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The characteristics and evolutionary forces acting on regulatory variation in humans remains elusive because of the
difficulty in defining functionally important noncoding DNA. Here, we combine genome-scale maps of regulatory DNA
marked by DNase I hypersensitive sites (DHSs) from 138 cell and tissue types with whole-genome sequences of 53 geo-
graphically diverse individuals in order to better delimit the patterns of regulatory variation in humans. We estimate that
individuals likely harbor many more functionally important variants in regulatory DNA compared with protein-coding
regions, although they are likely to have, on average, smaller effect sizes. Moreover, we demonstrate that there is sig-
nificant heterogeneity in the level of functional constraint in regulatory DNA among different cell types. We also find
marked variability in functional constraint among transcription factor motifs in regulatory DNA, with sequence motifs
for major developmental regulators, such as HOX proteins, exhibiting levels of constraint comparable to protein-coding
regions. Finally, we perform a genome-wide scan of recent positive selection and identify hundreds of novel substrates of
adaptive regulatory evolution that are enriched for biologically interesting pathways such as melanogenesis and adipo-
cytokine signaling. These data and results provide new insights into patterns of regulatory variation in individuals and
populations and demonstrate that a large proportion of functionally important variation lies beyond the exome.

[Supplemental material is available for this article.]

Protein-coding DNA constitutes ;1.5% of the human genome, but

;2.5%–15% is estimated to be functionally constrained (Mouse

Genome Sequencing Consortium 2002; Lunter et al. 2006;

Asthana et al. 2007; Meader et al. 2010; Ponting and Hardison

2011). Thus, a significant amount of functionally important DNA

is located in noncoding regions, and genetic variation in such re-

gions likely makes a significant contribution to phenotypic varia-

tion and disease susceptibility among individuals. For example,

regulatory variation has been linked to the susceptibility of a wide

variety of human diseases, including infectious, autoimmune,

psychiatric, neoplastic, and neurodegenerative disorders (for re-

view, see Skelly et al. 2009). In addition, regulatory variation is an

important substrate for evolutionary change within and between

species (King and Wilson 1975), and a number of examples in

humans have been described of positive selection that are due to

adaptive evolution of noncoding DNA (Bamshad et al. 2002;

Hamblin et al. 2002; Bersaglieri et al. 2004; Tishkoff et al. 2007).

To date, the identification and interpretation of regulatory

variation has been challenging because of the difficulty in accu-

rately localizing functional noncoding elements that regulate

transcription. Computational approaches for large-scale delin-

eation of regulatory DNA have generally been disappointing. For

instance, although sophisticated methods have been developed to

identify cis-regulatory motifs, such as transcription factor binding

sites and 39 UTR elements (Hughes et al. 2000; Stormo 2000;

Vavouri and Elgar 2005; Xie et al. 2005), it is often unclear how

many of the predicted sites are functional. Furthermore, evolu-

tionary-based methods (Siepel et al. 2005; Pollard et al. 2010) are

a powerful approach for identifying conserved noncoding DNA

that is likely to be functionally important, but only a fraction of

such sites encode experimentally verifiable transcriptional control

elements, while other data suggest that a large fraction of binding

sites for specific regulatory factors is not constrained between

species, in part due to lineage-specific use of regulatory elements

(Dermitzakis and Clark 2002; The ENCODE Project Consortium

2007, 2012; Blow et al. 2010; Schmidt et al. 2010). Consequently,

between-species conservation-based methods likely miss many

functional elements.

Although computational and evolutionary-based methods

play a critical role in understanding the biology of genomes and

interpreting the consequences of putative regulatory variation,

experimental methods are the most direct approach for assessing

the functional significance of noncoding variation. To this end,

large-scale experimental studies of noncoding DNA, harnessing

new technologies, such as the ENCODE Project (The ENCODE

Project Consortium 2007, 2012) are providing a detailed roadmap

to the locations of regulatory DNA in the human genome.

