
Ontology-Guided Feature Engineering for Clinical Text
Classification

Vijay N. Garla, MS1,* and Cynthia Brandt, MD, MPH2,3

1Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 300
George Street, Suite 501, New Haven, CT 06520-8009
2Connecticut VA Healthcare System, Bldg. 35A, Room 213 (11-ACSLG), 950 Campbell Avenue,
West Haven, CT 06516
3Yale Center for Medical Informatics, Yale University, 300 George Street, Suite 501, New Haven,
CT 06520-8009

Abstract
In this study we present novel feature engineering techniques that leverage the biomedical domain
knowledge encoded in the Unified Medical Language System (UMLS) to improve machine-
learning based clinical text classification. Critical steps in clinical text classification include
identification of features and passages relevant to the classification task, and representation of
clinical text to enable discrimination between documents of different classes. We developed novel
information-theoretic techniques that utilize the taxonomical structure of the Unified Medical
Language System (UMLS) to improve feature ranking, and we developed a semantic similarity
measure that projects clinical text into a feature space that improves classification. We evaluated
these methods on the 2008 Integrating Informatics with Biology and the Bedside (I2B2) obesity
challenge. The methods we developed improve upon the results of this challenge’s top machine-
learning based system, and may improve the performance of other machine-learning based clinical
text classification systems. We have released all tools developed as part of this study as open
source, available at http://code.google.com/p/ytex
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1. Introduction
Feature engineering plays an important role in many clinical text classification approaches.
Feature engineering involves the selection of a subset of informative features and/or the
combination of distinct features into new features in order to obtain a representation that
enables classification. In the text classification domain, features typically include all distinct
terms – words and/or concepts - present in a text corpus. Even small corpora may possess
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tens of thousands of features, potentially necessitating feature engineering for a given
classification task. Domain knowledge is often used to guide the feature engineering
process; for example, to identify notes that assert the presence of a disease, experts manually
define dictionaries of terms related to the disease, e.g. symptoms and medications [1].
However, manual feature engineering may require considerable effort, and the selected
features and feature groups are problem and domain-specific [1,2]. In this paper, we present
novel methods that utilize the domain knowledge encoded in the taxonomical structure of
the Unified Medical Language System (UMLS) to automate the feature engineering process.

Machine-learning based text classification approaches often utilize automated feature
selection techniques. These techniques rank features based on statistics derived from the
distribution of features within a corpus, or their joint distribution with document classes [3].
One drawback to most automated feature ranking methods is that they are univariate: each
feature is considered separately, ignoring dependencies between features [4]. In the clinical
text mining domain, free text is often mapped to concepts from an ontology that encodes
semantic relationships between concepts. We hypothesize that the dependencies between
concepts encoded in biomedical ontologies can be utilized to improve feature ranking.

Automated techniques for feature grouping include clustering, dimensionality reduction, and
semantic similarity methods [5–9]. Clustering and dimensionality reduction are
unsupervised methods that group features based upon their co-occurrence within documents.
Semantic similarity measures utilize the taxonomic structure of an ontology to compute the
similarity between pairs of concepts. Semantic similarity measures can be used to assign
concepts to groups [10], or to project text into a feature space that effectively combines
similar but distinct concepts [11]. One potential drawback to these techniques is that they are
unsupervised or context-independent: they do not utilize the class labels assigned to text.
Our intuition is that similarity, or the optimal grouping of concepts, is context-dependent.
For example, in one context, the cardiovascular diseases congestive heart failure (CHF) and
hypertension may be perceived as similar; in a different context, CHF and hypertension
would be perceived as dissimilar, as they have different clinical presentation and treatments.
We hypothesize that supervised semantic similarity measures that leverage class information
can be used to sculpt a feature space that enables better discrimination between classes.

This paper is organized as follows: we provide an overview of related work; this is followed
by a description of the proposed ontology-guided feature engineering methods. We then
present the results of an empirical evaluation of these methods, followed by a conclusion.

