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Gene regulation at functional elements (e.g., enhancers, promoters, insulators) is governed by an interplay of nucleosome
remodeling, histone modifications, and transcription factor binding. To enhance our understanding of gene regulation,
the ENCODE Consortium has generated a wealth of ChIP-seq data on DNA-binding proteins and histone modifications.
We additionally generated nucleosome positioning data on two cell lines, K562 and GM12878, by MNase digestion and
high-depth sequencing. Here we relate 14 chromatin signals (12 histone marks, DNase, and nucleosome positioning) to the
binding sites of 119 DNA-binding proteins across a large number of cell lines. We developed a new method for un-
supervised pattern discovery, the Clustered AGgregation Tool (CAGT), which accounts for the inherent heterogeneity in
signal magnitude, shape, and implicit strand orientation of chromatin marks. We applied CAGT on a total of 5084 data
set pairs to obtain an exhaustive catalog of high-resolution patterns of histone modifications and nucleosome positioning
signals around bound transcription factors. Our analyses reveal extensive heterogeneity in how histone modifications are
deposited, and how nucleosomes are positioned around binding sites. With the exception of the CTCF/cohesin complex,
asymmetry of nucleosome positioning is predominant. Asymmetry of histone modifications is also widespread, for all
types of chromatin marks examined, including promoter, enhancer, elongation, and repressive marks. The fine-resolution
signal shapes discovered by CAGT unveiled novel correlation patterns between chromatin marks, nucleosome posi-
tioning, and sequence content. Meta-analyses of the signal profiles revealed a common vocabulary of chromatin signals
shared across multiple cell lines and binding proteins.

[Supplemental material is available for this article.]

The multimeric structure of informational macromolecules (DNA,

RNA, and protein) and their obligatory directional synthesis imbues

the genome with local, inherent polarity. The polarity of transcrip-

tion units is determined at the promoter by the signals that instruct

RNA polymerase to engage DNA in one particular orientation, such

that RNA synthesis can proceed in the correct direction. At RNA

polymerase II promoters, which are responsible for the transcription

of protein-coding and lncRNA genes, two types of protein–DNA

interactions correlate with the direction of transcription: (1) the

binding of transcription factors in the promoter region and (2) the

positioning of nucleosomes in a statistically stereotypical pattern

around a complex consisting of the bound RNA polymerase, its

general cofactors, and promoter-specific transcription factors

(Yuan et al. 2005; Mavrich et al. 2008). In addition, certain his-

tone modifications are deployed asymmetrically at promoters.

For example, nucleosomes that bear the H3K4me3 modification

can occupy the first location immediately ‘downstream’ from the

transcription start site, with a signal present, but progressively

decaying, upstream as well as further downstream (e.g., Barski

et al. 2007; Valouev et al. 2011).

In many organisms and cell types, genome-wide mapping of

transcription factor binding sites (TFBSs) and chromatin modifi-

cations by ChIP-seq experiments has suggested the generality of

such relationships across the eukaryotic genome (Barski et al. 2007;

Lee et al. 2007; Mavrich et al. 2008; Schones et al. 2008; Valouev

et al. 2011; Zhou et al. 2011). A popular and highly effective

method for visualizing and quantifying relationships among ge-

nomic signals is the so-called aggregation plot (AP) (Jee et al. 2011).

The AP is almost universally used in genomic studies to illustrate

and quantify characteristics of gene-regulatory functional ele-

ments (Wang et al. 2012). In a typical AP, the signal around several

predefined anchor sites in the genome, all aligned at the location

of a shared feature (such as a TFBS or a transcription start site) is

averaged for each position within a window around the core fea-

ture. If across a substantial fraction of the aligned sites the signal

behaves similarly in location and relative magnitude around the

core feature, then the AP will reveal statistically significant signal

fluctuations or patterns with specific symmetry characteristics

around the core feature. For example, nucleosome positioning and

the H3K4me3 histone modification, as well as the nucleosome-

free region and RNA polymerase II positioning, occur sufficiently

stereotypically around transcription start sites (TSSs) that the

6These authors contributed equally to this work.
7Corresponding authors
E-mail akundaje@stanford.edu
E-mail serafim@cs.stanford.edu
E-mail arend@stanford.edu
Article and supplemental material are at http://www.genome.org/cgi/doi/
10.1101/gr.136366.111. Freely available online through the Genome Research
Open Access option.

22:1735–1747 � 2012, Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org Genome Research 1735
www.genome.org



asymmetries and signal variations are readily apparent in a tradi-

tional AP (e.g., Barski et al. 2007; Lee et al. 2007; Mavrich et al.

2008; Schones et al. 2008; Valouev et al. 2011). For an AP to display

such asymmetric signals, the alignment of features (e.g., TSSs) has

to be robust, and some other data is utilized to provide the correct

orientation. For example, in the case of APs around TSSs, for each

TSS contributing to the AP, the aligning location is given by its

single TSS coordinate, and the orientation is given by the direction

of transcription emanating from that TSS.

Features that can be aligned, but for which there exists no

external information regarding their orientation, can produce

APs with strong and obligatorily symmetric signals. For example,

strong symmetric signals of positioned nucleosomes are present

around CTCF (Fu et al. 2008) and REST (Valouev et al. 2011) binding

sites. A tempting conclusion from such APs is that the feature (e.g.,

REST binding) influences the biological function whose signal is

measured (e.g., nucleosome positioning) equally to its ‘left’ and to its

‘right’ and that there is no directionally acting function performed

by or correlated with the feature. However, this circular reasoning

leads one to overlook the possibility that there is indeed a directional

signal (which is either caused by or correlated with the feature), but

that the lack of any information regarding the feature’s orientation

results in artificial symmetry. A simple hypothetical scenario illus-

trates this point: Consider a feature around which nucleosomes are

always strongly positioned to its right but never to its left. If one is

unaware of ‘right’ and ‘left’ and simply aggregates the features in

random orientations, then half of the time the positioned nucleo-

some will appear to the right of the feature, and half of the time to

the left. In the resulting AP, there will be symmetric and equally

strong nucleosome positioning peaks around the feature.

Even if the orientation of a feature is known, the specific

spatial properties of a signal around the feature may vary. For ex-

ample, transcription factors engage in context-specific binding at

subsets of their binding sites. These context-specific co-binding

events, and the influence of other genomic features such as

proximity to promoters, will often exhibit diverse chromatin mod-

ification and nucleosome positioning landscapes (Hu et al. 2011).

Even if the profiles of the functional mark at such locations were

appropriately oriented, a traditional AP that averages over all bind-

ing sites would combine these diverse profiles into a misleading

aggregate that would obscure the underlying heterogeneity, and

one will miss the opportunity to discover the diversity of sites.

With these considerations in mind, we set out to develop novel

methodology that would allow us to analyze a large number of

functional genomics data sets from the ENCODE Consortium in

order to detect consistent, global, and functionally important sig-

nal asymmetries and feature relation-

ships among TSSs, DNA-binding proteins

(transcription factors and other tran-

scriptional machinery), histone modifica-

tions, and nucleosome positioning. TSSs

as well as the locations of transcription

factor binding served as the aligned fea-

ture, while histone modifications and nu-

cleosome positioning served as the signal

whose shape, magnitude, and asymmetry

was to be discovered and analyzed. Lo-

cations of transcription factor binding

were taken from ENCODE ChIP-seq ex-

periments and subsequent peak calling

(The ENCODE Project Consortium 2012;

Gerstein et al. 2012). Signals around the

sites analyzed came from ENCODE histone modification ChIP-seq

experiments (The ENCODE Project Consortium 2012; MM Hoffman,

J Ernst, SP Wilder, A Kundaje, RS Harris, M Libbrecht, B Giardine,

JA Bilmes, E Birney, RC Hardison, et al., in prep.) as well as two

nucleosome positioning data sets specifically generated for this

study (Table 1).