A generic structural feature of animal regulatory DNA is ex-

treme accessibility to nucleases in the context of intact nuclei

(Gross and Garrard 1988), and hypersensitivity to the nonspecific

endonuclease DNase I has been used for over 30 yr as a probe for

regulatory DNA (Galas and Schmitz 1978). The binding of se-

quence-specific transcriptional regulators in place of canonical

nucleosomes creates DNase I hypersensitive sites (DHSs). Nucleo-

tide resolution analysis of DNase I cleavage patterns allows iden-

tification of the ‘‘footprints’’ of DNA-bound regulators (Galas and

Schmitz 1978). In contrast to ChIP-chip and ChIP-seq, which

probe the locations of regulatory sequences for a specific tran-

scription factor, the nonspecificity of DNase I is a powerful feature

that allows all DNA–protein interactions to be queried in a single

experiment. Large-scale localization of in vivo DNase I cleavages

using deep sequencing (Hesselberth et al. 2009) has enabled the
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creation of genome-scale maps of diverse functional noncoding

elements marked by DHSs. For example, in the ENCODE Project,

;3 million DHSs have now been mapped across 138 cell types

(Thurman et al. 2012). In addition, genomic DNase I footprinting

of 41 cell diverse cell types has resulted in the localization of 8.4

million DNase I footprints (Neph et al. 2012b).

Here, we describe a comprehensive analysis into patterns of

genetic variation in regulatory DNA marked by DHSs and DNase I

footprints (The ENCODE Project Consortium 2012). By analyzing

whole-genome sequence data, we are able to directly compare

characteristics of regulatory and protein-coding variation and find

that individuals harbor considerably more regulatory compared to

protein-coding variants. Moreover, we demonstrate that signifi-

cant heterogeneity of functional constraint exists across regulatory

DNA between cell types and that regulatory DNA present in mul-

tiple broad categories of cell types is significantly more con-

strained. Finally, we quantify patterns of population structure in

regulatory DNA and identify several hundred loci that contain

signatures of local adaptation. In summary, these analyses represent

the most comprehensive assessment of human regulatory variation

described to date and have important implications for personal

genomics, disease mapping studies, and human evolution.

Results and Discussion

Overview of DNase I and whole-genome sequence data

A schematic illustration of the classes of data used in our analyses is

shown in Figure 1A. Within DHSs, DNase I ‘‘peaks’’ correspond to

;150-bp regions of maximum hypersensitivity (Fig. 1A; see The

ENCODE Project Consortium 2012). Embedded within peaks, are

much smaller 6- to 20-bp DNase I footprints, which identify

regions bound by regulatory factors (Fig. 1A). We also obtained

publicly available whole-genome sequence data for 53 unrelated

individuals that encompass five geographically diverse popula-

tions (Fig. 1B) from Complete Genomics. The average sequencing

depth per individual was ;403. Variants were filtered for de-

viations from Hardy-Weinberg equilibrium, and partial genotype

calls were set to missing data (see Methods). The high-coverage

whole-genome sequence data are ideal for population genetics

analyses as they are free from the confounding affects of ascer-

tainment bias present in genotypes obtained from SNP chips

(Tennessen et al. 2011).

Pervasive regulatory variation across the human genome

Across all cell types, over 2.9 million DNase I peaks and 8.4 million

DNase I footprints were identified across sampled cell types that

collectively span 577 Mb and 156 Mb of sequence, respectively

(18.7% and 5.1% of the genome for peaks and footprints, respec-

tively). By use of the whole-genome sequence data, we observed

3.85 million, 1.01 million, and 0.15 million variants in DNase I

peaks, DNase I footprints, and the exome, respectively. The large

number of variants in peaks and footprints relative to exomes is

a function of the total amount of sequence they encompass. For

example, the number of variants per kilobase in peaks, footprints,

and the exome is 6.7, 6.5, and 4.2, respectively.

To compare the number of putatively functional variants

across peaks, footprints, and the exome we obtained GERP scores

for each variant, which is a measure of evolutionary constraint

with positive values indicating greater conservation (Cooper et al.

