that is structurally similar to vertebrate GABA-gated
receptors, and, like GABAa receptors, can be modulated by benzo-
diazepines (Ulens et al., 2011). ELIC can readily be expressed and
functionally characterised in Xenopus oocytes, but unlike homolo-
gous vertebrate receptors, the structure of ELIC at high resolution
has been solved (Hilf and Dutzler, 2008). This potentially makes
ELIC a good model system for studying structure—function rela-
tionships. Here we examine the pharmacology of ELIC. We show
that compounds that efficiently activate the receptor are difficult to
find, and the novel agonists we identified are of low potency. We
also show that classic GABAx competitive antagonists do not inhibit
the functional response. However, a range of compounds that act as
non-competitive antagonists at GABAa and a range of other Cys-
loop receptors also inhibit ELIC responses, suggesting that the
pore of ELIC shares some pharmacological similarities to homolo-
gous eukaryotic receptors.

It has been previously shown that GABA evokes
concentration-dependent responses when ELIC mRNA is injected
into Xenopus oocytes (Zimmermann and Dutzler, 2011). Our data
show similar effects of GABA, and the values obtained from
concentration—response curves are comparable. Other
compounds that have been previously identified as agonists at
ELIC are a range of primary amines, including amino-alcohols and
alkyamines (Zimmermann and Dutzler, 2011). New agonists that



764 A.J. Thompson et al. / Neuropharmacology 63 (2012) 761-767

1 mM PXN
100 uM PXN
60 M PXN
10 uM PXN
2 mM GABA
2pA
C .,
0.8+
5 0.6
_E
= 0.4+
0.2+
0.0
T T T T T 1
-8 -7 -6 -5 -4 -3 -2

log[c.-Endosulfan] (M)

B 1.04

0.8
0.6

0.4

11 Iax

T T T T 1

=7 -6 -5 -4 -3 -2
log[PXN] (M)

0.8

0.6

1 Lax

0.2

0.0

-7 -6 5 4 -3 -2
log[Rimantadine] (M)

Fig. 3. ELIC antagonists. (A) Example traces showing inhibition by picrotoxinin (PXN). Concentration—inhibition curves for PXN (B), a-endosulfan (C), and rimantadine (D).
Inhibition was measured at the GABA ECso (1.6 mM). Data = mean + SEM, n > 4. Values derived from the curves can be found in Table 2.

we identified are 5-AV and GHB, although these are less potent
than GABA, and may be partial agonists, as we did not achieve
responses > 20% Rmax. 5-AV, which is one CH; group longer than
GABA, is a low potency partial agonist (ECsp = 11 mM,
Rmax = 0.85) of RDL, a GABA-activated insect receptor (McGonigle
and Lummis, 2010). GHB is equivalent to GABA with a hydroxyl
group replacing the amino group, and its very low efficacy at ELIC
(Rmax < 0.05 at 100 mM) demonstrates the importance of the
amino group; this compound has no effect on RDL, supporting
a role for the amino group in receptor activation in both classes of

Table 2
Potential ELIC antagonists.

Ligand Known LGIC Targets plCso ICso ny

(Mean + SEM) (uM)

=

5-hydroxyindole 5-HT3, &7 nACh, GABAs NI - - 4
a-endosulfan GABA,, Gly 4.77 £ 0.15 17 07+02 4
Amantadine nACh 3.43 +0.03 370 25+04 4
Bicuculline GABA,p NI* — — 3
Bilobalide 5-HT3, GABA, Gly 3.48 + 0.06 330 13+02 4
Chlorpromazine 5-HT3, nACh 3.64 + 0.12 230 12+04 5
Dexamethasone 5-HT3 NI — — 4
Dieldrin GABA,, Gly 418 £ 0.14 66 11+01 4
Diltiazem 5-HTs3, 27 nACh, GABA, NI - - 4
Estrone 5-HT3 NI — — 5
Fipronil GluCl, GABA,, Gly 3.46 + 0.04 350 1.8+04 3
Gabazine GABA, NI* - — 5
(SR-95531)
Imidaclopride nACh NI - - 4
Ivermectin GluCl, Gly NI - - 3
Lindane GABA,, Gly NI — — 4
Mefloquine 5-HT3, nACh NI - — 3
Pancuronium nACh NI - - 3
Picrotoxinin 5-HT3 GABA,, Gly 4.06 + 0.10 9% 12+06 3
Proadifen nACh 5.09 + 0.04 81 29+06 4
Progesterone 5-HT3 3.82 + 0.09 150 1.8+0.58 4
Quinacrine nACh NI — — 3
QX-222 nACh NI - - 4
Rimantadine nACh 4.27 +0.03 54 1.0+02 4
Tetracaine 5-HTs, nACh NI - — 5

NI = no inhibition at 10 mM, NI* = no inhibition at 100 pM.

GABA-activated receptor (McGonigle and Lummis, 2010). None of
the other compounds tested in this study activated ELIC, and the
GABA, receptor competitive antagonists were ineffective, sug-
gesting that the ELIC pharmacophore differs significantly from
that in the GABAj receptor. Some of the tested compounds are
intermediates in quorum sensing, a method of bacterial
communication in which ELIC could participate. The absence of
effects from these compounds suggests that if ELIC is associated
with this mechanism, it is not activated by any of these signalling
molecules.