Our analyses revealed that asymmetries of chromatin modi-

fications and nucleosome positioning are a pervasive feature at

TFBSs, not only at promoters but, surprisingly, equally strongly at

nonpromoter sites. We detected relationships between the pat-

terns of different chromatin marks that cannot be found by stan-

dard aggregation. We observed that the local signals of chromatin

modification can be grouped across all TFBSs, cell types, and

chromatin marks into a limited set of distinct shapes, suggesting

a common vocabulary of chromatin modification patterns. Fi-

nally, we find widespread correlations and anticorrelations of

chromatin marks around the binding sites of specific transcription

factors and at promoters, which suggests that TFBSs often coincide

with switch points of chromatin state.

Results

A novel method for the discovery of heterogeneous and
asymmetric signal subpopulations and their associations

We developed novel methodology for relating functional elements

(such as TFBSs or TSSs) and their associated signals (such as histone

modifications or nucleosome positioning) and for discovering

meaningful and robust signal patterns around these loci. We call

our software package that implements this methodology the

Clustered AGgretation Tool (CAGT). Key steps in CAGT are: (1)

automatic grouping of feature sites (TFBSs, binding sites of tran-

scriptional machinery, or TSSs) according to the strength of the

associated chromatin modification or nucleosome positioning

signal into ‘‘magnitude categories’’; (2) automatic unsupervised

clustering of sites according to the signal shape; and (3) optionally,

automatic ‘‘flipping’’ of shapes to properly orient underlying

asymmetries and cluster them accordingly if there is no other in-

formation available that might orient the feature, such as the di-

rection of transcription at TSSs. These steps are illustrated on the

basis of H3K27ac signal at CTCF binding sites in K562 (Fig. 1).

Nucleosome positioning around transcription start sites
is highly heterogeneous

We first focused on nucleosome positioning signals around TSSs.

Positioning around TSSs and promoters, and their correlation with

Table 1. ENCODE Tier 1 and Tier 2 data sets analyzed in this work

Factors
Histone

modifications
Nucleosome

MNase
DNase

hypersensitivity

Cell line
Number of
data sets

Number of
factors

Number of
data sets

Number of
marks

Number of
data sets

Number of
data sets

K562 107 73 19 12 1 2
GM12878 63 51 14 11 1 2
HeLa-S3 50 43 12 9 0 2
HepG2 56 42 13 10 0 2
H1-hESC 35 32 8 8 0 2
HUVEC 10 6 12 9 0 2

For the clustering of histone modification signals around TFBSs, a few additional data sets from other
cell types were utilized that are omitted from this table for brevity.

1736 Genome Research
www.genome.org

Kundaje et al.



transcription, has been well-studied previously (Fu et al. 2008;

Mavrich et al. 2008; Schones et al. 2008; Shivaswamy et al. 2008;

Jiang and Pugh 2009; Kaplan et al. 2009; Rando and Chang 2009;

Segal and Widom 2009; Radman-Livaja and Rando 2010; Valouev

et al. 2011). The current consensus on promoter configuration

involves a nucleosome-free region upstream of RNA polymerase II,

which in turn is bound to the promoter upstream of the so-called

+1 nucleosome. We used 15,736 TSSs from the GENCODE v7 an-

notations (Harrow et al. 2012) as anchor points for CAGT analysis

in K562 and GM12878, the two cell lines

for which we had nucleosome positioning

data. We excluded TSSs of bidirectional

promoters to reduce confounding effects

on the nucleosome positioning signal (see

Methods). Because the results from both

cell lines were highly similar, we limit our

discussion to K562.

CAGT analysis revealed 17 clusters

of distinct nucleosome positioning pat-

terns. Eleven of these clusters contained

>2% of the TSSs each and comprised

a total of 89.56% of the TSSs studied (Fig.

2A; Supplemental Fig. S1). Broadly, the

clusters fall into two categories: those in

which there is strong positioning up-

stream of the TSS, and those that have

strong positioning downstream. Surpris-

ingly, no cluster had equally strong posi-

tioning on both sides of the TSSs, sug-

gesting that the canonical pattern of

a modest but detectable positioning sig-

nal emanating bidirectionally from the

promoter is an averaging artifact of stan-

dard APs (Fig. 2A, first panel).

To reveal correlations with tran-

scriptional activity, we quantified ex-

pression levels based on CAGE tags for

each cluster (Fig. 2B). The most prevalent

cluster, comprising 20.64% of TSSs, had

low levels of gene expression as measured

by CAGE (Djebali et al. 2012) and ex-

hibited no strong positioning for 900 bp

around the TSS, consistent with previous

analyses that used standard APs (Schones

et al. 2008; Valouev et al. 2011). Other

clusters that were associated with low

gene expression had no positioning up-

stream, but pronounced and often some-

what distant positioning downstream

from the TSSs. On the contrary, two

clusters with high expression that to-

gether comprise 19.79% of TSSs (clusters

3 and 5) had strongly positioned nucleo-

somes ;250–350 bp upstream of the TSS,

but much weaker positioning down-

stream. A similar phenomenon has been

observed in yeast, where highly expressed

genes often lack a well-positioned +1 nu-

cleosome (Zaugg and Luscombe 2011).

Finally, two additional clusters (9 and 10),

comprising 6.35% of TSSs, had strongly

positioned nucleosomes downstream, at

positions consistent with the canonical +1 assignment. Clusters

with particularly pronounced nucleosome positioning peaks,

either upstream of or immediately downstream from the TSS (clus-

ters 3, 5, 9, and 10) had significantly higher expression than all other

clusters (P < 0.001).

Most of the clusters that exhibited strong positioning up-

stream of the TSS (1, 2, 3, 5), as well as cluster 4, which also has a

relatively high upstream peak, were significantly enriched in CpG

promoters (P < 0.0001). The enrichment was more pronounced

Figure 1. Schematic of the steps followed by CAGT in order to group the signal profiles around a set
of genomic features into distinct and coherent clusters. The steps are illustrated using H3K27ac signal
profiles around CTCF binding sites in the K562 cell line. (1) We start by extracting the H3K27ac signal
intensity profiles in a window (6500 bp) around each feature (CTCF binding site) and aligning all
signals at the core of the feature (summit of the CTCF peak). The grayscale plot at the bottom is a tra-
ditional aggregation plot obtained by averaging all signal profiles. The bold line is the mean intensity,
while the shaded area around it corresponds to the 10th and 90th percentiles of the signal. (2) The sites
are divided into high and low signals based on the peak intensity of each H3K27ac signal profile around
each site. (3) High signal sites are standardized to zero mean and unit standard deviation and clustered
with the k-medians algorithm. This step typically leads to a large number of compact clusters, some of
which may be redundant with similar average patterns. (4) In the final step, similar clusters, as well as
clusters that are mirror images of each other, are merged using hierarchical agglomerative clustering,
resulting in a small number of distinct, nonredundant, compact clusters (see Methods for details).

Ubiquitous heterogeneity of the chromatin environment
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for clusters 1 and 2 (P ;0), which have very low signal downstream

from the TSS. Finally, we examined the enrichment of TF binding

in each of the TSS clusters. Each TSS was extended upstream and

downstream by 100 bp, and TF-binding locations for 73 distinct

binding proteins were obtained from 105 ChIP-seq experiments in

K562. The clusters with the highest expression (3 and 10) had sig-

nificant overlap (P < 0.01), with the largest number of data sets (45

and 28, respectively), followed by clusters 9 and 5. Low-expression

clusters (1, 2, 4, 6, and 11) showed little to no enrichment in TF

binding. Interestingly, CTCF and the members of the cohesin com-

plex RAD21 and SMC3 were enriched in cluster 3, but not in clusters

9 and 10. REST, on the other hand, was only enriched in cluster 10.

Clusters with high expression and high signal downstream (9 and 10)

were also enriched in the TATA-associated proteins TBP and GTF2B.

Our results from these unsupervised analyses suggest that

nucleosome positioning at TSSs is more heterogeneous than pre-

viously appreciated, and also that transcriptional activity is one,

but not the only contributing factor to how nucleosomes are po-

sitioned around a TSS.

