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Abstract
Affymetrix GeneChip microarrays are the most widely used high-throughput technology to measure gene expres-
sion, and a wide variety of preprocessing methods have been developed to transform probe intensities reported by
a microarray scanner into gene expression estimates. There have been numerous comparisons of these preprocess-
ing methods, focusing on the most common analysesçdetection of differential expression and gene or sample clus-
tering. Recently, more complex multivariate analyses, such as gene co-expression, differential co-expression, gene
set analysis and network modeling, are becoming more common; however, the same preprocessing methods are
typically applied. In this article, we examine the effect of preprocessing methods on some of these multivariate ana-
lyses and provide guidance to the user as to which methods are most appropriate.
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INTRODUCTION
Whereas newer technologies such as exon micro-

arrays and second-generation RNA sequencing

promise to be the primary tools to measure gene ex-

pression in the future, Affymetrix GeneChip micro-

arrays are currently the most common. Between 1

June 2010 and 1 June 2011, over 13 000 Affymetrix

Human Genome U133 Plus 2.0 samples were added

to the Gene Expression Omnibus (GEO) [1]. During

the same time period, less than 2000 Human Gene

1.0 ST samples were added. There are currently over

53 000 Human Genome U133 Plus 2.0 samples, over

27 000 Human Genome U133A samples and over

22 000 Mouse Genome 430 2.0 samples available

on GEO. This plethora of publicly available data is

being used to perform larger and more complex ana-

lyses [2, 3]; therefore, it is important to determine the

appropriate preprocessing algorithm(s) for such

analyses.

Microarray preprocessing is arguably the most piv-

otal step in the analysis of microarray data. Prepro-

cessing methods seek to address background noise,

processing effects, between array variation and probe

to gene summarization. Errors introduced at this

stage are retained throughout the ensuing analysis

and can greatly affect the conclusions of a study.

As such, many preprocessing methods have been

developed by the statistical community [4–7], in

addition to the methods provided by Affymetrix.

Furthermore, there have been numerous articles

comparing preprocessing algorithms, with the major-

ity focusing on the most common application—

detection of differential expression [8–12]. Recently,

researchers have begun to move away from relatively

simple analyses, such as differential expression and

clustering and toward more complex multivariate

analyses, such as gene co-expression [13], gene set

analysis [14] and estimation of gene regulatory net-

works [15]. Here, we examine the performance of

the most common preprocessing methods when

applied to multivariate analyses.

In this article, we begin by describing the bias and

precision seen in several common preprocessing al-

gorithms. Next, we examine previous assessments of
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the effect of preprocessing algorithms on more com-

plex downstream analyses. These studies focused pri-

marily on estimation of between-gene correlations

and produced contradictory conclusions. We pro-

vide a more principled and thorough assessment of

between-gene correlations and then turn our atten-

tion to more complex analyses.

BIASANDPRECISIONOF
PREPROCESSINGALGORITHMS
The signal detect curve
The ‘signal detect slope’, the regression slope of

expression estimates versus nominal concentration

on the log2 scale, is one of the fundamental tools

for assessing bias in differential expression [16]. The

ideal slope is one indicating that the observed ex-

pression doubles when the nominal concentration

doubles. More recently, it was shown that com-

puting the signal detect slope separately for low,

medium and high nominal concentrations provides

a more informative assessment because typically

the slope is not constant throughout the range of

nominal concentrations [17]. However, many

preprocessing algorithms seek, either explicitly or

implicitly, to generate a constant slope across nom-

inal concentrations. To assess this, we define the

‘signal detect curve’ to be a monotone function

representing the relationship between observed

expression and nominal concentration on the

log2 scale.

Whereas the signal detect slope provides a measure

of bias for differential expression, the nonlinearity of

the signal detect curve provides a measure of bias for

statistics that are invariant under linear trans-

formations but which are affected by nonlinear trans-

formations, for example, correlation coefficients. To

assess the nonlinearity of the relationship between

observed expression and nominal concentration, we

compute the sum of squared deviations between the

fitted values from the signal detect curve and the

closest line:

min
line
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n

Xn
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To compare nonlinearity across preprocessing meth-

ods, which produce expression values on different

scales, we standardize by dividing by the range of

the fitted values.