2. Background
2.1. Feature Ranking and Selection

In the popular ‘bag-of-words’ document representation, documents occupy a feature space
with one dimension for each term; terms may be words from a natural language, or may be
technical identifiers such as a concept id. This feature space typically contains thousands of
dimensions, posing a problem for many machine learning algorithms that suffer from
overfitting when the number of features greatly exceeds the number of training examples
[12]. To address this issue, a subset of relevant features may be selected. A relevant feature
is one that increases performance when included in the set of features utilized by a particular
machine learning algorithm [13]. In the text mining domain, ‘filter’ feature selection
methods such as information gain and chi-squared are commonly used [3]. These methods
rank features by measuring their correlation with the target class, and select the top features
for use with a machine learning algorithm.
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A different but related issue is isolation of passages of text relevant to a classification task.
The entire body of a clinical note may not be relevant to a classification task [14–16]. For
example, radiology reports often contain findings relevant to multiple organ systems. If the
goal of a classification task is to identify reports that assert the presence of liver masses,
findings pertaining to the lungs or other organ systems may have little or no relevance to the
classification task. Rule-based systems often apply domain knowledge to isolate relevant
passages from a clinical note [1,15]. Automated Isolation of Hotspot Passages (AutoHP) is
an automated method for isolating passages relevant to a classification task [14]. AutoHP
ranks all features by information gain; it designates the top features ‘hotspots’; and it
generates a bag-of-words using only the text surrounding hotspots. Documents that do not
have any hotspots (zero-vectors) are simply assigned the most frequent class. Empirical
evaluations have shown that classifiers trained on document vectors generated with the
AutoHP method outperform those trained on a bag-of-words derived from the entire
document [14,16].

2.2. Semantic Similarity
One potential problem with the bag-of-words document representation is that it does not
explicitly express the similarity between related concepts. For example, when attempting to
classify hypercholesterolemic patients it may be advantageous to express the similarity
shared by anticholesteremic medications such as Lovastatin and Lipitor. A common manual
feature engineering approach is to group related features under a single feature; this however
requires expert domain knowledge. Semantic similarity measures are automated methods for
assigning pairs of concepts a measure of similarity, and can be derived from an ontology or
taxonomy of concepts arranged in is-a relationships; e.g. Lovastatin is-a Statin [8]. Semantic
similarity measures can be roughly divided into the following classes: similarity measures
based on taxonomical structure; measures based on both taxonomical structure and the
distribution of concepts in a corpus; and the context vector measure based on solely on the
distribution of concepts in a corpus [8,17–20]. A full discussion of various semantic
similarity measures exceeds the scope of this paper; refer to Pedersen et al [8] for an
excellent overview.

The UMLS Metathesaurus is a compendium of biomedical vocabularies including
SNOMED-CT, ICD-9, and RXNORM [21]. The UMLS Metathesaurus enumerates
concepts, assigns them unique identifiers (CUI), and encodes relationships between
concepts, including parent-child (PAR-CHD) and broader than-narrower than (RB-RN)
relationships. The PAR and RB relationships denote ‘is-a’ relationships, i.e. that one concept
is a generalization of another concept. Concepts that are generalizations of other concepts
are referred to as parents or hypernyms; specifications of a concept are referred to as
children or hyponyms. A taxonomy suitable for use with semantic similarity measures can
be derived from the UMLS by taking a subset of ‘is-a’ relations, and removing relations that
induce cycles.

Measures based on taxonomical structure calculate the shortest path between two concepts;
this path traverses the least common subsumer (LCS), i.e. the closest common parent
concept. One limitation of purely taxonomy-based measures is that they give equal weight to
all links [8]. Links between specific concepts, e.g. Lovastatin is-a Statin, should be weighted
more heavily than links between general concepts, e.g. Lovastatin is-a Enyme Inhibitor.
Information content (IC) based measures attempt to correct for this by weighting edges
based on concept specificity. The IC of a concept is based on its frequency and the
frequency of all its children in a corpus of text; frequent concepts are more ‘general’,
whereas infrequent concepts are ‘specific’. For example, the IC of the concept Statin is
based on the frequency with which this term and all of its children (Lovastatin, Lipitor,…)
appear in a corpus of text. The Lin measure is based on IC, and in empirical evaluations
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demonstrated a high correlation with expert judgments of concept similarity [8]. The Lin
measure is defined as follows:

(1)

The information content IC(c) of a concept is defined as the inverse of the log of the
concept’s frequency. The frequency of a concept is recursively defined using the taxonomic
structure of the UMLS: it is based on the number of times (freq(c,C) ) the concept c occurs
within a corpus C, together with the number of times its children occur.

