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An Interferon Response
Gene Expression Signature
Is Activated in a Subset
of Medulloblastomas1,2
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Abstract
Recent evidence suggests that cytomegalovirus infection contributes to the development of medulloblastomas. Dif-
ferential activation of antiviral expression programs in medulloblastomas has not been investigated yet. In this study,
we assess the relevance of an antiviral transcriptional response in medulloblastomas. We analyzed a gene expression
signature of type I interferon response in three public gene expression data sets of medulloblastomas. Interferon
response genes were found to be significantly coordinately regulated in two independent studies. We distilled a
signature of 10 interferon response genes from two data sets. This signature exhibited strongly significant gene-
versus-gene correlation of expression levels across samples in a third external medulloblastoma data set. Our medul-
loblastoma IFN signature identified a previously unrecognized patient subgroup partially overlapping the WNT and
SHH subtypes proposed by others. We conclude that significant traces of differential activation of antiviral transcrip-
tional response can be found in three independent medulloblastoma patient cohorts. This IFN activation signal often
coincides with reduced proliferation scores. Our proposed 10-gene type I IFN response gene signature could help to
assess antiviral states in further gene expression data sets of medulloblastomas or other cancers.
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Introduction
Medulloblastoma is one of the most frequent brain tumors in child-
hood and a major cause of morbidity in children because of its frequent
malignancy [1,2]. It comprises molecularly diverse subtypes that can
be characterized by mutations or deletions in known cancer pathways
like the Sonic Hedgehog pathway (SHH, in genes PTCH1, SUFU )
[3,4] and Wnt pathway (in genes CTNNB1, APC, AXIN1, AXIN2)
[5–9], by high-level amplification of MYC, MYCL, or MYCN, by
large chromosomal imbalances affecting chromosome 17, in particular
isochromosome 17q, or many further genetic lesions of unknown rele-
vance [2,10–15]. Several studies addressed the problem of medullo-
blastoma subtyping by massive genomic data [16–21]. A recent
consensus conference concluded that medulloblastoma molecular sub-
types currently can be best described by the four major transcriptional
phenotypes of medulloblastomas: the WNT and SHH pathway acti-
vation subtypes and the less well defined subtypes 3 and 4 [22]. For
the WNT subtype, either characteristic pathway mutations such as
CTNNB1, APC, AXIN1, and AXIN2, chromosome 6 loss, or yet-
unknown changes can lead to a characteristic transcriptional phenotype
of WNT pathway activation that coincides with a particularly good
prognosis. Similarly, the SHH transcriptional phenotype segregates
with mutations in SHH pathway genes such as PTCH1 or SUFU
and characterizes a more aggressive phenotype. Subtypes 3 and 4 are
less strictly well defined by distinct genetic lesions [21,22]. Exclusively,
groups 3 and 4 tumors seem to have isochromosomes 17q and high
OTX2 gene expression. Group 3 (and WNT subtype) tumors have
high expression ofMYC, whereas isochromosome 17q is most abundant
in group 4 tumors [21,22].

However, the approaches taken to identify the main medullo-
blastoma subtypes are based on data mining techniques that are
determined to split patient cohorts in nonoverlapping clusters. Such
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algorithms are not optimal when overlapping clusters of patients could
possibly be discovered through combined transcriptional programs
that could arise from co-occurrence of distinct genetic lesions (e.g.,
WNT plus SHH pathway mutations in same patient) or from other
coexisting independent cellular phenomena (e.g., immune activation
and mutation). Recently, it was reported that the majority of medullo-
blastomas is infected by cytomegalovirus (CMV) and that antiviral
therapy was effective for CMV-positive—but not CMV-negative—
medulloblastomas using in vivo and in vitro models [23]. Based on
these findings we hypothesized that, in a considerable fraction of
medulloblastomas, a CMV infection can elicit an antiviral response.
This response could be traced in microarray expression data sets
through specific activation of interferon (IFN) response genes. IFN
response signatures have been characterized in diverse contexts also in
clinical cancer studies [24–26]. Coordinate up-regulation of IFN sig-
nature genes in medulloblastomas would be a sign of viral infection.
The sole preliminary evidence for differential immune gene expression
is the finding by Cho et al. [19] that among other genes some immune
response genes also have a tendency to be expressed higher in one of
their six postulated subtypes. However, this finding was not followed
up by further analyses (e.g., to characterize and discuss the type and
relevance of immune activation) and did not enter the consensus view
about the major four medulloblastoma subtypes [22]. In the following,
we specifically assess coordinate type I IFN response using published
IFN gene signatures and three publicly available medulloblastoma
microarray studies that were the basis of the recent proposal of a con-
sensus about medulloblastoma subtypes [16–18]. We show that type I
IFN response genes are coordinately activated in medulloblastoma.