A probe set-specific assessment of
bias and precision
Previously, signal detect slopes have been computed

using all spike-in probe sets; however, this ignores

differences in behavior between probe sets that can

be substantial (Figure 1). Unlike differences between

probe sets, there is relatively little variability between

technical replicates of the same probe set, with the

exception of preprocessing methods that subtract

mismatch probes (MMs)—these show greatly

increased variability at low nominal concentrations

(Figure 1). In other words, expression estimates

differ more between probe sets with the same spike

in nominal concentration on a single array than be-

tween the same probe set on different arrays. This

suggests that the signal detect curves are determined

primarily by properties of the probes and/or target

transcripts and that while these curves can be altered

by various preprocessing methods, no method yields

the same curve for all probe sets. By examining the

signal detect curves, we notice that preprocessing

algorithms that ignore mismatch data, retain the sig-

moidal relationship between observed expression

and nominal concentrations seen in the raw data.

Methods that subtract mismatch intensities attempt

to remove the lower asymptote, but in doing so,

decrease precision.

In addition to nonlinearity, we also assess each pre-

processing method based on precision. Specifically,

we calculate the variance within each nominal con-

centration and report the average across nominal

concentrations as a measure of precision. Similar

to the signal detect curves, the within-array be-

tween-probe set variance is much greater than the

between-array within-probe set variance.

Because the signal-detect curves vary substantially

across probe sets and we only have data on their

behavior for a small fraction of probe sets (those

spiked in), it is not feasible to propose a probe set-

specific adjustment to straighten the signal detect

curves. Nonetheless, it is advantageous to assess

probe sets individually and summarize the perform-

ance of each preprocessing algorithm by reporting an

estimate of the average accuracy and precision along

with estimates of the variability in accuracy and pre-

cision seen across probe sets.

The bias/precision trade-off
For the nine preprocessing methods considered,

we observed the typical trade-off between bias and

precision (Table 1); however, frozen Robust
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Multi-array Analysis (fRMA) appears to be an ex-

ception to this trend—it has better accuracy than one

would expect, given its precision. It should also be

noted that the two algorithms proposed by

Affymetrix—MAS5.0 and Probe Logarithmic

Intensity Error (PLIER)—in addition to having the

worst precision, show far greater variability in preci-

sion than any of the other algorithms. This can be

explained by the fact that for some probe sets both of

these algorithms appear to fail at low nominal con-

centrations, evidenced by large variability between

technical replicates for some probe sets (Figure 1).

THE EFFECTOF PREPROCESSING
ON BETWEEN-GENE
CORRELATION
Previous work
Harr et al. [18] examined four popular Affymetrix

preprocessing methods—MAS 5.0, Robust Multi-

array Average (RMA) [4], Model-based Expression

Index (MBEI) [5] and GC Robust Multi-array

Average (GCRMA) [6]. They investigated detection

of positive between-gene correlation using pairs of

genes from the same Escherichia coli operon (assumed

to be positively correlated). They concluded that,

Figure 1: Plots of the signal detect curves for five probe sets (listed at bottom right) from the Affymetrix HGU133a
spike-in dataset using nine different preprocessing algorithms. Technical replicates within a nominal concentration
are represented by solid circles. The solid black line shows the average signal detect curve across all probe sets for
each preprocessing method.
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among the four preprocessing algorithms, MBEI

resulted in the highest Spearman rank correlation

coefficient and RMA the lowest. They also investi-

gated nonstandard preprocessing algorithms by com-

bining the background-correction, normalization

and summarization methods from each of the studied

preprocessing algorithms, finding that a combination

of MAS5.0 and MBEI (MAS5.0 background correc-

tion and PM/MM correction and MBEI normaliza-

tion and summarization) performed best [18].

Lim et al.[19] examined the same four prepro-

cessing methods. They investigated between-gene

correlations in several ways that significantly ex-

panded upon the results reported in Harr et al. [18].

They examined all pairwise correlations between

probe sets for a data set of 254 Affymetrix arrays

from a human Burkitt’s lymphoma cell line. They

assessed the fit of a relevance network based on these

correlations, agreement with Gene Ontology (GO)

biological process annotation and agreement with

known protein interactions. Based on these assess-

ments, they concluded that MAS5.0 and GCRMA

performed best [19].