Semantic similarity measures have been applied to several domain-independent NLP tasks
[11,22]. In the clinical text classification domain, Aseervatham and Bennani used semantic
similarity measures in their entry to the 2007 Computational Medicine Center (CMC) NLP
challenge [23]. Lu et al used a semantic similarity measure to assign symptoms to symptom
groups in a system to classify free-text chief complaints into syndrome categories [10].

3. Methods
We hypothesized that 1) we could utilize the UMLS ontology to improve feature ranking
methods, and 2) we could develop context-sensitive semantic similarity measures by
combining these feature ranking methods with semantic similarity methods.

3.1. Ontology-Guided Feature Ranking
In this study, we use information gain (IG), also known as Kullback–Leibler divergence, a
popular feature ranking method in the text classification domain [3]. IG measures the
correlation between a feature and document class in bits of information. The IG is computed
from the contingency table representing the joint distribution of the feature with the
document class. The table below illustrates the typical construction of the contingency table
for a binary (Y/N) classification task. D0 and D1 represent the sets of documents where a
given feature is absent or present respectively. DY and DN represent the sets of documents
that are assigned the classes ‘Y’ and ‘N’ respectively. The contingency table is constructed
by intersecting these sets: the cells of the contingency table represent the cardinality of the
intersected sets.

One drawback to this approach is that it ignores relationships between concepts. All children
of a UMLS hypernym may be relevant to a classification task. However, the children are
ranked independently of one another, potentially obfuscating their value as features. We
address this issue by propagating the contingency table of concepts to their hypernyms,
using the taxonomical structure of the UMLS as a guide. To compute the propagated
contingency table of a hypernym, we modify the joint distribution to account for
taxonomical relationships as follows: we modify D1 to include all documents that contain
the concept or any of its children. For example, to compute the propagated contingency table
for the statin concept, we assign any document that contains the concept statin or any child
(e.g. Lipitor) to the set D1. We construct the propagated contingency table for every concept
in the taxonomy and compute the information gain; we refer to this as the propagated
information gain (IGprop) of a concept.

Intuitively, if a hypernym is relevant to a classification task, then specifications of this
concept – its children – should be relevant as well. After computing the propagated
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information gain, we assign each concept in the UMLS the highest propagated information
gain of any hypernym; we refer to this as the imputed information gain (IGimp):

(2)

Where p1…pn includes the concept c and all of its hypernyms, up to and including the root
of the taxonomy.

We use the imputed information gain for the final ranking of concepts for feature selection.
Noteworthy aspects of this approach include: it is applicable to any taxonomical
organization of concepts; a concept need not even appear in the training data to be ranked
using this method, thereby potentially increasing the generalization capability of a system
based on this method; this can be adapted to other feature binning strategies besides concept
present/absent; and any feature evaluation method that can be computed from a contingency
table (such as chi-squared) can be applied.

3.2. Supervised Semantic Similarity Measures
Semantic similarity measures may accurately measure the similarity between concepts, but
this similarity might be irrelevant to a particular classification task. A relevant similiarity is
one that increases performance when utilized by a particular machine learning algorithm.
For example, Norvasc and Simvastatin, medications used to treat hypertension and
hypercholesteremia respectively, are both children of the ‘Cardiovascular Agent’ concept. A
semantic similarity measure may assign these medications a high similarity, but utilizing this
similarity in a machine learning algorithm may reduce performance when classifying
hypertension or hypercholesteremia.