2005). Peaks and footprints not only have an overall larger number

of variants relative to exomes but also manifest more high GERP

variants compared with protein-coding regions (Fig. 2A), although

the differences between categories becomes less dramatic. For ex-

ample, at a threshold of GERP $ 3 (Cooper et al. 2005) 146,570,

61,933, and 36,935 variants are observed in peaks, footprints, and

the exome, respectively. It is interesting to note that protein-coding

DNA contains proportionally more putatively functional variation

compared with noncoding DNA (i.e., 24.6%, 6.1%, and 3.8%

of variants have a GERP $ 3 for exomes, footprints, and peaks,

respectively), but the absolute number of functional variants in

Figure 1. Overview of data used in the analyses. (A) Schematic of the DNase I data. Binding of regulatory proteins to DNA (blue rectangle) results in
nucleosome (open circles) displacement and local chromatin remodeling, and these regions are susceptible to cleavage with the endonuclease DNase I.
High-throughput sequencing of libraries made from digested nuclei reveals DNase I hypersensitive sites, detectable by increased depth of coverage. Peaks
are defined as 150-bp windows centered on the area of maximum cleavage (The ENCODE Project Consortium 2012). Within hypersensitive sites,
footprints of regulatory factor binding are observed as decreased cleavage. (B) Unrooted neighbor-joining tree of the 53 unrelated individuals colored by
population. Abbreviations are described in Supplemental Table 2.
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noncoding regions is larger because of the greater amount of ge-

nomic sequence they encompass. Thus, regulatory variation is

pervasive across the human genome, and a substantial proportion

of functional variation exists in noncoding DNA.

Next, we investigated the distribution of putative regulatory

and protein-coding variation across individuals. As expected, the

average number of variants (6SD) per individual in peaks and

footprints is dramatically higher than that found in the exome

(741k 6 72k in peaks, 192k 6 18k in footprints, and 24.4k 6 2.2k

in the exome) (Fig. 2B). A more interesting comparison, however, is

the number of putatively functional regulatory and protein vari-

ants per individual. Therefore, we also determined the number of

variants per individual with a GERP $ 3 in peaks, footprints, and

the exome (Fig. 2C). On average, individuals contain 24.2k 6 2.3k,

10.1k 6 0.92k, and 4.7k 6 0.40k high GERP variants in peaks,

footprints, and the exome, respectively (Fig. 2C). Although evo-

lutionary constraint is not a perfect proxy for function, these re-

sults suggest that individuals possess more regulatory versus pro-

tein-coding variants. Assuming the probability that a variant is

functional is the same between coding and noncoding DNA for

a given GERP value, we estimate that individuals contain up to

five times as many regulatory compared with protein-coding var-

iants. This assumption, however, is dubious (McVicker et al. 2009),

and more definitive inferences on the proportion of functional

variants in noncoding versus coding DNA will ultimately require

further experimental data. In addition, it is interesting to note that,

as expected, the average number of variants per individual in peaks

and footprints is significantly higher for individuals of African an-

cestry compared to non-Africans (859k vs. 710k in Africans and non-

Africans, respectively; P < 9.95 3 10�10) (Fig. 2B).

Patterns of nucleotide diversity in regulatory
DNA sequence motifs

The unique scope of the data sets analyzed here allows us for the

first time to systematically investigate genomic patterns of variation

in DNA sequence motifs. To this end, we scanned DNase I footprints

for 732 known motifs (see Methods), and for each motif, we cal-

culated nucleotide diversity, p, averaged across all instances of the

motif in these regions. To facilitate interpretation of motif diversity,

we also calculated p for fourfold synonymous sites, a proxy for

neutrally evolving DNA, and protein-coding sequences. As shown

in Figure 3A, average diversity varies by over sevenfold across known

regulatory motifs, ranging from 2.67 3 10�4 to 2.0 3 10�3.

Approximately 60% of motifs have average diversities significantly

lower than fourfold synonymous sites (Fig. 3A), indicative of puri-

fying selection.

Figure 3A also highlights motif diversity for several important

classes of transcriptional regulators. For example, HOX-, POU-, and

FOX-domain factors are heavily enriched in developmental regu-

lators and controllers of cellular differentiation. Motifs for tran-

scription factors belonging to these classes are markedly shifted

toward lower diversity, and motifs for several individual factors

exhibit levels of diversity that are reduced beyond that of protein-

coding sequences (Fig. 3A). In contrast, diversity in motifs for

tandem zinc finger transcription factors, which comprise the

largest and most diverse class of human transcription factors, is

distributed relatively evenly across the diversity spectrum (Fig. 3A).

Members of this group include core regulatory factors such as

CTCF and YY1, developmental regulators such as PRDM1 and

ZIC3, and numerous chromatin repressors such as RREB1, REST,

and the KRAB-ZNF family of proteins. Because many of the

canonical motifs for these factors contain one or more CG di-

nucleotides, we hypothesized that the increased average diversity

for these factors might be a consequence of higher mutation rates at

CpG sites. To explore this hypothesis, we identified factors for which

>50% of the motif instances in regulatory DNA contained CpGs,

which revealed that the ubiquitous presence of CpG sites is a com-

mon characteristic of motifs with high levels of diversity (Fig. 3A).