Highly diverse nucleosome positioning around TFBSs

The richness of the ENCODE ChIP-seq data provides an unprec-

edented opportunity to understand the relationship between

transcription factor binding sites and nucleosome positioning. We

extracted 1001 bases of the nucleosome positioning data around

the summit coordinate of each peak for all transcription factors

(and other DNA-binding proteins, such as RNA Polymerase II,

RAD21, etc.) that had been assayed in GM12878 and K562 (see

Supplemental Section S.3 and Supplemental Fig. S2 for a discussion

on using peak summits instead of motif locations as anchor

points). On each of these 148 data sets, CAGT grouped the nu-

cleosome signal for each binding protein into a small number of

shapes. The vast majority of shapes were clearly asymmetric, in-

dicating that around TFBSs, nucleosome positioning generally

exhibits polarity. The only notable exceptions were the proteins of

the CTCF/cohesin complex (RAD21, SMC3, and CTCF) as well as

the zinc-finger containing protein, ZNF143, for which 40%–80%

of the fraction of binding sites from these TF ChIP-seq data sets

showed roughly symmetrically positioned nucleosomes (Supple-

mental Fig. S3). However, even these factors had some sites with

asymmetric patterns of positioning. The majority of other factors

had very few symmetric positioning patterns.

To quantify the diversity of nucleosome positions around

TFBSs, and to compare positions between cell types, we computed

distances between TFBSs and the nearest positioned nucleosome.

Specifically, for each factor, we determined the fraction of its TFBSs

that belonged to a nucleosome positioning shape cluster and then

plotted this quantity as a function of the distance between the

TFBS and the nucleosome positioning peak. We performed this

analysis for each factor that was assayed in both GM12878 and

K562 (Fig. 3A). Each factor, with the exception of the cohesin

complex (CTCF, RAD21, SMC3), exhibits considerable heteroge-

neity. There is some similarity between the two cell types in the

distributions of distances for each factor (note the paired error bars

in Fig. 3A), but overall the similarity is limited.

We highlight the full range of discovered patterns for two

representative factors, REST (in K562, Fig. 3B) and EBF1 (in

GM12878, Supplemental Fig. S4). In a standard AP (Fig. 3B, first

panel), the 1 kb around REST peak exhibits weak but detectable

symmetric nucleosome positioning, as described before. CAGT

clearly exposes the symmetry as an artifact, with >90% of sites

exhibiting asymmetric nucleosome positioning and only patterns

5 (P_5) and 16 (P_16) (Fig. 3B) exhibiting the ‘‘classic’’ symmetry.

Interestingly, the two symmetric clusters were enriched for ChIP-

seq peaks of different co-associating TFs. P_5 is enriched for RAD21

peaks, while P_16 is enriched for JUN, JUND, and FOS peaks (Sup-

plemental Fig. S16C). EBF1, which in a standard AP would not be

associated with positioned nucleosomes at all (note flat line in

Supplemental Fig. S4, panel ‘all’), in fact exhibits a large diversity of

nucleosome positioning shapes around its binding sites. These case

studies are representative of the vast majority of factors, no matter

what their function. Heterogeneity and asymmetry in nucleosome

positioning appear to be the rule for protein–DNA interactions.

Positioned nucleosomes around TFBSs occupy container sites

We have previously shown that in vitro reconstituted nucleosomes

exhibit particularly strong positioning when they occupy con-

tainer sites (Valouev et al. 2011). Container sites are characterized

by a GC-rich core of about 150 bases, which serves to attract

a nucleosome, and AT-rich flanks, which repel the nucleosome and

therefore lock it into a statistically preferred position, centered on

the GC-rich core (Johnson et al. 2006; Segal et al. 2006; Peckham

et al. 2007; Tillo et al. 2010; Tsankov et al. 2011). To investigate

whether container sites are present in the vicinity of TFBSs, we

Figure 2. (A) Nucleosome positioning patterns around TSSs in K562. The
first panel is a traditional aggregation plot of the nucleosome positioning
signal in a window of size 1001 bp centered on each of 15,736 GENCODE
TSSs. The bold line is the mean signal across all TSSs, while the shaded area
around it corresponds to the 10th and 90th percentiles. The rest of the panels
show the patterns uncovered by CAGT, ordered by the percentage of TSSs
that follow each pattern. Patterns corresponding to <2% of TSSs are not
shown. All TSSs are reoriented so that the direction of transcription is from
left to right. Plots are colored according to the third quartile of the expression
of TSSs in the corresponding cluster, as measured by CAGE tags. (B) Box-
plots of the expression of TSSs following each of the patterns shown in A.
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investigated the relationship between the cluster-specific shapes

of nucleosome positioning and the underlying sequences’ base

composition.

Comparison of the nucleosome positioning signal in the 1 kb

around TFBSs with GC content revealed that container sites are

a pervasive feature in the vicinity of TFBSs (Fig. 4; Supplemental

Fig. S5). The first nucleosome immediately flanking the TFBS often

occupies a container site, as evidenced by low GC content flanking

a high-GC-content, core-sized (150 bp) region on which the nu-

cleosome peak is centered. Transcription factors that tend to oc-

cupy regions with low GC content consistently show the most

dramatic correlation between their neighboring nucleosomes and

GC content, and the strongest container site characteristics of

the ;250 bp of the region occupied by the nucleosome core plus

the two flanking linkers (Fig. 4A). Transcription factors that occupy

high-GC sites show a less-pronounced effect, but small local

maxima in GC content precisely coinciding with the summit of

the nucleosome peak are still evident (Fig. 4B,C). This observation

is clearer for transcription factors for which many peaks were called

as the plots become less noisy with the increasing numbers of sites

that contribute to a cluster (Supplemental Fig. S5).

We hypothesized that this extensive phenomenon has not

been described previously because it is not visible in a standard AP.

To test this idea, we generated standard APs by aggregating all sites

into the same plot (Fig. 4, first column of plots). A comparison

between this standard AP and the clustered and oriented shape

profiles (Fig. 4) supports our hypothesis that methodological lim-

itations have obscured these signals in previous analyses and adds

further support to the idea that CAGT uncovers previously un-

appreciated heterogeneity in chromatin structure around TFBSs.

Asymmetries of chromatin modifications around transcription
factor binding sites

We next set out to quantify asymmetries of histone modifications,

again around TFBSs. Due to the way ENCODE produces histone

modification data via random shearing of chromatin as opposed to

MNase digestion, the shape profiles of these data are not as highly

resolved as those of the nucleosome positioning data. Nonetheless,

we observed dramatic and unexpected heterogeneity and asym-

metry of histone modification signals, using a total of 4277 quan-

tifications of 12 different chromatin marks around the binding

sites of 112 DNA-binding proteins in five cell types (GM12878,

K562, HeLa-S3, HepG2, and H1-hESC). For example, in K562, 73

distinct binding proteins and 12 types of histone modifications

were assayed (Table 1), some of them in more than one replicate

from different labs, giving a total of more than 1600 profile sets

for this cell type alone. All results are available online in a search-

able database (http://anshul.kundaje.net/projects/cagt). Some case

studies that demonstrate the heterogeneity of the chromatin land-

scape around DNA-binding proteins are discussed in the Supple-

ment (Section S.4) and in Supplemental Figure S6.