Recall that taxonomy and information content based semantic similarity measures use the
distance between the concepts and their least common subsumer (LCS). Our method is
based on the assumption that the similarity between two concepts is relevant only if the
imputed information gain (IGimp) of their LCS is high. The intuition underlying this is: if a
concept is not relevant to a classification task, then the similarity between this concept’s
children is also not relevant. We define the supervised semantic similarity of a pair of
concepts with respect to a classification task as follows: we find the LCS of a pair of
concepts; if the IGimp of the LCS exceeds a configurable threshold we compute the Lin
measure, else we assign the concepts a similarity of 0. The optimal LCS IGimp threshold can
be identified via cross validation. For example, if the IGimp of Cardiovascular Agent does
not exceed the LCS threshold, we assign Simvastatin and Norvasc a similarity of 0
(completely unrelated), else we compute the similarity using the Lin measure. A notable
aspect of this approach is that it is applicable to any semantic similarity measure based on
the LCS of a pair of concepts.

3.3. Kernel Methods
Kernel methods provide a principled mechanism for integrating domain-specific similarity
measures with powerful machine learning algorithms. We utilize kernel methods to
incorporate semantic similarity measures with machine learning algorithms to classify
clinical text. A kernel can be thought of as a symmetric function that computes the pair-wise
similarity between instances [11]. Technically, a kernel projects instances x, y ∈ X not
necessarily from a vector space, into a (potentially unknown) vector space using a map ϕ,
and computes the inner products of the images in this space: 〈ϕ(x),ϕ(y)〉 [24]. The
computational attractiveness of kernels derives from the fact that instead of projecting
instances into a high-dimensional feature space and taking their inner product, kernels can
compute the similarity directly – this is the renowned ‘kernel trick’. Kernel machines such
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as support vector machines (SVMs) are algorithms that are trained on the matrix of pair-
wise kernel evaluations [25].

Given document vectors x,y indexed by concepts, a semantic similarity kernel can be
defined as:

(3)

The matrix S has 1’s along the diagonal. The off-diagonal (i,j) elements represent the
similarity of concept i and concept j. In our implementation, we use the Lin or supervised
Lin measure to compute pairwise concept similarity. The semantic similarity kernel allows
an intuitive geometric interpretation. In the standard bag-of-words vector representation, all
terms represent perpendicular dimensions. The semantic similarity kernel effectively ‘bends’
the dimensions of this space so that similar concepts are no longer perpendicular, thereby
pushing documents that contain similar concepts closer together. Refer to [11] for a more
rigorous treatment of this geometric intuition.

3.4. Evaluation Method
We chose the I2B2 2008 Challenge dataset to evaluate our methods because it provides a
benchmark to which we can compare our results [1]. For this challenge, domain experts
reviewed 1237 discharge summaries from overweight or diabetic patients and classified
these documents as asserting the presence of obesity and 15 related diseases, including
Hypertension, Coronary Artery Disease (CAD), Congestive Heart Failure (CHF), and
Hypercholesterolemia. The I2B2 Obesity challenge is a multi-label, multi-class
classification task, and comprised a textual and an intuitive task; the labels correspond to
diseases, and the classes correspond to judgments regarding the presence/absence of the
disease. For the intuitive task, annotators applied clinical intuition to determine if a disease
was present (Y), absent (N), or questionable (Q) based on information contained in the
discharge summary. For example, annotators interpreted laboratory values or drug
administration to infer the presence or absence of a disease.

This dataset is especially suited to the evaluation of feature selection methods in the clinical
domain because of the high correlation between the distinct disease classes: a feature
relevant to one cardiovascular disease, e.g. Hypercholesterolemia, may be highly correlated
with other cardiovascular diseases, e.g. CAD, but may not be relevant to the classification of
other diseases. In this study, we build upon the methods used by the top-scoring machine-
learning based system.

Manually-developed rule-based systems achieved the highest performance in the I2B2 2008
challenge. The top 4 systems for the intuitive task were purely rule-based; hybrid systems
that applied machine-learning methods to features obtained via manually developed rules
occupied ranks 8 and 9. The only purely machine-learning based system among the top 10
for the intuitive task was the submission by Ambert et al (rank 5) [14]. The central feature of
this system was the AutoHP method to automatically isolate passages from clinical text
relevant to the classification task. Empirical evaluations on the I2B2 challenge data showed
that document preprocessing with AutoHP provided the most significant contribution to the
system’s performance. Central to the AutoHP method is the ranking of features by
information gain. We hypothesized that ranking features by imputed information gain would
improve the identification of hotspot passages.