To more systematically control for mutation rate heterogene-

ity, we also calculated p normalized for divergence (see Methods) for

each motif. As shown in Figure 3B, normalized diversity has the

Figure 2. Characteristics of regulatory variation among individuals. (A) Total number of variants in DNase I peaks, footprints, and the exome stratified by
GERP score. (B) Distribution of the number of variants per individual in DNase I peaks, footprints, and the exome. (C ) Distribution of the number of variants
per individual with GERP $ 3 in DNase I peaks, footprints, and exomes.

Human regulatory variation

Genome Research 1691
www.genome.org



most dramatic effects on motifs that contain CpGs, highlighting the

potentially large contribution that mutation rate has on observed

levels of p. The effect of normalization on non-CpG motifs is more

modest, and normalized and unnormalized diversity levels among

these motifs are strongly correlated (r = 0.70; P < 10�16). Nonetheless,

these data demonstrate that heterogeneity in both selective con-

straint and mutation rate likely contribute to the differences in

diversity observed among motifs. In the following, we will focus on

normalized p to mitigate variation in mutation rate among sequences

being compared.

Heterogeneity of functional constraint across cell types

We next tested the hypothesis that levels of functional constraint

acting on regulatory DNA varied across cell types. To this end, we

calculated normalized p averaged across all DNase I peaks for each

of the 138 cell lines. We found marked differences in normalized

diversity between cell lines (P < 10�4) (Fig. 4A), which ranged from

a low of 5.52 3 10�4 in primary hepatocytes to a high of 6.15 3

10�4 in the immortalized B-lymphoblastoid cell line GM12864.

The majority of cell types exhibited average levels of normalized

diversity that are within the range of fourfold degenerate sites (Fig.

4A). Note, as we are averaging over many megabases of sequence in

each cell type, this does not mean that specific sites, such as motifs

embedded within peaks, are evolving neutrally. Six cell types

(retinal pigment epithelial, neuroblastoma, primary liver, skeletal

muscle myoblast, umbilical vein endothelial, and prostate ade-

nocarcinoma cells, corresponding to cell lines HRPEpiC, SK-N-SH,

Hepatocyte, Hsmm, Huvec, and LNCaP, respectively) exhibited

average levels of normalized diversity that are significantly lower

(ranging from P = 0.024 to P < 10�4) than fourfold degenerate sites,

indicative of stronger functional constraint.

It is important to note that the magnitude of reduced diversity

in these six cell types is much less than that observed for protein-

coding genes. Specifically, normalized diversity across the exome is

4.04 3 10�4, a reduction of 31.2% compared with fourfold de-

generate sites. The stronger signature of purifying selection on

exomic sequence relative to regulatory regions defined by DNase I

hypersensitivity is likely attributable to both the higher proportion

of functionally important variants in protein-coding versus non-

coding DNA and that, on average, mutations in exonic sequences

are more deleterious than mutations in regulatory regions. Indeed,

numerous studies have found that regulatory mutations tend to be

mildly deleterious (Asthana et al. 2007; Chen et al. 2007; Ronald

and Akey 2007).

We next investigated differences in normalized diversity be-

tween ‘‘core’’ DHS and DHS found in only one category of cell

types. To this end, all of the cell types can be grouped into one of

three categories: normal/primary, iPS/ES, and malignant. To min-

imize potential contributions from experimental noise, we focused

on a subset of 92 cell types with high-quality DNase I data in which

>40% all sequence tags map within DHSs (equivalent to average

signal-to-noise of ;100:1) (Thurman et al. 2012) and calculated

normalized p in DNase I peaks that are shared and unique to each

cell type category (Fig. 4B). Eight percent of peaks are found in all

three categories, whereas 6.4%, 31.1%, and 28.2% of peaks are

unique to iPS/ES, malignant, and normal/primary cell types, re-

spectively (Fig. 4B). Overall, there is significant variation (P < 10�4)

in normalized diversity among peaks shared between cell type cat-

egories versus those found in a single category (Fig. 4B). In partic-

ular, DNase I peaks shared by two or three categories of cell types

exhibit the lowest levels of normalized diversity (Fig. 4B), consistent

with stronger selective constraint. Conversely, peaks found in only

one cell category have significantly higher normalized diversity

than shared peaks, (Fig. 4B). These results suggest that the ‘‘core’’ set

of DHSs, present in more than one cell type category, is subject to

stronger purifying selection because they are necessary for proper

transcriptional programs in multiple cell types.