For each of 11 chromatin modification marks, as well as for

H2A.Z, DNase, and nucleosome positioning, we calculated the

fraction of binding sites of each factor that were assigned to CAGT

clusters exhibiting asymmetry. We then made a histogram of the

asymmetry fractions over all factors for each mark (Fig. 5A–F). The

DNase hypersensitivity assay serves as a control because DNase

cuts only at open chromatin right next to the bound factor and,

consequently, many factors exhibit predominantly symmetric

DNase signal around their binding sites. In contrast, the distribu-

tion of asymmetry fractions for nucleosome positioning is strik-

ingly different, with >90% of factors exhibiting pronounced

asymmetry of nucleosome positioning around >90% of their

binding sites (Fig. 5A). The only notable exceptions are the mem-

bers of the CTCF/cohesin complex, which show predominantly,

though not exclusively, symmetric positioning of nucleosomes

around their binding sites (Supplemental Fig. S3). The chromatin

marks and H2A.Z also have mostly asymmetric signal around

TFBSs. Marks that associate with gene bodies (Fig. 5B), promoter-

associated marks (Fig. 5C), enhancer-enriched marks (Fig. 5D), and

repressive marks (Fig. 5E,F) all have highly similar distributions,

with a mean of 80%–90% of asymmetric sites.

These results demonstrate that asymmetry is widespread

across binding proteins, chromatin marks, and cell lines. A possible

explanation for the observed asymmetric patterns is that they re-

sult from interactions between the transcriptional machinery and

other binding proteins near the transcription start site. To examine

whether asymmetry is limited to binding sites near TSSs, we dis-

tinguished proximal and distal binding sites. For each pair of

binding protein and chromatin mark, we computed the number

Figure 3. (A) Distribution of distances between the TF binding site and
the closest nucleosome for all TFs assayed in both GM12878 and K562. For
each TF in each cell line, we used the median signal of the clusters to
compute the distance between the TF binding site and the closest nu-
cleosome positioning peak. The area of each dot is proportional to the
fraction of peaks of the TF with the given distance between the binding
site and the closest nucleosome dyad. The vertical line extends from the
first to the third quartile of distances for each TF. (B) Nucleosome posi-
tioning patterns uncovered by CAGT around REST binding sites in K562.
(Top, left) A traditional aggregation plot, averaging the signal over all
14,144 REST sites. The rest of the panels show the CAGT clusters in order of
prevalence, with the percentage of REST peaks in each shown in the
header. Two clusters containing <2% of REST peaks each are omitted from
the figure. Note the large diversity of nucleosome positioning shapes, with
distances between the binding site and the closest nucleosome position-
ing peak varying widely from 10 bp (P_17) to 300 bp (P_4).
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of proximal and distal binding sites that had a symmetric or asym-

metric shape for the mark (Fig. 5G). If asymmetric patterns were

observed exclusively near TSSs, then proteins that bind proximally

to TSSs would exhibit asymmetric patterns, while TFs that tend to

bind distally would have most of their peaks in the distal and sym-

metric group. Surprisingly, however, even for distal TFs, the majority

of peaks show asymmetric patterns for all histone marks, as well as

for nucleosome positioning. DNase was the only assay for which

distal sites showed a clear preference for symmetric patterns. Three

case studies of TFs with different preferences for proximal binding

illustrate this conclusion (Supplemental Fig. S7). In all cases, a large

part of the overall asymmetry is contributed by the distal sites.

A common repertoire of chromatin shapes around
transcription factor binding sites

Given the tremendous heterogeneity in chromatin signals around

binding sites for each factor, two possible models regarding the

generality of our observations present

themselves. Either each factor has its own

characteristic clusters that are distinct

from those of other factors, or there is

a common and limited chromatin ‘lan-

guage’ repertoire shared between the

binding sites of different factors. To ask

which of these mutually exclusive hy-

potheses holds, we ran CAGT for each

mark on the combined list of all binding

sites of all available factors at once to

generate ‘‘meta-clusters.’’

We started by analyzing nucleosome

positioning in the vicinity of TFBSs using

combined data from all factors assayed in

GM12878 and K562 (the two cell lines for

which we have nucleosome positioning

data). CAGT identified 12 nucleosome

positioning clusters from the totality of

all DNA-binding factor data in these

two cell lines (Fig. 6A; first row of Fig. 6B).

In accordance with the results of the

previous sections, the majority of these

clusters is asymmetric and the distance

between the TFBS and the nearest well-

positioned nucleosome varies from 30 bp

to >400 bp. The two clusters with the

largest distance between the TFBS and

the nearest nucleosome are enriched in

TSS-proximal factors (e.g., EGR1, SIN3A,

RDBP, POLR2A; P < 0.001).

CAGT identified two symmetric

clusters, with different spacing between

the nucleosomes flanking the TFBS (Fig.

6B). To examine the functional differ-

ences between these two clusters, we

plotted the signal of other chromatin

marks around the subset of sites assigned

to each cluster. Interestingly, binding

sites with larger spacing between nucle-

osomes (cluster 12) were characterized by

a significantly higher signal of active

chromatin marks (Fig. 6B). Cluster 7 was

highly enriched for binding sites of the

components of the CTCF/cohesin complex (RAD21, SMC3,

CTCF), as well as the zinc-finger containing protein, ZNF143 (P <

0.001). These factors had >20% of their binding sites in cluster 7

and almost no sites in cluster 12. Cluster 12 was enriched for

a much broader set of factors, with enhancer-associated factors

showing the strongest associations (Fig. 6C).

Similar meta-clustering over all DNA-binding proteins in all

Tier 1 and Tier 2 cell lines for each of the available histone modi-

fications revealed that the majority of the discovered meta-shapes

are asymmetric (Fig. 7). This highlights the fact that asymmetry

of histone modifications is a ubiquitous phenomenon across all

assayed DNA-binding proteins and cell types (with the single

prominent exception of the CTCF/cohesin complex). For each

histone modification, the meta-clusters were ranked based on

support for that cluster, which we approximate by the number of

TFBSs that are members of each meta-cluster. We found that

the meta-clusters with similar shapes across the different modi-

fications had similar rank-order. For example, Pattern 1, which is

Figure 4. Examples of nucleosome positioning clusters around TFBSs and relationship to GC content. For
each TF, the first panel of the top row is a traditional aggregation plot, where the signal is averaged over all
sites. The total number of sites is shown in the header. The remaining panels of the top row show the mean
nucleosome positioning signal in the five largest clusters discovered by CAGT, with the fraction of peaks in
each cluster shown in the header. Each panel in the second row shows the mean GC content of all sites used
in the panel above it. If a site was ‘‘flipped’’ during the last step of CAGT (see Fig. 1), then the corresponding
GC signal was also flipped accordingly. GC content was computed using a sliding window of 21 bp. The
small arrows indicate container sites. (A) SPI1 in GM12878; (B) TCF12 in GM21878; (C ) EGR1 in K562.
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present for all histone marks except H3K79me2, corresponds to

the most prevalent meta-shape (rank 1) for H3K27ac, all H3K4

methylations, H3K9ac, H3K9me1, and H4K20me1, and the sec-

ond most prevalent shape for all other marks. Similarly, Pattern 2 is

highly ranked for several histone modifications. Thus, different

chromatin modifications, even those with opposing functions,

such as repressive methylations and activating acetylations, ex-

hibit similar patterns around TFBSs.

Spatial relationships among marks at factor binding sites

The existence of similar patterns of different chromatin marks

around factor binding sites does not necessarily mean that the

same sites bear a mixture of chromatin marks or that these marks

are deposited on the same side of the binding site. Given the results

so far, these are possibilities, but it is equally possible that factor

binding sites tend to be surrounded by histone modifications that

are anticorrelated, with one modification being prevalent on one

side of the binding site, and another prevalent on the opposite

side. We refer to these two scenarios as correlated and anticor-

related, respectively.

To explore these two models, we analyzed the colocalization

and relative orientation of patterns of different types of chromatin

marks using a targeted multivariate analysis approach. First, as

before, we used CAGT to cluster and reorient the signals for each

chromatin mark around factor binding sites. We call this reference

profile the ‘‘target-mark.’’ Then, for all binding sites that belong to

each target-mark cluster, we computed a standard AP for each of

the other chromatin marks (termed ‘‘partner-marks’’). We note

that for these analyses, the symmetry properties of the aggregate

profiles of the partner-marks need to be interpreted like those of

a traditional AP: An asymmetric aggregate pattern of a partner-

mark can only be caused by predominantly asymmetric patterns

around the individual binding sites. However, a symmetric part-

ner-mark pattern could be due to an aggregation over groups of

asymmetric patterns with opposite orientation (and therefore be

‘‘pseudo-symmetric’’) or be due to true underlying symmetry.