Materials and Methods

Data Acquisition and Preprocessing
Microarray expression data was downloaded from Gene Expression

Omnibus (GEO) at the National Center for Biotechnology Informa-
tion (http://www.ncbi.nlm.nih.gov/geo/) with identifier GSE12992
for the data set of Fattet et al. [17] and with identifier GSE10327
for the data set of Kool et al. [18], or from the St. Jude hospital research
Web site (http://www.stjuderesearch.org/site/data/medulloblastoma)
for the data set of Thompson et al. (44 of 46 CEL files intact) [16].
All calculations were carried out using the R statistics environment
(version 2.14.0) supplemented by selected Bioconductor packages
(http://www.bioconductor.org/). We condensed Affymetrix DNA chip
signals from CEL files on the probeset level using the RMA algorithm
as implemented in the affy Bioconductor package resulting in log2 scale
probeset intensities. Gene symbols were assigned to probesets using
annotation from the Bioconductor package hgu133plus2.db. Probesets
with minimal variance of their intensities across all samples of a data set
were not considered further (4000 probesets dropped for U133a chip
design, 8000 probesets dropped for U133plus2 chip design). Probeset
intensities were summarized on the gene level by averaging all remain-
ing probeset intensities of a distinct gene. Expression values of single
genes were z normalized (mean centered and standardized) across
samples in each data set.

Testing Signature Coherence and Calculation of
Signature Scores

For most multigene signatures, it is assumed that their genes change
their expression intensities coordinately across samples, that is, they
correlate in a particular data set. For permutation-based testing of this
property, we defined a coherence score, CS(S ,D), of a gene set S in a
data set D. The CS is the mean of all pairwise Pearson correlation co-
efficients between the expression vectors for all possible nonidentical
gene pairs in S calculated on data D, thus adopting a value between
[−1,+1], with CS = 1 indicating perfect correlation between all genes
in S for data D. For signatures under study, we determined CS for
different data sets D and contrasted it with CS obtained through data
or gene set shuffling. We tested 1) whether the signature under study
has a higher CS than randomly selected gene sets of the same size and
2) whether the signature under study has a higher CS on the original
data than on data in which each gene’s expression vector is permuted
independently, thus destroying possible chance correlation structures.
We performed these tests using n = 10,000 permutations. Therefore,
the minimal reported P value is P < 1e − 4 (on the null hypotheses that
CSs of random signatures have equal or higher rank than the CS of the
signature under study). Finally, to assign signature expression scores
to single samples or patients, the z-normalized log scale intensities of
all signature genes in S were averaged per sample, resulting in a single
continuous signature expression score per sample.

Results and Discussion
Our hypothesis is that IFN response is differentially activated in
medulloblastoma patients and that this can be traced by multigene
expression signatures. To define an initial set of IFN response genes,
we revisited the results of two studies. In the first study, Baechler
et al. [25] found a type I IFN response gene expression signature in
peripheral blood that is indicative of active dermatomyositis. The sec-
ond study by Comabella et al. [26] discovered that an IFN signature
in monocytes is associated with poor response to IFN-β therapy in
multiple sclerosis. In total, these studies identified a set of 18 type I
IFN response genes that we used as a starting point for our analysis
(Table W1). We first assessed this signature in the two microarray
data sets of Thompson et al. [16] and Fattet et al. [17], for which
we could obtain expression data for 44 and 40 tumors, respectively.
Of 18 genes, 16 were represented with strong signals in the micro-
array data from both studies. We used this 16-gene signature as our
initial IFN signature—not yet optimized for use in medulloblastoma.

To show that there is significant coordinate up- and down-regulation
of IFN signature genes in a distinct data set, we determined a new
parameter—the coherence score (CS). This is calculated as the mean
of all Pearson correlation coefficients for pairs of gene expression vectors
of nonidentical signature genes across samples in a microarray data set.
In Figure 1, we give examples of nonregulated (random), weakly regu-
lated, and strongly regulated signatures to illustrate that the coherence
score can identify coordinated (coherent) differential up-regulation
across samples (see also Figure W1 for diagnostic plots). Note that,
for a signature with strong coordinate upregulated in some samples
(bottom signature in Figure 1), we yield a CS close to 1, and for a sig-
nature with only randomly fluctuating genes, we yield a CS close to 0.
The examples illustrate that the CS is a measure to trace the footprint of
a biologic process in a microarray data set without knowing beforehand
in which samples this process is activated.