Figure 3. Significant variation of diversity between 732 cis-regulatory motifs. (A) For each motif, average diversity is plotted as a black circle, and 95%
confidence intervals obtained by bootstrapping are shown as gray lines. The light blue and yellow rectangles denote the 95% confidence intervals of
diversity in fourfold synonymous sites (FFSs) and the exome, respectively. (Red vertical lines) Motifs that belong to the indicated class of transcription
factor. (Black vertical lines) Motifs where at least 50% of all instances of that motif contain a CpG dinucleotide. (B) Normalized diversity in motifs versus
non-normalized diversity. Motifs with a CpG (defined as above) are plotted in red. (Dashed line) Best fit for non-CpG motifs (r = 0.70, P < 10�16).
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Evidence for ectopic activation of DHSs in malignant cell types

Many cancers are characterized by disruptions in chromatin main-

tenance pathways (Wang et al. 2007; Morin et al. 2010; Jiao et al.

2011). Additionally, many immortalized cells express different

complements or ratios of transcriptional factors than are found in

normal differentiated cells (Zaidi et al. 2007). These observations

suggest that immortalized and malignant cell lines may experience

increased ‘‘ectopic’’ activation of DHSs. To explore the potential

ectopic activation of DHSs in malignant and immortalized cell types

further, we calculated the proportion of DNase I peaks that are

present in only one cell line, as noncanonical chromatin remodel-

ing would be expected to result in an excess of cell type–restricted

DHSs. Again, we used the same 92 cell types as described above.

We found that 54% of peaks specific to normal/primary cells

are present in a single cell type. In contrast, 81% of malignant-

specific peaks and 86% of iPS/ES-specific peaks are present in a single

cell line. However, these percentages are not directly comparable,

because of sample size differences between categories (n = 58, 29,

five for normal/primary, malignant, and iPS/ES, respectively). When

we correct for the number of cell types per category (see Methods),

we find that iPS/ES cells are not enriched for singleton DHSs com-

pared to normal/primary cells (P = 0.236), whereas malignant cell

types are significantly enriched (P < 10�4) for singleton DHSs

compared to normal/primary cells (Fig. 5).These data raise the in-

triguing possibility that the DHSs found in malignant cells, though

not increased significantly in number (data not shown), are

enriched in elements resulting from ectopic cooperative transcrip-

tion factor binding within neutrally evolving sequences.

Signatures of positive selection

A large number of genome-wide scans for recent positive selection

have been performed in humans (for review, see Akey 2009).

Typically, these studies focus only on patterns of DNA sequence

variation and are not informed by functional genomics data, al-

though genome-wide analyses have been pursued on computa-

Figure 4. Heterogeneity of polymorphism across cell types. (A) Distribution of normalized nucleotide diversity (black points) across DNase I peaks in 138
cell types. Vertical bars around peaks indicate 95% confidence intervals obtained by bootstrapping. (Blue rectangle) 95% confidence interval for nor-
malized nucleotide diversity in fourfold degenerate sites. (B) Venn diagram showing the amount of shared and unique sequence for DNase I peaks among
normal/primary, malignant, and iPS/ES cell types. The barplot on the left shows average normalized diversity for several categories of peaks in the Venn
diagram. Shared all and shared two denote peaks shared among all three categories and between any two categories, respectively. N, M, and SC denotes
peaks specific to normal/primary, malignant, and stem cell (iPS/ES) cell types, respectively.

Figure 5. Malignant cell lines exhibit significantly more singleton
DNase I peaks than normal cell lines. (Triangles) Observed proportion of
singleton peaks. (Blue and green lines) Distribution (density histograms)
of singleton peaks when randomly sampling 29 (blue) or five (green) cell
types; this is the distribution of the number of singleton peaks we would
expect if malignant or stem cells were similar to normal cells, respectively.
Note the malignant category (blue) shows significantly more singleton
peaks than expected given its sample size, but the stem cell category
(green) falls within the expected range.
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tionally predicted motifs. The large compendium of experimen-

tally characterized regulatory regions provides a unique data set to

interrogate for signatures of recent positive selection.