To quantify the contribution of our methods, we built upon the system of Ambert et al. in
several iterations, adding our proposed techniques. We evaluated our methods on the
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intuitive task of the I2B2 2008 challenge. We annotated all notes in the I2B2 2008 challenge
using the Yale cTAKES Extensions (YTEX)[26,27]. YTEX identifies sentence boundaries,
tokenizes text, performs negation detection, and maps text to concepts from the UMLS. We
generated a directed acyclic object graph that represents the UMLS taxonomy using the
SNOMED-CT and RXNORM source vocabularies, and the PAR-CHD and RB-RN
relations. The I2B2 2008 challenge dataset comprises a training set (n=730) and test set
(n=507). Participating teams were provided with the labeled training set three months prior
to the challenge; the unlabeled test set was released two days before system output was due.
We used the training set for parameter tuning and supervised feature ranking: to compute the
raw, propagated, and imputed information gain. We used the entire I2B2 corpus for
unsupervised feature ranking: to compute term frequencies and information content. To test
semantic similarity measures, we implemented kernels and evaluated them on the I2B2 2008
dataset. We optimized all parameters via a 5×2 fold stratified cross validation on the training
dataset; i.e. we performed 2-fold stratified cross validation 5 times. For the final evaluation,
we trained an SVM on the training set for each disease (label) using the optimal parameters
identified via cross validation, and evaluated the SVM on the test set. Systems submitted to
the I2B2 2008 Challenge were ranked by the macro-averaged F1-Score on the test set. The
F1-Score is the harmonic mean of positive predictive value and sensitivity; the macro-
averaged F1-Score is the average of F1-scores across all classes. We used the Libsvm
version 3.1 SVM implementation [28], YTEX v0.5, and UMLS version 2010AB. All
computations were performed on CentOS release 5.4 running Intel Xeon 64-bit processors.
Data was stored in a MySQL version 5.1.41 database. We have released all tools and scripts
required to reproduce our results as open source.

4. Results and Discussion
4.1. Feature Selection

To illustrate the differences between raw, propagated, and imputed information gain (IG),
we list the top ranked features for the Hypertension label (Table 2). Recall that a feature is
considered relevant if it improves the performance of a given machine learning algorithm. In
the context of this evaluation, we consider a feature relevant if it improves classifier
performance when used to identify hotspots, or improves classifier performance when used
with the supervised semantic similarity measure. To identify the relevant features, we
performed a cross-validation using a range of IG thresholds; all features with an IG above
the specified threshold were used for AutoHP, or with the supervised semantic similarity
measure.

All methods assigned hypertension the highest rank. The imputed IG assigned Hypertension
and its subtypes (e.g. renal hypertension, omitted for brevity) the highest ranks.

The ranking of Hyperlipidemia illustrates the shortcomings of raw information gain.
Hyperlipidemia is a disease strongly correlated with hypertension, but represents a distinct
label in the I2B2 challenge. In our evaluations, adding hyperlipidemia to the list of hotspot
features reduced classifier performance. However, raw information gain ranks
hyperlipidemia high, assigning it 0.033 bits, making it the 5th highest feature. In contrast,
propagated IG reduces hyperlipidemia’s rank, assigning it 0.025 bits, reducing its rank to 36.

The ranking of calcium channel and beta blockers illustrates the power of propagated and
imputed information gain. The propagated IG assigns the general concepts ‘calcium channel
blockers’ and ‘beta blockers’ high information (0.046 and 0.051 bits): the children of these
classes, distinct drugs relevant to Hypertension, contribute to the IG of their parents. The
imputed IG assigned medications that belong to these drug classes high ranks. In contrast,
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the raw IG ranks the beta blocker metoprolol – a relevant feature - below hyperlipidemia –
an irrelevant feature.