Obayashi et al. [20] examined nearly the same four

preprocessing methods, substituting PLIER for

MBEI. They assessed the ability of correlation coef-

ficients to predict GO annotations in four species—

Human, Rat, Mouse and Arabidopsis. Using Pearson’s

correlation coefficient, they determined that RMA

performed best for Arabidopsis, Rat and Mouse, and

MAS5.0 performed best in Human. The authors also

proposed two alternatives to Pearson’s correlation

coefficient, both of which showed greater ability to

predict GO annotation. These two alternatives were

the rank of the correlation coefficient and the mutual

rank of the correlation coefficient. The former is

defined as the rank of the correlation of gene A with

gene B relative to the correlations of gene A with all

other genes.The latter is defined as thegeometricmean

of the rank of geneA with geneB and gene B withgene

A.Using the mutual ranks, RMA performed best for all

species [20].

A spike-in assessment
The assessments reported in the previous section

used known operons, GO annotations and known

protein interactions to determine genes that are

assumed to be positively correlated. While such as-

sessments shed light on the relative performance of

preprocessing methods, they ignore a more funda-

mental question, ‘What are the bias and precision of

correlation coefficient estimates using each prepro-

cessing method?’ We address this question directly

using the Affymetrix Human Genome U133A

Spike-in Experiment. This data set has been exten-

sively used to evaluate the gene expression estimates

produced by preprocessing algorithms [4, 6–10, 16,

17]. In addition to the preprocessing methods

assessed in the previous work, we also assessed

fRMA [7] and a few common varations on the

other preprocessing methods.

In the Affymetrix spike-in data set, any pair of

spike-in probe sets with the same nominal concen-

trations across the 42 arrays has a nominal correlation

of one. Therefore, to assess the ability of each pre-

processing method to estimate a between-gene cor-

relation of one, we examined the correlation

estimates for all of the spike-in probe set pairs with

a nominal correlation of one (Figure 2). PLIER,

MAS5.0 and, to some extent, GCRMA performed

noticeably worse than the other preprocessing meth-

ods. In fact, PLIER and MAS5.0 performed worse

than correlations based on the unpreprocessed

probe-level data. Furthermore, while the majority

of preprocessing methods yielded comparable preci-

sion, GCRMA, MAS5.0 and PLIER resulted in a

much larger interquartile range (IQR) than the

other preprocessing methods. In fact, PLIER resulted

in a larger IQR than the raw probe-level data

(Figure 2). This suggests that in addition to showing

the largest bias, these methods also produce the least

precise estimates.

Table 1: Assessment of accuracy and precision based
on the Affymetrix HGU133A spike-in data

Precision Accuracy
Within-replicate
variance, mean (SD)

Non-linearity,
mean (SD)

MBEIçno MM 0.030 (0.020) 9.102 (2.416)
PLIERçno MM 0.068 (0.057) 9.895 (2.787)
RMAçno BG 0.093 (0.062) 9.713 (2.372)
fRMAçdefault 0.097 (0.071) 6.954 (2.558)
RMAçdefault 0.148 (0.072) 7.401 (2.909)
MBEIçdefault 0.181 (0.121) 5.664 (3.058)
GCRMAçdefault 0.251 (0.170) 5.647 (3.150)
MAS5.0çdefault 0.991 (0.993) 4.423 (2.924)
PLIERçdefault 1.849 (3.155) 4.809 (3.307)

For each probe set, the within-replicate variance averaged across
nominal concentrations is used as a measure of precision, and the non-
linearity of the signal detect curve is used as a measure of accuracy.
Themean and SD across probe sets is reported for each preprocessing
algorithm.
Note:MM, mismatch; BG, background correction.
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If we examine the probe set pairs with the lowest

correlation estimates for PLIER and GCRMA, we

see that the observed bias is explained by our pro-

posed probe set-specific measures of bias and

precision (Figure 3). Specifically, a large between-

replicate variance at low nominal concentrations ex-

plains the bias for PLIER and severe nonlinearity

of the signal detect curve explains the bias for

GCRMA. This demonstrates that both lack of pre-

cision and nonlinearity can detrimentally affect

downstream analyses.