For the data set of Thompson et al. (St. Jude hospital), the coherence
score of the 16-gene IFN signature was 0.29; for the data set of Fattet
et al. (GSE12992), we yielded a CS = 0.25.We assessed the significance
of this finding using data perturbation and random gene sets: When we
sampled 10,000 gene sets of the same size as the IFN signature from
all genes represented in the full data set and scored these 10,000 sig-
natures in the data of Thompson et al. and Fattet et al., we never



Figure 1. The signature CS for simulated signatures. Here we show three examples of the signature coherence score for simulated gene
expression signatures. Background signature values were simulated for a matrix of g = 1000 genes and n = 20 samples by sampling
from a normal distribution with a mean of zero and a standard deviation of one. For values associated with genes 1 to 10 and samples 11
to 20, we added a constant c ∈ [0, 2, 4] to this random data matrix, thereby simulating no, weak, or strong differential expression be-
tween samples 1 to 10 and 11 to 20 for the first 10 genes of the data matrix. These 10 genes were now considered the signature under
study. The CS was calculated (Materials and Methods) and its significance of deviation from the described randomization tests was
determined. For the random signature, we found CS = 0.043 with P > .90. For the weakly deregulated signature, we found CS = 0.52
with P< .0001. For the strongly deregulated signature, we found CS = 0.92 with P < .0001. Thus, the CS score was strongly dependent
on the introduced signal. It can be used as an indicator of common regulation (coherence) of signature gene expression.
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obtained higher CS scores than for the original IFN signature. Simi-
larly, when we 10,000-times permuted the expression levels within
the IFN signature across samples (for each gene separately) and then
assessed the IFN signature, we never obtained higher scores than for
the nonrandomized IFN signature in both data sets of Thompson
et al. and Fattet et al. (diagnostic plots visualizing this analysis can be
found in Figures W2 and W3). Thus, we propose that the initial IFN
signature (not medulloblastoma optimized) already shows a strong
intergene correlation in our two medulloblastoma data sets at a sig-
nificance level of P < .0001. So far, we discovered that the IFN response
program—as defined by the original IFN signature—is a differen-
tially active transcriptional program in two different medulloblastoma
patient cohorts.
We observed that not all genes in the original IFN signature were

strongly correlating with the signature core. Because the original signa-
ture was defined based on data from autoimmune disease—not from
cancer data—this was not unexpected. Therefore, we selected a specific
medulloblastoma IFN response signature (med-IFN): We selected a
core medulloblastoma IFN signature (med-IFN signature) of 10 genes
for which each gene correlated with r > 0.4 with the original IFN
signature score (per-sample-mean of standardized mean-centered
expression values of all genes) in each training data set. We then tested
the med-IFN signature in a third independent validation cohort of
62 medulloblastomas for coherent expression patterns (microarray data
of the study of Kool et al.). We found that it yields a coherence score
of CS = 0.58 in this validation data set (see Figure 2 for diagnostic
plots of this signature). A coherence score as high as this was neither
obtained when 10,000 randomly selected 10-gene sets were scored on
this data nor was it obtained when the med-IFN signature’s coherence
score was calculated on 10,000 shuffled versions of this med-IFN sig-
nature (per-gene expression values were permuted randomly, each gene
independently). Thus, it is highly unlikely that the observed strong
gene-wise cross-correlation of the med-IFN signature arose by chance
(P < .0001 for both tests). Coherence scores for the core med-IFN
signature in the training data were CS = 0.402 for the Thompson data
and CS = 0.389 for the Fattet data—an expected improvement after
selecting centroid-correlating genes. In Figure 3, we show heat maps of
the 10-gene signature with hierarchically clustered genes and samples