First, we examined the correlation between the asymmetry

of nucleosome positioning (target-mark) and histone modifica-

tion patterns (partner-marks) around TFBSs. We found that pre-

dominantly TSS-proximal binding TFs, such as SIN3A, show a

moderate correlation of asymmetry of nucleosome positioning

and histone modifications (Fig. 8A; Supplemental Fig. S8B).

However, several other TFs, such as SP1 in GM12878, show

colocalization of asymmetric patterns of nucleosome positioning

with pseudo-symmetric patterns of histone modifications (e.g.,

H3K9ac), indicating that nucleosome positioning asymmetry does

not entirely determine the patterns of chromatin marks, and that

poorly positioned nucleosomes can also be associated with equally

enriched levels of histone marks (Fig. 8B; Supplemental Fig. S8A).

At CTCF binding sites, we found colocalization of asymmetric

patterns of histone modifications and symmetric patterns of nu-

cleosome positioning, indicating differential modifications of the

well-positioned nucleosomes (Supplemental Section S.5; Supple-

mental Fig. S8C).

Core promoter regions enriched for POLR2A binding sites

are typically characterized as having elevated levels of H3K4me3

and depleted levels of H3K4me1 (Heintzman et al. 2007; Hon et al.

Figure 5. Widespread asymmetry of chromatin marks around TFBSs. (A–F ) Fraction of TF peaks with asymmetric patterns for each chromatin mark. For
each combination of TF and mark, we computed the fraction of high signal binding sites in asymmetric CAGT clusters. Results were averaged over all
available data sets for the same TF and mark in all cell lines. Some examples for factors that contribute to the specific data point are shown, with arrows
pointing to the asymmetry fraction of the factor. For example, in ;85% of NRF1 binding sites with high H3K9ac signal, the shape of the modification is
asymmetric around the binding site. (A) DNase and nucleosome positioning and their contrasting asymmetry frequency distributions. (B) Gene body
marks. (C ) Promoter-associated marks. (D) Enhancer-associated marks. (E ) Repressive marks that exhibited moderate signal around binding sites. (F )
Repressive marks that exhibited generally weak signal around binding sites. (G) For each combination of TF and mark, we computed the number of
proximal and distal binding sites in symmetric and asymmetric CAGT clusters and identified which one of the four groups, symmetric proximal, symmetric
distal, asymmetric proximal, and asymmetric distal, contained the largest number of binding sites. Results were averaged over all available data sets for the
same TF and mark in all cell lines. The height of each bar shows the number of TFs for which the corresponding group was the most prevalent. The
‘‘Missing’’ part corresponds to the TFs that were not assayed for that mark.
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2009). To further understand promoter dynamics, we analyzed

the asymmetry correlations between H3K4me1 (target-mark) and

H3K4me3 (partner-mark) at POLR2A sites in six cell lines (Fig. 8C;

Supplemental Fig. S9). Over half of the POLR2A peaks in each cell

line showed significant H3K4me1 signal levels. The H3K4me1

patterns were strongly anticorrelated with the corresponding pat-

terns of H3K4me3, indicating that both modifications can coexist

around POLR2A sites, but on opposite sides of the binding sites.

Other TSS-proximal TFBSs also showed consistent enrichment and

anticorrelation of H3K4me1 and H3K4me3 (Supplemental Fig.

S10A). The six cell lines behave virtually identically, indicating that

this relationship is universal (Supplemental Fig. S9). Additional

asymmetry correlations that we discovered are described in the

Supplement (Section S.6; Supplemental Figs. S11–S14).

Finally, we used a complementary approach to summarize the

asymmetry correlation of different chromatin marks around all

TSS-proximal TFBSs. For all CAGT runs around TFBSs, we consid-

ered all TSS-proximal binding sites that were assigned to asym-

metric clusters of each chromatin mark. At each TFBS, the direction

of asymmetry (from low to high signal) of a particular mark can be

in the same (configuration 1) or in the opposite direction (con-

figuration 2) as the direction of transcription of the nearest TSS. For

each chromatin mark, we computed the ratio of TFBSs in config-

uration 1 with those in configuration 2. Eight of the 12 chromatin

marks showed transcription-oriented asymmetry, with H3K79me2

and H3K4me3 having the strongest positive bias (Fig. 8D). H3K4me1,

H3K9me3, H3K9me1, and H2A.Z patterns were anticorrelated

with the direction of transcription. Hence,

H3K4me1 and H3K4me3 were once again

found to be anticorrelated with each other,

as were H3K27ac and H3K4me1. Inter-

estingly, the different types of repressive

marks, H3K27me3 and H3K9me3, were

also found to show anticorrelated behavior

around TSSs.

Discussion
Previous studies that have combined dif-

ferent chromatin signals to classify the

genome into segments occupied by spe-

cific combinations of chromatin marks

and functional elements have revealed

general, global correlations with func-

tional implications (Hon et al. 2008; Ernst

and Kellis 2010; MM Hoffman, J Ernst,

SP Wilder, A Kundaje, RS Harris, M

Libbrecht, B Giardine, JA Bilmes, E Birney,

RC Hardison, et al., in prep.). CAGT is

methodologically distinct from the ap-

proaches used in these studies, which si-

multaneously summarize a large number

of different association patterns over

a large number of functional marks into

a few clusters to reveal the most prom-

inent global relationships. Instead, CAGT

uses a bottom-up approach for analyzing

high-resolution patterns of functional

marks at targeted genomic locations. It

respects various latent features of the data

and is able to reveal hidden asymmetries

and heterogeneity of specific chromatin

marks. It also reveals a variety of robust correlation and anti-

correlation relationships between patterns of colocalized marks

at different types of binding sites.

Relationships between factor binding and chromatin land-

scape would ideally be determined by conducting multiple ChIP-

seqs on the same single cells and repeating this many times to

separate signal from noise, but this is currently technically in-

feasible. Instead, the ENCODE Consortium performed thousands

of assays separately, on pools of large numbers of cells. Initial

analyses of the ChIP-seq data produced peak calls and signal tracks

for each individual experiment, which could then be used in in-

tegrative analyses such as the ones we present here. To round out

the ChIP-seq data, we produced high-depth nucleosome posi-

tioning data by MNase digestion and sequencing from two of the

main ENCODE cell lines.

Because analysis of each individual factor binding site sepa-

rately would be noisy and neither feasible nor easily interpretable,

we turned to aggregation as a means to increase signal, decrease

noise, and classify sites according to the data. Standard aggregation

assumes that the signal around all sites exhibits homogeneity in

magnitude, shape, and orientation. CAGTovercomes this limitation

by using clustering to identify subsets of sites with similar behavior.

The noise removal and two-step clustering procedures of CAGT led

to robust and biologically meaningful clusters as evidenced by, for

example, their relationship with gene expression (Fig. 2), GC con-

tent (Fig. 4), distinct asymmetry fractions (Fig. 5A–F), proximity to

TSSs (Fig. 5G), and functional specificity (Fig. 6). Underscoring the

Figure 6. (A) Asymmetric nucleosome positioning meta-clusters across all TFs in GM12878 and K562.
Clusters are numbered according to their size, and labeled with the approximate distance between the
binding site and the center of the nearest well-positioned nucleosome. Each panel shows the mean
signal over all binding sites (for all TFs and for both cell lines) that were assigned to that cluster. (B) The
two symmetric nucleosome meta-clusters not shown in A. For each of these two clusters, we also show
the mean signal of other chromatin marks averaged over the binding sites in that cluster. Sites in cluster
12 exhibit remarkably higher signals of active marks. For both clusters 7 and 12, the signal of the as-
sociated chromatin marks appears highly symmetric, but this is an artifact of aggregating the chromatin
mark signal according to the clustering and orientation of the nucleosome signal. (C ) For each TF that
was enriched in either cluster 7 or cluster 12 (P < 0.001), we computed the fraction of binding sites in
each of these clusters. Cluster 7 is enriched for the members of the CTCF/cohesin complex, while cluster
12 is enriched for enhancer-associated TFs.
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technical robustness of our results, we recovered several known or

expected relationships, such as the symmetric patterns of DNase

at the majority of TFBSs and the substantial symmetry of nucle-

osome positioning around the CTCF/cohesin complex (Fig. 5A).