To this end, we performed a population genomics analysis to

identify DNase I peaks that contain variants with large allele fre-

quency differences between populations relative to the genome-

at-large, which is a signature of geographically restricted selection

(Akey et al. 2002; Akey et al. 2004). Specifically, we calculated lo-

cus-specific branch lengths (LSBLs) (Shriver et al. 2004) for variants

in DNase I peaks in Africans, Asians, and Europeans. LSBL is

a function of pairwise FST between populations (see Methods) and

helps isolate the direction of allele frequency change (Shriver et al.

2004). To reduce the stochasticity inherent in summary statistics of

population differentiation, we averaged LSBL across all variants in

a peak. We excluded X-linked variants from our analysis due to its

different effective population size.

The genome-wide distributions of population structure in

DNase I peaks in the African, Asian, and European populations

are shown in Figure 6A. We pursued two distinct approaches to

interpret these data. First, to obtain general insights into the

characteristics of DNase I peaks that exhibit large allele frequency

differences between populations, we focused on peaks in the 1%

tail of the empirical distribution of LSBLs in each population

(Fig. 6A). Next, we identified all genes within 50 kb of these

peaks (n = 3372, 3224, and 3099 such genes in Africans, Asians,

and Europeans, respectively) and tested for enrichment of KEGG

pathways. As shown in Table 1, this set of genes is significantly

enriched for 15 KEGG pathways, seven of which are shared be-

tween two or more populations (including pathways related to

cancer, axon guidance, and WNT signaling). Interestingly, the

most significantly enriched pathway in Europeans is melano-

genesis (Table 1), suggesting that in addition to protein-coding

variants (Lamason et al. 2005), regulatory polymorphisms influ-

encing pigmentation phenotypes have also been a target of re-

cent positive selection. Moreover, our African sample is signif-

icantly enriched for chemokine and adipocytokine signaling

pathways (Table 1), which is particularly interesting given the

known differences in prevalence of insulin resistance and type 2

diabetes in individuals of African ancestry (Reimann et al.

2007).

Figure 6. Genome-wide distribution of population structure in regulatory DNA. (A) Genome-wide distribution of locus-specific branch lengths (LSBLs)
for Africans, Asians, and Europeans, respectively. Note that the valley of uniform LSBL on chromosome 17 in Europeans corresponds to the MAPT region
that is segregating a large chromosomal inversion (Zody et al. 2008). (B) Distribution of the proportion of highly differentiated DNase I peaks found for
different categories of cell types. (SC) Stem cells (iPS/ES); (I) immortalized; (M) malignant; (N) normal/primary cell types. (C ) Distribution of African LSBL
across intron 1 of VDR. (D) Distribution of European LSBL across intron 4 of FTO. In panels C and D, peaks are shown as red rectangles and exons as black
rectangles.
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We also investigated the distribution of DNase I peaks that

exhibit unusually large levels of population structure across cell

types. To this end, we classified the 138 types into normal, im-

mortalized, malignant, and pluripotent (iPS/ES) categories. The

proportion of DNase I peaks that are in the 1% tail of the empirical

distribution of LSBLs is significantly different across cell type cat-

egories (Kruskal-Wallis test, P = 3.2 3 10�12). Primary/normal cell

lines had the highest proportion of differentiated peaks, whereas

iPS/ES cell lines had the lowest proportion of differentiated peaks

(Fig. 6B). The higher proportion of differentiated DNase I peaks in

primary/normal cell lines is driven by a wide variety of cell types,

including astrocytes (spinal cord [HA-sp], cerebellar [HA-c], and

cortical [HA-h]), renal glomeral endothelial cells (HRGEC), and

cardiac fibroblasts (HCFaa). Although these results are intriguing

and offer preliminary insights into the types of tissues that con-

tribute to fitness differences among individuals, more definitive

inferences will require an even broader sampling of cell types.

Second, to develop a more refined list of putative targets of

recent adaptive evolution, we focused on the most differentiated

1% of DHSs that also contain one or more highly differentiated

variants with a GERP $ 3. In total, 323, 349, and 313 DHSs meet

these criteria in Africans, Asians, and Europeans, respectively. We

identified genes located within 50 kb of each of these peaks and

identified 187, 174, and 179 genes in Africans, Asians, and Euro-

peans, respectively (Supplemental Text 1). Notably, included in

this set of peaks is the well-documented promoter variant in DARC

that results in malaria resistance in African populations (Hamblin

et al. 2002), which demonstrates the potential power of this data

set to fine-scale map signatures of selection and identify selected

alleles. Moreover, 61, 40, and 51 of these candidate selection genes

in Africans, Asians, and Europeans, respectively, overlap previously

reported signatures of selection collected by Akey (2009), which is

significantly more than expected by

chance (P < 10�6 for all populations).