Figure 2. Validation of the medulloblastoma IFN signature. Here we show diagnostic plots of the medulloblastoma 10-gene IFN signa-
ture in the Kool et al. validation data set. A red vertical line marks the CS score of the med-IFN signature throughout the plots. Top left:
The signature coherence score (red) compared to 10,000 coherence scores obtained for random gene sets. Top middle: The signature
coherence score (red) compared to 10,000 coherence scores obtained for randomly permuted versions of the IFN signature. Top right:
IFN signature coherence score compared to all correlation coefficients from which it is derived. Mid row/left column: gene-versus-gene
correlation coefficients for random gene sets. Middle row/middle column: gene-versus-gene correlation coefficients for the randomly
perturbed signature. Middle row/right column: Scatterplot of MX1 signals across tumors and IFN signature scores across tumors. MX1
is the gene that best correlates to the IFN signature score. Bottom left: Scatterplot of IFIT3 signals across tumors and IFN signature
scores across tumors. IFIT3 is the gene that second best correlates to the IFN signature score. Bottom/middle: Scatterplot of MX2
signals across tumors and IFN signature scores across tumors. MX2 is a gene with median correlation to the IFN signature score.
Bottom right: Scatterplot of IFIT2 signals across tumors and IFN signature scores across tumors. IFIT2 is the signature gene with lowest
correlation to the IFN signature score.
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ordered according to med-IFN signature score. The heat maps visual-
ize the overall strongly coordinated changes for IFN response status in
the three medulloblastoma data sets, with the data set of Kool et al. not
used for training of the signature. We finally assigned med-IFN signa-
ture scores to the tumor samples of all three medulloblastoma data sets
using our 10-gene med-IFN signature. Signature scores for samples
were defined as the sums of z-normalized (mean-centered and stan-
dardized) expression values per sample.

To analyze the med-IFN signature in the context of the consensus
on molecular subtypes in medulloblastoma, we established and
analyzed WNT and SHH signatures from the results of Kool et al.
As WNT signature genes, we selected 11 top genes overexpressed in
Kool subtype A that were known in the WNT pathway context:
SP5, EMX2, LEF1, AXIN2, TNC, EPHA7, FZD10, DKK2, WIF1,
CCDC46, and PAX3. The WNT signature yields exceptionally high
coherence scores of CS > 0.80 in all three microarray data sets (P <
.0001). As SHH signature genes, we selected the top 21 genes over-
expressed in Kool subtype B: SEPT10, CYYR1, POU3F2, PRKD1,
PRIMA1, BDH2, C4orf18, SFRP1, RNF130, RFTN2, SCHIP1,
KIAA0922 , SATB2 , ZNF516 , ZFP36L1 , SRGAP1 , GLI2 ,
CCDC109B, BCHE, SOX2, and CLIC1. Also, the SHH signature
yields highly significant coherence scores of CS > 0.5 in all three data
sets (P < .0001). The strong coherence of the WNT and SHH sig-
natures reflects the fundamental differences with respect to the devel-
opmental origins of these cancer subtypes. Generally, proliferation is
an important outcome of cancer pathway activation. Differences in
proliferation between known subtypes were not assessed in previous
studies. In analogy to the procedure for the IFN signatures, we estab-
lished a proliferation signature: starting from 84 genes encoding DNA
synthesis and kinetochore proteins, we distilled a core of 21 prolifera-
tion genes strongly correlating in the two training data sets. We used
these as a core medulloblastoma proliferation signature. Whereas the
overall coherence of the original signatures in the two data sets was
low (CS ∼ 0.10), but significant (P < .001), analysis of the 21-gene
medulloblastoma proliferation signature resulted in a high coherence
in the validation data set by Kool et al. (CS = 0.463, P < .0001). To
assess dependencies between subtypes, we scored all samples of the
three medulloblastoma data sets using the four signatures (WNT,
SHH, IFN, PRF) and visualized them in Figure 4. High IFN signature
scores are present in all medulloblastoma subtypes, although in total,
only two tumors of the WNT subtype have an IFN response pheno-
type. So, IFN response occurs across all subtypes but is probably more
seldom in WNT subtype tumors. In particular, for the data sets of
Thompson et al. and Fattet et al., we observed low proliferation scores
for IFN-high tumors. Considering all 146 patients in the three studies,
we observed for a thresholds of Tmed-IFN = 0.25 and T PRF = −1 a
significant association (Fisher exact test, P = .005) between low prolif-
eration score and high med-IFN score: of 13 patients with low PRF
scores, 8 have high IFN scores (∼61%), whereas only 30 of the remain-
ing 133 patients (∼23%) with intermediate to high proliferation scores
have high IFN scores. This might indicate that IFN responses can lead
to lower proliferation rates in medulloblastomas—with potential influ-
ence on prognosis. Among the non-WNT non-SHH group 3/group 4
Figure 3. Medulloblastoma type I IFN signature gene expression.
Heat maps visualize mean-centered standardized gene expression
values in three studies for all genes of the medulloblastoma IFN
response signature (med-IFN). Samples in columns are ordered
by signature score. Color code: green — high expression, red —

low expression (expression score color keys are given in the
legends). (A) Expression intensities in data set from Kool et al.
(validation data set). (B) Expression intensities in data set from
Thompson et al. (training data set 1). (C) Expression intensities
in data set from Fattet et al. (training data set 2).