Our analyses revealed unexpected and novel diversity, as well

as pervasive asymmetry of chromatin modification signals and

nucleosome positioning around factor binding sites and TSSs. The

fact that these phenomena are so widespread and universal in-

dicates that distal regulatory sites, especially enhancers that likely

constitute the majority of such sites, possess inherent orientation

that is specified by the chromatin remodeling machinery. The

specific orientation and asymmetry may be of structural impor-

tance for the interaction of these sites with other functional ele-

ments such as promoters.

We also find that factors bind in a variety of chromatin con-

texts, suggesting a greater diversity of function for each factor than

previously recognized. For example, proximal CTCF sites are as-

sociated with enriched asymmetric H3K27ac marks and asym-

metric nucleosome positioning and may be involved in promoter

function, but nucleosome positioning around distal CTCF sites is

symmetric. In general, most factors bind both promoter-distally

and promoter-proximally, and their sites harbor a diversity of

chromatin modifications. Often, functionally distinct marks are

detected in the same sites, reflecting either actual coincidence of

the marks or heterogeneity of the cell population.

We find that patterns of chromatin signals are shared among

functionally different modifications and see that there is a limited

vocabulary of patterns, which collectively define a ‘‘signal lan-

guage’’ of chromatin around transcription factor binding sites (Fig.

7). The limited number of shapes is not

entirely surprising, given that many

chromatin features are (1) locally de-

termined by functional elements, which

are generally not very large (a few hun-

dred bases at most), and (2) constrained

by the length of the DNA wrapped

around a nucleosome plus the linker,

which is also about 200 bases in total.

Given this constrained space, shape di-

versity cannot be unlimited. It is striking,

however, that the most common meta-

shapes (which represent the totality of

each chromatin mark around all assayed

DNA-binding proteins) are shared by vir-

tually all histone modifications, with

highly correlated rank-order of their

frequency. This may ultimately be due

to the limited number of biochemical

mechanisms that govern chromatin mod-

ification and remodeling.

Going beyond the characterization of

single marks at factor binding sites, we

then used multivariate association analy-

sis on the CAGT-derived shapes to eluci-

date contextual effects and functional

relationships among chromatin marks.

These analyses revealed novel correlations

and anticorrelations between histone mod-

ifications, open chromatin, and nucleo-

some positioning (Fig. 8; Supplemental

Figs. S8–S14). For example, coincident

chromatin marks are often anticorre-

lated and, in many cases, transcription factor binding coincides

with chromatin switch points, where one mark is enriched on one

side of the binding site and another on the other side.

In summary, we provide a comprehensive characterization of

the patterns of histone modifications, nucleosome positioning (with

the original data presented here), and sequence composition around

the binding sites of >100 human transcription factors in a large va-

riety of cell types, genome wide. We discovered that heterogeneity

and asymmetry of chromatin marks around factor binding sites is the

norm, likely reflecting functional asymmetries in promoters and

enhancers alike. Transcription factors and other DNA-binding pro-

teins can occupy distinct classes of binding sites, with each class

exhibiting characteristic chromatin modification patterns and

asymmetry signals. A substantial fraction of TFBSs as well as POLR2A

binding sites mark switch points, where chromatin signals are

different and even opposed on the two sides of the binding site.

Given that each regulatory element in the genome has a distinct

function, the complexities that we describe here play out a mil-

lionfold in the regulatory genomics of an organism according to

rules that we are only now beginning to unravel.

Methods

Nucleosome positioning data sets
All procedures for generating MNase-seq data sets for K562 and
GM12878 were performed as described previously (Valouev et al.
2011, and references therein). Briefly, chromatin was isolated,
mononucleosomal fragments were generated by MNase digestion

Figure 7. CAGT meta-clusters for all histone modifications across all binding proteins in all Tier 1 and
Tier 2 ENCODE cell lines. Each row contains the clusters discovered by CAGT in the merged data sets for
the corresponding modification. The clusters for each mark are numbered according to their size, with
cluster 1 for each mark containing the most TFBSs (see the numbers at the top, left corner of each shape
plot). Clusters for different modifications are arranged to bring similar shapes in the same column. Five
columns containing three or fewer shapes are not shown.
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and gel-purified, linkers were added, and library PCR was per-
formed. Aliquots of the library were subjected to emulsion PCR
according to the standard SOLiD protocol (Life Technologies),
and several separate 35-bp, single-end sequencing runs were
performed on the SOLiD V4 platform to generate a total of
3,741,618,497 for K562 and 4,078,911,370 reads for GM12878.
The SOLiD reads were mapped in color-space with the DNAnexus
probabilistic mapper (https://dnanexus.com). The DNAnexus
mapper measures and propagates mapping uncertainty by in-
cluding both quality values and mismatches in the alignment
score calculation. The scores are then scaled across all possible
mappings of the read to estimate the posterior probability for
alignment to each genomic location. Reads corresponding to
posterior probability of correct mapping >0.9 were reported. A
total of 1,845,550,856 confidently mapped reads were obtained
for K562, and 1,929,303,627 for GM12878. Raw and processed
data can be downloaded from the UCSC ENCODE portal http://
genome.ucsc.edu/ENCODE.

Transcription factor binding locations

The ENCODE Consortium has generated over 400 high-quality
ChIP-seq data sets spanning 119 transcription factors in ;70

human cell-lines (The ENCODE Project Consortium 2012;
Gerstein et al. 2012). For each TF ChIP-seq data set, high-
confidence regions of binding (peaks) were identified using a
uniform processing pipeline as described in Gerstein et al. (2012).
We used the ChIP-seq peak summits as anchor points around
which to analyze the signal patterns of various functional marks
using CAGT.

Normalized signal tracks of functional marks

Alongside the TF ChIP-seq data, the ENCODE Consortium has
also generated genome-wide profiles of open-chromatin (DNase-
seq), nucleosome occupancy (MNase-seq), and several key histone
modifications (H3K4me3, H3K4me1, H3K4me2, H3K27ac, H3K9ac,
H3K9me1, H3K9me3, H3K27me3, H3K36me3, H3K79me2,
H4K20me1) and histone variants (H2A.Z) based on ChIP-seq as-
says in several of these same cell-lines (The ENCODE Project
Consortium 2012). These data sets were also uniformly processed
to produce genome-wide normalized signal coverage tracks at base-
pair resolution as described in MM Hoffman, J Ernst, SP Wilder, A
Kundaje, RS Harris, M Libbrecht, B Giardine, JA Bilmes, E Birney,
RC Hardison, et al., in prep. Briefly, uniquely mapped sequencing
reads were shifted and extended to the appropriate estimated