For the classification of hypertension, the top-ranked rule-based systems compiled thesauri
of terms informative for this disease class [1]. These included medications used to treat the
hypertension, e.g. calcium channel blockers and beta blockers, and diagnostic findings
related to hypertension (e.g. Blood pressure) [15]. The propagated and imputed IG assigned
these terms high ranks, suggesting that this feature ranking method reflects expert human
judgments more closely.

4.2. Semantic Similarity
To illustrate the differences between the Lin and supervised Lin semantic similarity
measures we present the semantic similarity for selected pairs of biomedical concepts, their
least common subsumer (LCS), and their propagated information gain (IGimp) with respect
to selected diseases (Table 3). Semantic similarity measures assign pairs of concepts a
similarity that ranges between 0 (unrelated) to 1 (identical). The supervised semantic
similarity measure assigns a concept pair a similarity of 0 if the IGimp of their LCS is below
a configured threshold. Our assumption is that, if the similarity between a pair of concepts is
relevant to a classification task, their least common subsumer (LCS) will exhibit a high
IGimp. We consider the similarity of a pair of concepts to be relevant if utilizing the
similarity in the semantic kernel improves classifier performance.

The statins Simvastatin and Pravastatin are relevant to the Hypercholesterolemia
classification task; these features and hence their similarity may be irrelevant to other
classification tasks, e.g. Hypertension. The propagated IG for statin, the LCS of these
concepts, is relatively high for Hypercholesterolemia (0.441 bits, Table 3) and much lower
for Hypertension (0.033 bits, Table 3). The ‘relevance’ of these similarities is confirmed by
empirical evaluations (see below).

The similarities between the concept pairs Heart Failure-Hypertension and Simvastatin-
Norvasc illustrate the shortcomings of unsupervised semantic similarity metrics: these
similarities are not relevant to certain classification tasks, as demonstrated by empirical
evaluations. Heart Failure and Hypertension represent two distinct disease labels for the
I2B2 challenge: using their semantic similarity does not improve the classification of these
diseases. Simvastatin and Norvasc are both used to treat cardiovascular diseases, and hence
are similar in this respect. However, using their semantic similarity does not improve
classification of either Hypertension or Hypercholesterolemia: conflating these distinct
concepts harms classifier performance. The imputed IG for the LCSs of these pairs is
relatively low. With the appropriate parameters (IG cutoff), the supervised semantic
similarity metric can compute a ‘context-dependent’ similarity that tailors the ‘perception’
of similarity to a specific classification task.

4.3. Classification Results
We performed five ‘experiments’ in which we progressively built upon the methods of
Ambert et al, adding our proposed techniques. We report the macro-averaged F1 score, the
metric by which submitted systems were ranked in this challenge (Table 4). We compare the
results of these experiments to each other and to those of the best I2B2 2008 submissions to
quantify the contribution our methods.

Bag-of-Words (word)—This experiment represents a baseline with which we attempted
to reproduce Ambert’s results. Our approach differs from Ambert in the following respects:
instead of a simple whitespace and punctuation tokenizer we used the YTEX tokenizer;
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instead of using a window of 100 characters on either side of hotspot features, we use a
window that includes all sentences within 100 characters on either side of hotspot features -
this was done primarily because it simplified the implementation; instead of inverse-class
frequency weighted SVMs, we used unweighted SVMs.

We represented text as a binary feature vector that included all words within these sentences
and applied SVMs with a linear kernel. The performance of this system was slightly lower
than that of Ambert (macro-f1 0.6399 vs. 0.6344); this may be due to the use of wider
windows around hotspots, tokenizer differences, or use of unweighted SVMs.

Bag-of-Words + Imputed Hotspots (imputed)—This experiment was designed to
measure the contribution of imputed feature ranking. For this experiment, we retain all
hotspots from the word experiment, using the optimal cutoffs as determined by cross-
validation. We then apply AutoHP using concepts as hotspot features, and imputed
information gain to rank concepts. We represented text as a binary feature vector that
included all words within these sentences and applied SVMs with a linear kernel. We
identified the optimal imputed hotspot cutoff via cross validation. The performance of this
system was better than word and slightly higher than ambert.