Figure 4. Pathway signature scores in all three data sets. Here we show bar plots of scores for the interferon signature (IFN), Wnt
pathway activation signature (WNT), Sonic Hedgehog pathway activation (SHH), and proliferation signatures (PRF) for each patient
in the three medulloblastoma cohorts under study. Identifiers for each patient are given as GEO sample IDs or as microarray IDs of
the St. Jude study.
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Figure 5. Hierarchical clustering of a combined medulloblastoma data set. A heat map of a medulloblastoma data set composed of
gene-wise z-normalized expression data for 146 medulloblastomas from the studies of Thompson, Fattet, and Kool is shown. Columns/
samples are hierarchically clustered (average linkage, Euclidean distance). Genes are ordered by membership to WNT, SHH, IFN, and
PRF signatures. Top coloring reflects which sample belongs to which original data set (blue – Thompson, orange – Fattet, green – Kool).
Note how clustering is dominated byWNT and SHH genes. IFN-high samples (marked in magenta) are rather distributed among all WNT-
low samples and often have a PRF-low expression phenotype.
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tumors that often have poor prognosis, the med-IFN-high tumors
might be those with better prognosis owing to their low proliferative
state. It is to be shown in future prospective studies how IFN response
and proliferative state relate to CMV infection and whether this has con-
sequences for therapy (administration of less aggressive chemotherapy
or radiotherapy and/or antiviral therapeutics).
The presence of IFN responses across all subtypes could have hin-

dered an earlier discovery of the med-IFN transcriptional program.
The reason is that previously used clustering approaches aim to
find nonoverlapping clusters: they have focused the cluster formation
only on the most influential—and therefore possibly overdominant—
expression programs, in particular those induced by SHH and WNT
pathways. The dominance of WNT and SHH expression programs in
a hierarchical clustering of a combined medulloblastoma data set is
illustrated in Figure 5. Hypothesis-driven approaches or biclustering
approaches that are able to discover overlapping clusters [27] could
help to discover less dominant, but nevertheless relevant, differentially
regulated transcriptional programs. We have shown here for the IFN
response signature example that a hypothesis-driven approach can
lead to additional insights and is complementary to unsupervised
clustering-based cancer subtyping.

Conclusions
We found an IFN response multigene expression signature that is a
recurrently activated gene expression module in medulloblastomas.
In the light of the study by Baryawno et al. on CMV infections in
medulloblastoma, this is a complementary piece of evidence for an
important role of viral infection associated with antiviral response in
the development of medulloblastoma. We found that IFN responses
are not restricted to distinct known subtypes of medulloblastoma
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(WNT, SHH, group 3/4). Initial evidence exists that IFN response
could coincide with reduced proliferation rates. Further studies will
have to address whether differential activation of antiviral cellular pro-
grams are due to CMV or other infections, whether all CMV infections
coincide with an IFN response, and whether the ability to elicit an anti-
viral response has an influence on prognosis or therapy for medullo-
blastoma. We further propose our IFN signature as a tool to detect
differential antiviral states in further cancer types, making it possible to
retrospectively explore microarray data for type I IFN response activation.
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Table W1. Eighteen Genes of the Initial IFN Signature.
Gene Symbol
 Represented and Functional in
Thompson and Fattet Data Sets
Part of the Med-IFN
Core Signature
CCR2
 No
 No

CXCL10
 Yes
 Yes

FCGR1A
 No
 No

IFI27
 Yes
 Yes

IFI44
 Yes
 No

IFIT1
 Yes
 Yes

IFIT2
 Yes
 Yes

IFIT3
 Yes
 Yes

IFIT5
 Yes
 No

MX1
 Yes
 Yes

MX2
 Yes
 Yes

OAS1
 Yes
 Yes

OAS2
 Yes
 Yes

OAS3
 Yes
 No

OASL
 Yes
 No

SOCS1
 Yes
 No

STAT1
 Yes
 Yes

TNFSF10
 Yes
 No



Figure W1. Diagnostic plots of the coherence scores for the simulated nonregulated (random), weakly regulated, and strongly regulated
signature shown in Figure 1.



Figure W1. (continued).



Figure W1. (continued).



Figure W2. Coherence score: diagnostic plots for the initial IFN signature in Thompson data set.



Figure W3. Coherence score: diagnostic plots for the initial IFN signature in Fattet data set.