Thus, these observations suggest that the

loci identified here are enriched for targets

of recent positive selection. Particularly

interesting examples of novel targets of

selection include the vitamin D receptor

(VDR) in Africans and the fat mass and

obesity associated gene (FTO) in Euro-

peans (Fig. 6C,D). The list of all candidate

selection genes located within 50 kb of

highly differentiated peaks is provided in

Supplemental Text 1, which provides a

powerful framework for more detailed

analyses into recent adaptation of non-

coding DNA in humans.

Conclusions

By synergistically integrating whole-

genome sequences with genome-wide

DNase I data, we provide new insights

into the distribution and characteristics

of human cis-regulatory variation in in-

dividuals and populations. Our results

demonstrate that regulatory variation is

pervasive throughout the genome, on av-

erage mildly deleterious, and individuals

likely harbor more functionally impor-

tant variants in noncoding compared

with protein-coding DNA. The latter observation is important for

disease mapping studies and suggests that a substantial proportion

of disease alleles exist beyond the exome (Bamshad et al. 2011).

Our results also suggest that ectopic activation of noncanonical cis-

regulatory sequences contributes to the aberrant transcriptional

changes that are observed in many cancers. Finally, we describe

a large compendium of DHSs that exhibit unusually large levels of

population structure, consistent with the action of geographically

restricted selection. Genes adjacent to these highly differentiated

regulatory sequences are enriched for a number of biologically in-

teresting categories, such as signaling and disease related pathways.

Although considerably more work is needed to elucidate the evo-

lutionary history of these loci, they provide an important starting

point for understanding how recent adaptive evolution has

influenced regulatory networks.

Methods

DNase I data
We obtained DNase I peaks, footprints, and predicted motif loca-
tions from the ENCODE Project (The ENCODE Project Consortium
2012, http://genome.ucsc.edu/ENCODE/downloads.html). Peaks and
footprints were empirically thresholded at a 1% false-discovery
rate. For aggregate analyses over DHS across cell types, peak or
footprint locations were merged across cell types using BEDOPS
(http://code.google.com/p/bedops/) (Neph et al. 2012a). More in-
formation about the cell lines can be found in Supplemental Table 1
and http://genome.ucsc.edu/ENCODE/cellTypes.html.

Protein binding motif locations were generated genome-wide
with FIMO motif scanning software (Bailey et al. 2009), version
4.6.1, using a P-value threshold of #1 3 10�5 threshold. Motif
models were obtained from TRANSFAC (Matys et al. 2002), version

Table 1. Enriched KEGG pathways for genes within 50 kb of highly differentiated DNase I
peaks

Population KEGG pathway (Identification) No. of genes P-value

European Melanogenesis (04916) 31 0.0001
Arrhythmogenic right ventricular

cardiomyopathy (05412)
28 0.0006

ECM-receptor interaction (04512) 30 0.0007
Pathways in cancer (05200) 80 0.0033
Dilated cardiomyopathy (05414) 29 0.0052
Hypertrophic cardiomyopathy (05410) 27 0.0066
Axon guidance (04360) 37 0.0075
Focal adhesion (04510) 51 0.0087
Wnt signaling pathway (04310) 41 0.0087
Calcium signaling pathway (04020) 46 0.0095

African Vascular smooth muscle
contraction (04270)

40 0.0008

Chemokine signaling pathway (04062) 57 0.0008
Adherins junction (04520) 29 0.0009
Pathways in cancer (05200) 88 0.0012
Adipocytokine signaling pathway (04920) 25 0.0027
Wnt signaling pathway (04310) 45 0.0045
Axon guidance (04360) 39 0.0097

Asian Arrhythmogenic right ventricular
cardiomyopathy (05412)

31 0.00009

Vascular smooth muscle
contraction (04270)

36 0.0049

Pathways in cancer (05200) 83 0.0049
Hypertrophic cardiomyopathy (05410) 28 0.0059
Dilated cardiomyopathy (05414) 30 0.0059

P-values shown are adjusted for multiple testing using FDR (see Methods). Pathways in bold denote
those shared between two or more populations.
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2011.1. For these analyses, all motifs were intersected with footprint
data using BEDOPS.