Figure 8. (A,B) The top row shows the most prevalent nucleosome positioning clusters around SIN3A and SP1 sites, respectively, in GM12878. The
remaining rows show the signal of histone modifications, averaged over all sites in the corresponding clusters. TSS-proximal TFs, such as SIN3A, exhibit
correlated nucleosome positioning and histone modification patterns. Such correlations, however, are not evident for TFs that tend to bind more distally
from TSSs (e.g., SP1). (C ) Clusters of H3K4me1 signal around POLR2A sites in HepG2 and the corresponding H3K4me3 signal. There is a clear anti-
correlation between the two histone marks. (D) For all CAGT runs around TFBSs, we considered all TSS-proximal sites that were assigned to asymmetric
clusters, and counted how many times the direction of transcription of the TSS closest to a site agreed with (configuration (1)) or opposed (configuration
(2)) the direction of the asymmetry pattern (from low to high signal) of the cluster to which the site was assigned. We are showing the log10-ratio of the
two counts, aggregated over all CAGT runs for the same mark. Values >0 (corresponding to ratios >1) imply that the mark tends to increase in the direction
of transcription, while values <0 imply that the mark tends to increase in the opposite direction.
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fragment lengths in a strand-specific manner, depending on the
characteristics of the data set and data type. Fragment coverage at
each genomic location was computed and appropriately smoothed
using kernel smoothing. Signal across replicates of a data set were
combined. The signal at each base pair was normalized to account
for the total number of mapped reads in all replicates, local
mappability within the smoothing window, and the mappable size
of the human genome. Signal values at low mappability and un-
reliable artifact locations in the genome were filtered and repre-
sented as missing data. The normalized signal value at each ge-
nomic location represents a signal fold change with respect to the
expected coverage based on a uniform distribution of an equiva-
lent number of mappable reads across all mappable locations on
both strands on the genome. Background signal values (noise)
typically had values in the range of from 0 to threefold. In CAGT
analysis, signal values were extracted in windows around specific
sets of anchor points in the genome. We typically sampled signal
values every 10 bp in order to reduce the computational burden
without any noticeable loss in resolution.

Combining replicates

Many of the ENCODE data sets were generated in replicates, often
coming from different labs, and sometimes using different exper-
imental protocols or antibodies for the same target protein. All
replicates from the same lab that were using the same antibody
were pooled for both peak calling and signal extraction. However,
data sets from different labs or using different antibodies were not
merged. Therefore, even after merging of replicates from the same
lab, there were often multiple data sets for the same target protein
and the same type of mark, all of which were used in separate
CAGT runs. However, when computing statistics over all TFs (e.g.,
Figs. 3, 5), we wanted to avoid overrepresentation of TFs with more
data sets than others. For this reason, we averaged over all data sets
for the same TF, weighting each of them by the number of binding
sites in it. A list of all of the data sets used in the Figures is given
in Supplemental Table 1.

GC content

To obtain the GC content we computed the fraction of G and C
nucleotides in sliding windows of size 21 bp (10 bp upstream to 10
bp downstream) centered at each location of the genome, using
the reference human sequence (GRCh37). To make GC plots for
specific CAGT clusters, we extracted the GC content around the
sites (TFBSs, TSSs) contained in the cluster. If the signal of a site was
‘‘flipped’’ at the last step of CAGT (see Fig. 1), then the corre-
sponding GC content signal was also ‘‘flipped’’ accordingly.

Transcription start sites

We considered a TFBS proximal if it lies within 1 kb upstream of or
downstream from a GENCODE.v7 TSS (Harrow et al. 2012) and
distal otherwise. For the analysis of nucleosome positioning
around TSSs, we used a subset of 19,175 GENCODE TSSs that
also have supporting tags in at least one of the ENCODE CAGE
libraries. To reduce the confounding effect of bidirectional pro-
moters on the study of nucleosome positioning patterns and
their relation to expression, we excluded from our analysis all
pairs of TSSs that were on opposite strands and at most 1 kb
upstream of each other. This filtering resulted in a list of 15,736
TSSs. We took the expression of each TSS to be the TPM (Tags Per
Million) count of the corresponding CAGE cluster in the cell
lines studied. The GENCODE TSSs and CAGE expression values
were provided by the ENCODE Consortium (Djebali et al. 2012;

The ENCODE Project Consortium 2012). To compare the ex-
pression values in different TSS clusters, we used the Wilcoxon test
with a Bonferroni correction. To compute the enrichment of TSS
clusters in CpG promoters, we counted the number of TSSs in each
cluster that overlapped any CpG island by at least 1 bp, and used
the Fisher exact test with Bonferroni correction. CpG islands
were downloaded from the UCSC Genome Browser. The enrich-
ment in TF binding was computed in a similar fashion, with the
only difference being that TSSs were extended by 100 bp up-
stream and downstream before computing overlaps.

Clustered aggregation plots (CAGT)

The input to CAGT is a genome-wide, continuous track of a
functional signal (e.g., nucleosome occupancy, histone modifica-
tion, GC content), together with a set of M genomic locations of
interest or ‘‘anchor points’’ (e.g., binding sites of a transcription
factor, TSSs) (Fig. 1). The signal in an L-bp window centered at each
location is extracted, resulting in a collection of fixed-length pro-
files of signal values X = { [x1, . . ., xL] }. Averaging the signal values
at each of the L positions across all signal profiles would result in
a traditional aggregation plot (Jee et al. 2011).

Our goal, however, is to partition the set of M anchor points
into K compact clusters such that each cluster represents anchor
points that show similar patterns (shapes) of the functional signal
profiles and different clusters have distinct patterns (shapes). The
type of patterns and the number of clusters K is not known a priori.
In CAGT, we define the distance between any two signal profiles as
one minus the Pearson correlation coefficient between them.
Therefore, two signal vectors that are highly correlated (i.e., have
a similar shape) will have a small distance and will be considered
‘‘similar’’ to each other, even if there is a difference in their absolute
signal intensities.

At the same time, we want to learn clusters of anchor points
that are enriched for the functional signal and avoid learning
patterns that are simply an artifact of noise (overall low signal).
Hence, before proceeding with the clustering, we filter out anchor
points whose signal profiles have variance below a threshold V or
q-th percentile below Q. We found that such locations usually
correspond to genomic regions around which the functional signal
was significantly depleted or where the data quality was ques-
tionable (e.g., mappability artifacts). We empirically set V = 0.0001
and q = 99. The low signal threshold Q was empirically set to 0.05
for nucleosome positioning data (typical signal range of up to
sixfold), twofold for DNase-seq data and fourfold for all histone
marks.

CAGT involves two phases of clustering. First, k-medians,
a variation of the k-means algorithm, is used to obtain a relatively
large set of tight but potentially redundant clusters i.e., each cluster
is individually compact (i.e., has low intra-cluster variance), but we
can and often do obtain multiple clusters that show similar pat-
terns. In the second phase, CAGT uses hierarchical agglomerative
clustering to merge redundant clusters. Optionally, this step can
also consider flipped (reversed) versions of each shape profile, in
order to merge clusters that are mirror images of each other. This is
useful in situations where the anchor points do not have explicit
genomic directionality (strandedness), but the functional signal
could have hidden directionality. For example, this is the case with
TF ChIP-seq peak summits (as opposed to TSSs which have an
implicit directionality). A more detailed description of the CAGT
procedure is given in the Supplement (Section S.1). We evaluated
our two-step clustering approach on the H3K27ac signal around
CTCF sites in K562 (Supplemental Section S.2; Supplemental
Fig. S15). Our results suggest that CAGT produces robust and re-
producible clusters.
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Metaclustering

To obtain a unified index of shapes for each functional mark over all
ENCODE TF data sets and cell lines, one would ideally merge all data
sets for this mark and run CAGT on the resulting set of signals.
However, this would involve clustering several million profiles.
Hence, a time and memory-efficient solution was to run CAGT on
the intermediate k-median centroids obtained from the first phase of
CAGT on the individual TF data sets. These centroids sufficiently
capture the variability present in each data set and are therefore
a highly representative summary of the original signal profiles. All
members of each of the k-median-based clusters were then assigned
to the ‘‘meta-cluster’’ to which the corresponding centroid was
assigned. To compute enrichments of meta-clusters in TFs (e.g., Fig.
6C), we counted the number of sites of each TF falling in each meta-
cluster and used a Fisher exact test with Bonferroni correction.

Defining symmetric and asymmetric shapes

To split clusters into symmetric and asymmetric, we compared the
left half of each cluster’s centroid with the mirrored (reversed) ver-
sion of the right half. A cluster was defined as symmetric if the two
halves had correlation larger than 0.75 (similar in shape) and root
mean squared deviation <1.1 (similar in magnitude). We found that
these cutoffs gave results that greatly matched our intuition about
which shapes should be called symmetric.