A range of non-competitive antagonists were able to block
GABA-evoked responses in ELIC. The majority of these also block
GABA-activated Cys-loop receptors, with the most potent
(ICs50 < 20 uM) being a-endosulfan and proadifen, with dieldrin,
picrotoxinin (PXN) and rimantidine having ICsos < 100 uM. PXN,
the more potent component of picrotoxin, blocks a range of Cys-
loop receptors including GABAa receptors, while a-endosulfan
and dieldrin are cyclodiene insecticides (now rarely used), which
block the pore of GABA-activated receptors in both vertebrates and
invertebrates (Abalis et al., 1985; Ratra et al., 2001; Chen et al.
2006). Rimantidine and proadifen are not classic channel
blockers, although some inhibitory effects have been reported
(Spitzmaul et al., 2009; Stouffer et al., 2008). Rimantidine also
inhibits GLIC and may act in the pore, although this is unlikely for
proadifen, which stabilises the desensitised state. Studies of Cys-
loop receptors show interactions with the 2’ and 6’ pore-lining
residues contribute to stabilising many channel blocking
compounds (e.g. Chiara et al., 2009 Thompson et al., 2011), and
more recently, high resolution co-crystal structures have revealed
the binding sites of some of these compounds (Hibbs and Gouaux,
2011; Hilf and Dutzler, 2009). Our docking studies indicate that the
2’ and 6 residues are also important for channel blocking
compounds that inhibit ELIC, and our data with a-endosulfan
support this hypothesis as mutation of either the 2’ or 6’ residues
significantly reduced the potency of this compound.

Compounds that inhibited ELIC responses less potently
(ICs0 > 100 uM) were amantadine, bilobalide, chlorpromazine,
fipronil and progesterone. Bilobalide and fipronil block several
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Fig. 4. (A) An overlay of all 10 docked poses for a-endosulfan. The channel volume occupied by 10 poses are calculated from the Van der Waals radii and are shown in wireframe.
Inset Structure of a-endosulfan. Scale = 2.5 A. (B) A single pose showing the channel from the side. There are hydrogen bond interactions with 6' Thr residues from adjacent
subunits. (C) The same pose is seen from above, looking down towards the cell intererior. (D) Concentration response curves show Q2'N and T6'S mutations caused a decrease in

a-endosulfan potency.

Cys-loop receptors, including 5-HT3, GABAa, GluCl, glycine and RDL,
by acting at the 6’ residue (Huang et al., 2003; Ratra et al., 2001;
Cole et al., 1995; Ikeda et al., 2004; Li and Akk, 2008; Thompson
et al,, 2011; Islam and Lynch, 2011. Amantadine, chlorpromazine
and progesterone also block nACh receptor pores (Buisson and
Bertrand, 1998; Chiara et al., 2009; Giraudat et al., 1987, 1989;
Matsubayashi et al., 1997; Revah et al., 1990). Quaternary ammo-
nium compounds are open channel blockers of nACh receptors and
have been directly observed in co-crystals with GLIC, where they
are located close to the 6’ residue (Hilf et al., 2010). Here we show
these compounds also block ELIC, albeit at much higher
(~100-fold) concentrations. The low potency of all these channel
blocking compounds at ELIC is puzzling, as the pore-lining M2
residues are broadly conserved; we suggest that future studies
examine the roles of residues at or close to the entrance to the pore
as these may limit access.

Table 3
Antagonist properties at M2 mutant receptors.

GABA pECsg (ECs0) a~endosulfan pICsy  Proadifen pICso (ICso)

(ICs0)
Wild Type 2.78 + 0.04 (1.6 mM) 4.77 + 0.15 (17 pM) 5.09 + 0.04 (8.1 uM)
Q2'N 2.74 £0.02 (1.8 mM) NI (>100 puM) 5.54 + 0.09 (2.9 uM)
T6'S 2.75 + 0.02 (1.8 mM) NI (>100 pM) 5.29 + 0.04 (5.1 uM)

NI = ICso was not reached at the highest concentration tested (10~% M). See Fig. 4D.

A range of non-competitive antagonists similar to those studied
here have also been examined at GLIC (Alqazzaz et al., 2011), but
there is limited similarity in the pharmacology of the two receptors
(Fig. 5). In general the number of compounds that inhibit ELIC are
fewer, and their affinities are lower at ELIC than at GLIC. Only a-
endosulfan has a similar ICsg at both receptor types (17 uM at both),
with 5 other compounds inhibiting both receptors (amantadine,
chlorpromazine, fipronil, picrotoxinin, rimantadine) and 5 inhibit-
ing neither (5-hydroxyindole, dexamethasone, imidacloprid, iver-
mectin, QX-222). This shows that the non-competitive
pharmacology of ELIC is less similar to Cys-loop receptors than that
of GLIC, and as the majority of ligands studied here are channel
blockers in eukaryotes, our data show that the ELIC pore is phar-
macologically, as well as structurally, different to those of GLIC,
GluCl and the nACh receptor.

In conclusion, we have identified two novel ELIC agonists and
a range of compounds that act as antagonists. These are ligands
which inhibit a range of Cys-loop receptors (including 5-HTj3,
GABA,, glycine, GluCl and nACh receptors), consistent with the
sequence similarities of the M2 regions in all these proteins. These
data will be useful when further characterising the mechanism of
action of ELIC, but the limited range of ligands that inhibit ELIC, and
their lower potencies, indicate that the ELIC pore structure may not
be as good as GLIC or other proteins for inferring molecular inter-
actions in the channels of related receptors.
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Fig. 5. Comparison of pICsg values from ELIC with those previously reported at GLIC (Alqazzaz et al., 2011). Compounds are almost all less potent at ELIC and fewer compounds

inhibit responses.
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