Sequence data

We obtained whole-genome sequence data from 69 individuals
that were sequenced to high coverage by Complete Genomics
(http://www.completegenomics.com/sequence-data/download-
data/). Among these 69 individuals, 54 are reported to be un-
related. To verify that these 54 individuals are unrelated, we per-
formed relationship inference with KING (Manichaikul et al.
2010). Two Maasai individuals (NA21732 and NA21737) who were
not reported as being related were found to be either siblings or
parent–child. We removed NA21737 from further analyses as this
individual had more missing data than NA21732. Thus, our final
data set consists of 53 individuals from five populations (Supple-
mental Table 2). Genotype data were filtered to remove partial
genotypes (i.e., where one allele is called and the other is reported
as missing), by coverage (>20% of individuals must have calls), and
by extreme departures from Hardy-Weinberg Equilibrium (P <

10�8, which corresponds to all individuals being heterozygous and
therefore most likely a paralogous sequence variant). We defined
fourfold degenerate sites using NCBI-called reading frames. We used
the NimbleGen SeqCapEZ Exome, version 2.0, definition, down-
loaded from the NimbleGen website (http://www.nimblegen.com/
products/seqcap/ez/v2/). Repeats were defined by RepeatMasker
regions, obtained from the UCSC Genome Browser. A dinucleotide
is conservatively called as CpG for NpG and CpN dinucleotides
(where N = A,C,T, or G) in any of our 53 genomes, chimpanzee,
orangutan, or rhesus macaque.

Statistical analyses

We calculated nucleotide diversity as: p = n
n�1 +S

i = 12pið1� piÞ
� �

,
where n is the number of chromosomes and pi is the frequency of
the major allele for the ith segregating site, S. To obtain a per nu-
cleotide estimate of p, we divided by the total number of bases
considered for a particular analysis. Normalized diversity was cal-
culated by dividing the per nucleotide p estimate by the estimated
neutral mutation rate. For exonic sequence, we used the mutation
rate calculated at fourfold synonymous sites, as this sequence is less
likely to be influenced by selection compared to all synonymous
sites. For DHSs, we expanded each region (peak or motif) by
1500 bp on either side and removed putatively selected sequence
(footprints, exome, and peaks padded by 250 bp) from this region.
All normalized p values were then multiplied by 2 3 10�8 to bring
them into the range of non-normalized p values. Repeats were
removed in all analyses. For p in DHS (normalized and non-nor-
malized), exonic sequence was also removed. CpGs were removed
in all normalized p calculations as described above.

To evaluate the number of singleton peaks in malignant and
iPS/ES cells relative to normal/primary cell lines, we performed
a resampling procedure. Specifically, we randomly selected 1000
samples of five and 29 cell types from the 58 normal cell lines and, for
each sample, calculated the proportion of singleton normal-specific
DNase I peaks. Singleton peaks must occur in category-specific DHS;
therefore, we calculate the percentage of category-specific DHS that
is also singleton. This procedure generates an empirical distribution
for the proportion of singleton peaks expected in a category with five
or 29 cell types.

We calculated LSBLs as previously described (Shriver et al.
2004). In brief, pairwise FST between Africans (n = 16), Europeans
(n = 13), and Asians (n = 8) was calculated as 1 � HS/HT, where HS

and HT denote average subpopulation heterozygosity and total
heterozygosity, respectively (Hartl and Clark 1997). These pairwise

estimates of FST were then used to calculate LSBL for each popula-
tion. For example, denote the FST between Africans and Europeans,
Africans and Asians, and Europeans and Asians as dAB, dAC, dAB,
respectively. The LSBL for Africans is (dAB + dAC� dBC)/2. LSBLs were
calculated for all variants in peaks with 100% coverage (all
individuals fully called), excluding the exome and repeats.

To test for enrichment of candidate selection genes in KEGG
pathways, we used WebGestalt (Duncan et al. 2010; http://bioinfo.
vanderbilt.edu/webgestalt). In these analyses, we used a background
list of genes by identifying the closest gene to each DNase I peak,
which recapitulates how genes were associated with the highly
differentiated peaks. We used the false discovery rate (FDR) method
of Benjamini and Hochberg (1995) to address multiple testing.
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