Multivariate analysis of pattern coassociation of multiple
functional marks

In all figures that show the association of patterns of two or more
types of signals (e.g., Figs. 4, 8; Supplemental Figs. S5, S8–S14), the
first row represents the ‘‘target-mark’’ on which CAGT analysis was
performed, i.e., the clusters represent distinct patterns of the target-
mark learned by CAGT. To create the panels of the remaining asso-
ciated ‘‘partner-marks’’ in the remaining rows, we take the sites that
belong to each cluster of the target-mark and plot the mean signal of
each partner-mark. The individual signal profiles of the partner-
marks are reoriented based on the clustering results on the target-
mark. We note that this is different from applying CAGT in-
dividually on each of the partner-marks. The panels for the
partner-marks in these multivariate plots can be composed of
heterogeneous groups of patterns. Hence, these should be inter-
preted conservatively in the same way as a traditional AP.

Data access
The raw and aligned sequenced reads as well as the signal tracks for
the nucleosome data can be downloaded from the NCBI Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)
using accession number GSE35586. These can also be accessed at
the UCSC ENCODE data portal http://genome.ucsc.edu/ENCODE
using accession numbers wgEncodeEH000921 and wgEncode
EH000922. Raw and aligned reads for all the transcription factor
and chromatin data sets are also available at the UCSC ENCODE
data portal http://genome.ucsc.edu/ENCODE. The CAGT code
package is available for download at http://code.google.com/p/
cagt. The CAGT portal for ENCODE data (with links to all pro-
cessed data, clustering results, visualizations, and supplemental
data) will be available at http://anshul.kundaje.net/projects/cagt.
Input/output data and results are also available as Supplemental
Material.

Acknowledgments
A.K., A.S., and S.B. were partially supported by an ENCODE anal-
ysis subcontract. S.B., S.K.P., and M.L. were supported in part by

the National Science Foundation under Grant No. 0640211. S.K.P.
was partially supported by a fellowship from the American Asso-
ciation of University Women. D.R. and M.S. were supported by an
ENCODE production grant.

References

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I,
Zhao K. 2007. High-resolution profiling of histone methylations in the
human genome. Cell 129: 823–837.

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi AM, Tanzer A,
Lagarde J, Lin W, Schlesinger F, et al. 2012. Landscape of transcription in
human cells. Nature (in press).

The ENCODE Project Consortium. 2012. An integrated encyclopedia
of DNA elements in the human genome. Nature (in press).

Ernst J, Kellis M. 2010. Discovery and characterization of chromatin states
for systematic annotation of the human genome. Nat Biotechnol 28:
817–825.

Fu Y, Sinha M, Peterson CL, Weng Z. 2008. The insulator binding protein
CTCF positions 20 nucleosomes around its binding sites across the
human genome. PLoS Genet 4: e1000138. doi: 10.1371/journal.
pgen.1000138.

Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, Mu XJ,
Khurana E, Rozowsky J, Alexander R, et al. 2012. Architecture of the
human regulatory network derived from ENCODE data. Nature (in press).

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,
Aken BL, Barrell D, Zadissa A, Searle S, et al. 2012. GENCODE: The
reference human genome annotation for The ENCODE Project. Genome
Res (this issue). doi: 10.1101/gr.135350.111.

Heintzman ND, Stuart RK, Hon G, Fu Y, Barrera LO, Van Calcar S, Qu C,
Ching KA, Wang W, Weng Z, et al. 2007. Distinct and predictive
chromatin signatures of transcriptional promoters and enhancers in the
human genome. Nat Genet 39: 311–318.

Hon G, Ren B, Wang W. 2008. ChromaSig: A probabilistic approach to finding
common chromatin signatures in the human genome. PLoS Comput Biol
4: e1000201. doi: 10.1371/journal.pcbi.1000201.

Hon G, Hawkins RD, Ren B. 2009. Predictive chromatin signatures in the
mammalian genome. Hum Mol Genet 18: R195–R201.

Hu G, Schones DE, Cui K, Ybarra R, Northrup D, Tang Q, Gattinoni L,
Restifo NP, Huang S, Zhao K. 2011. Regulation of nucleosome
landscape and transcription factor targeting at tissue-specific
enhancers by BRG1. Genome Res 21: 1650–1658.

Jee J, Rozowsky J, Yip KY, Lochovsky L, Bjornson R, Zhong G, Zhang Z,
Fu Y, Wang J, Weng Z, et al. 2011. ACT: Aggregation and
correlation toolbox for analyses of genome tracks. Bioinformatics 27:
1152–1154.

Jiang C, Pugh BF. 2009. Nucleosome positioning and gene regulation:
Advances through genomics. Nat Rev Genet 10: 161–172.

Johnson SM, Tan FJ, McCullough HL, Riordan DP, Fire AZ. 2006. Flexibility
and constraint in the nucleosome core landscape of Caenorhabditis
elegans chromatin. Genome Res 16: 1505–1516.

Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y,
LeProust EM, Hughes TR, Lieb JD, Widom J, et al. 2009. The DNA-
encoded nucleosome organization of a eukaryotic genome. Nature 458:
362–366.

Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C. 2007. A
high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:
1235–1244.

Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP,
Qi J, Glaser RL, Schuster SC, et al. 2008. Nucleosome organization in
the Drosophila genome. Nature 453: 358–362.

Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS,
Struhl K, Weng Z. 2007. Nucleosome positioning signals in genomic
DNA. Genome Res 17: 1170–1177.

Radman-Livaja M, Rando OJ. 2010. Nucleosome positioning: How is it
established, and why does it matter? Dev Biol 339: 258–266.

Rando OJ, Chang HY. 2009. Genome-wide views of chromatin structure.
Annu Rev Biochem 78: 245–271.

Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K.
2008. Dynamic regulation of nucleosome positioning in the human
genome. Cell 132: 887–898.

Segal E, Widom J. 2009. From DNA sequence to transcriptional behavior: A
quantitative approach. Nat Rev Genet 10: 443–456.

Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK,
Wang JP, Widom J. 2006. A genomic code for nucleosome positioning.
Nature 442: 772–778.

Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR. 2008. Dynamic
remodeling of individual nucleosomes across a eukaryotic genome in

Kundaje et al.

1746 Genome Research
www.genome.org



response to transcriptional perturbation. PLoS Biol 6: e65. doi: 10.1371/
journal.pbio.0060065.

Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Field Y, Lieb
JD, Widom J, Segal E, Hughes TR. 2010. High nucleosome occupancy is
encoded at human regulatory sequences. PLoS ONE 5: e9129. doi:
10.1371/journal.pone.0009129.

Tsankov A, Yanagisawa Y, Rhind N, Regev A, Rando OJ. 2011. Evolutionary
divergence of intrinsic and trans-regulated nucleosome positioning
sequences reveals plastic rules for chromatin organization. Genome Res
21: 1851–1862.

Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. 2011.
Determinants of nucleosome organization in primary human cells.
Nature 474: 516–520.

Wang J, Zhuang J, Iyer S, Lin XY, Whitfield TW, Greven MC, Pierce BG,
Dong X, Kundaje A, Cheng Y, et al. 2012. Sequence features and

chromatin structure around the genomic regions bound by 119 human
transcription factors. Genome Res (this issue). doi: 10.1101/gr.139105.112.

Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ. 2005.
Genome-scale identification of nucleosome positions in S. cerevisiae.
Science 309: 626–630.

Zaugg JB, Luscombe NM. 2011. A genomic model of condition-specific
nucleosome behavior explains transcriptional activity in yeast. Genome
Res 22: 84–94.

Zhou VW, Goren A, Bernstein BE. 2011. Charting histone modifications
and the functional organization of mammalian genomes. Nat Rev Genet
12: 7–18.

Received December 13, 2011; accepted in revised form May 4, 2012.

Ubiquitous heterogeneity of the chromatin environment

Genome Research 1747
www.genome.org