Bag-of-Words + Imputed Hotspots + CUIs (cui)—This experiment was designed to
measure the contribution of enriching the feature set with UMLS Concept Unique Identifiers
(CUIs); previous experiments used only words as features. We represented text as a binary
feature vector that included all words and CUIs within these sentences and applied SVMs
with a linear kernel. As in the imputed experiment, we identified the optimal imputed
hotspot cutoff via cross validation. The overall performance of this system was better than
word, imputed, and ambert indicating that adding CUIs improved performance.
Interestingly, the optimal imputed hotspot cutoff was different in the cui experiment than in
the imputed experiment, indicating that the contribution of CUIs as features is not simply an
additive improvement.

Semantic Kernel (lin)—This experiment was designed to measure the contribution of
unsupervised semantic similarity measures. For this experiment, we used the binary feature
vector from cui and applied SVMs with the semantic kernel using the Lin measure. In
general, performance on all diseases decreased relative to cui, suggesting that unsupervised
semantic similarity measures harm performance.

Supervised Semantic Kernel (superlin)—This experiment was designed to measure
the contribution of supervised semantic similarity measures. For this experiment, we used
the binary feature vector from cui and applied the supervised semantic kernel using the Lin
measure and a range of LCS IGimp thresholds. We used LCS thresholds corresponding to the
IGprop with ranks 1, 3, 5, and 10. For example, for Hypertension we used the thresholds
0.191, 0.066, 0.047, and 0.042 (Table 2). We identified the optimal threshold via cross-
validation. In general, superlin outperformed other experiments and ambert.

Our system’s performance does not differ significantly from the top challenge systems [1].
Of the top 10 systems, only the techniques employed by ourselves and Ambert can be fully
automated. However, the comparison to challenge systems may not be fair, as these systems
were developed under strict time constraints (two months).

Using imputed information gain to identify hotspot passages yielded the greatest
performance improvement: in general, performance improved in the imputed and cui
experiments relative to word. This improvement is attributable to the use of additional
hotspot features identified via imputed infogain (IGimp). For many diseases, IGimp identified
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members of relevant drug classes, e.g. Statins for Hypercholesteremia or Fibrate
antihyperlipidemics for Hypertriglyceridemia. Infrequently administered drugs in these
classes, or brand names of drugs usually referred to by their generic name, have a low raw
IG (IGraw) but a high IGimp. For example, for the Hypertriglyceridemia label, IGimp ranked
highly the term ‘Lopid’, a brand name for Gemfibrozil with few mentions in the corpus. The
identification of Lopid as a hotspot feature improved the performance of the imputed
experiment on the Hypertriglyceridemia label: this was the only other Fibrate
antihyperlipidemic (aside from those identified by IGraw) that was present in this corpus.

For some diseases, the IGimp identified relevant classes of clinical findings. For example, for
Venous insufficiency, IGimp ranked highly members of the “decreased vascular flow” class
of clinical findings. For the Venous Insufficiency label, enriching the feature vectors with
CUIs also greatly improved performance. This is probably due to the relevance of multi-
word terms such as “Postthrombotic Syndrome” and “Abnormal vascular flow”: the
proximity of words belonging to these terms is lost in the bag-of-words representation.
Representing these terms as CUIs rectifies this. For some diseases, performance of the cui
experiment is lower than that of imputed; this may be due to noise introduced by named
entity recognition errors.

IGimp did not improve performance on the Coronary Artery Disease, Congestive Heart
Failure (CHF), and Gallstones labels. For these diseases, the IGraw ‘found’ all the relevant
hotspots; expanding the hotspot feature set did not help. This was somewhat surprising for
CHF, as IGimp highly ranked loop diuretics, a class of drugs used to treat CHF, and which
we expected would improve the identification of relevant passages.

The supervised Lin measure yielded only a small improvement relative to cui/imputed. This
was somewhat surprising, as we expected that the semantic similarity metric would improve
classification by making explicit the ‘proximity’ of related concepts. The unsupervised Lin
measure in general harmed performance; this supports our hypothesis that, for this dataset,
semantic similarity is context-dependent.

One limitation of our study was the limited corpus size used to compute the semantic
similarity measures. Recall that the Lin measure is based on the frequency with which
concepts occur in a corpus. Empirical evaluations have shown that the accuracy of the Lin
measure is dependent on corpus size [8]. The poor performance of the unsupervised
semantic kernel may have been an artifact of the limited corpus size. However this is a
fundamental limitation of corpus-based semantic similarity measures: large, publicly
available, annotated corpora do not exist from which concept frequencies can be computed.
Recently, semantic similarity measures that estimate the information content of concepts
solely from the taxonomical structure of an ontology have been developed [19]. These
measures eliminate the dependency on a large, annotated corpus, and surpass corpus-based
measures in accuracy. As part of future work, we will evaluate these measures on the I2B2
2008 challenge and other datasets.

The use of a single corpus to evaluate our methods is another limitation of our study.
However, the I2B2 Obesity challenge represents a common use case in clinical NLP: the
identification of patients with specific diseases from the narrative text of the medical record.
We believe that the feature engineering methods presented here have general applicability.
In particular, imputed information gain may be useful for the automated identification of
features relevant to clinical NLP tasks.

Barriers to NLP development in the clinical domain include the formidability of reproducing
the results of other systems, and the limited collaboration within the NLP community [29].
We addressed these issues in this study: we released all tools and code developed as part of
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this study as open source and provided detailed documentation enabling others to reproduce
our results. This study unifies the work of several disparate groups in the clinical NLP field:
we used cTAKES, an NLP pipeline developed at the Mayo Clinic [27]; the AutoHP method,
developed at Oregon Health & Science University [16]; and the semantic kernel developed
at the Université Paris [23]. We combined these methods in an integrated, open-source
software framework. There has been much research dedicated to the development of
semantic similarity methods for the biomedical domain, but few applications of these
methods to clinical NLP problems. The tools we developed facilitate the application of
semantic similarity methods to problems in the clinical NLP domain.

5. Conclusions
Feature engineering approaches that leverage domain knowledge can improve the
performance of machine-learning based classifiers. In this study, we presented a novel
feature ranking method that utilizes the domain knowledge encoded in the taxonomical
structure of the UMLS, and we developed a novel context-dependent semantic similarity
measure. Semantic similarity measures quantify the relatedness between pairs of concepts.
Our ‘context-dependent’ semantic similarity measure tailors the ‘perception’ of similarity to
a specific classification task. We improved the performance of the top-ranked machine
learning-based system from the I2B2 2008 challenge by extending it with our methods. The
methods we have developed may improve the performance of other machine-learning based
clinical text classification systems. We have released all tools developed as part of this study
as open source, available at http://code.google.com/p/ytex.
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Highlights

• Leveraged the structure of the UMLS to rank concepts for text classification

• Used document class labels to define a context-sensitive semantic similarity
measure

• Classified clinical text with SVMs using a semantic kernel

• Improved the top machine-learning system from I2B2 2008 challenge
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Table 1

Feature-Class contingency table

Feature Absent D0 Feature Present D1

Class Y Dy Dy ∩ D0 Dy ∩ D1

Class N Dn Dn ∩ D0 Dn ∩ D1
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Table 3
Semantic Similarity Measures

Concepts Lin LCS Imputed IG of LCS

Disease Score

Simvastatin-Pravastatin 0.876 Statin Hypercholesterolemia 0.441

Hypertension 0.044

Simvastatin-Norvasc 0.705 Cardiovascular agent Hypercholesterolemia 0.033

Hypertension 0.037

Heart failure-Hypertension 0.695 Cardiovascular Diseases Hypertension 0.007

Congestive Heart Failure 0.021
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Table 5
Top Systems from I2B2 2008 Challenge

System Micro-F1 Macro-F1

Ware 0.9654 0.6404

Szarvas 0.9642 0.6727

Superlin 0.9594 0.6355

Solt 0.9590 0.6745

Childs 0.9582 0.6696

Yang 0.9572 0.6336

Meystre 0.9566 0.6343

Ambert 0.9558 0.6344

DeShazo 0.9524 0.6292

Matthews 0.9509 0.6288

Jazayeri 0.9508 0.6287

sorted by Micro-Averaged F1
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