At least as important as estimation of a true posi-

tive correlation is accurate estimation of a true null

correlation. To this end, we considered four negative

control probe sets present on all Affymetrix

HGU133A microarrays (AFFX-DapX-3_at, AFFX-

LysX-3_at, AFFX-PheX-3_at, AFFX-ThrX-3_at).

Because these probe sets are expected to be unex-

pressed on every array, the nominal correlation be-

tween each of the control probe sets and any other

probe set on the array is zero. We assess the ability of

each preprocessing method to estimate a correlation

of zero in two situations: (i) across arrays to which

biological replicates were hybridized (23 normal

kidney samples from GSE15641) [21] and (ii)

across arrays to which different normal tissue samples

were hybridized (36 samples from GSE2361) [22].

The former assesses the ability to estimate a correl-

ation of zero when the variance in expression of the

noncontrol probe set is relatively small; the latter

assesses the ability to estimate a correlation of zero

when the variance in expression of the noncontrol

probe set is relatively large.

Boxplots of the observed correlations for both

assessments can be seen in Figure 4. In addition to

the preprocessing methods, we also included the cor-

relation estimates between the negative control

probes and each probe on the array without any

preprocessing. As expected, since there was no at-

tempt at normalization, we see a large positive bias

in the raw probe level correlations. However, the

estimates generated by each of the preprocessing

methods show a smaller, but still noticeable bias in

observed correlations. Specifically, PLIER and

GCRMA show a negative bias in both assessments,

and the other preprocessing methods show a positive

bias. This bias is relatively small for GCRMA,

MAS5.0 and fRMA in both assessments and for

MBEI and PLIER in the second assessment. In gen-

eral, biases are smaller in the second assessment

where the variance in expression of the noncontrol

genes is expected to be greater. With regard to pre-

cision, GCRMA is by far the best with MAS5.0 and

fRMA performing reasonably well across both assess-

ments and PLIER and MBEI performing fairly well

in the second assessment. Based on the assessment of

precision and linearity (Table 1) and the results

shown in Figures 2 and 4, it appears that poor pre-

cision results in underestimation of a true positive

correlation, whereas nonlinearity results in overesti-

mation when the true correlation is zero.

GENE SETANDNETWORK
ANALYSES BASEDONAN
EXPERIMENTALCOMPENDIUM
Whereas spike-in data allow one to assess bias and

precision directly, they have been criticized for not

accurately reproducing the biological variability seen

in real experimental data. To address this concern,

we created a compendium of 30 publicly available

Affymetrix HGU133A and HGU133Plus2 data sets.

The data sets selected consist of two sample types

(primarily disease and normal) from distinct human

subjects. A list of the experiments used can be found

in Table 2.

Whereas this experimental compendium cannot

be used to assess the bias and precision of preprocess-

ing methods directly, it can be used to investigate the

relationships between preprocessing methods and to

assess their relative performance. One can determine

which methods are the most and least conservative

Figure 2: Boxplots of the observed between-gene
(or between-probe in the case of the raw probe-level
estimates) correlations when the nominal correlation
is one.
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and which have the greatest agreement with other

methods. We examine these features in the context

of gene set analysis (GSA). This is a method of gene

selection which detects differences in gene expres-

sion patterns among predefined gene sets, rather than

single genes. The set definitions are based on criteria

such as functional pathway membership and

chromosomal proximity and results based on gene

sets typically show greater reproducibility [14].

Here, we consider two types of GSA based on

distinct hypothesis tests—the equality of Bayesian

network models [23] and a compound t-statistic
[24]—both applied to a curated list of 522 gene

sets obtained from the Broad Institute [14].

The compound t-statistic tests for a difference in

average expression between gene sets, while the

maximum likelihood test for the equality of

Bayesian network models is motivated by the

Figure 4: Boxplots of the observed between-gene (or between-probe in the case of the raw probe-level esti-
mates) correlations when the expected correlation is zero.Correlations were computed between each of four con-
trol probe sets and all other probe sets on the array using data from: (A) 23 normal kidney samples from
GSE15461 or (B) 36 different normal tissue samples from GSE2631.

Figure 3: The signal-detect curves for the probe set pair that produced the lowest correlation estimate for a
nominal correlation of one when preprocessing the data using: (A) GCRMA and (B) PLIER. Technical replicates
within a nominal concentration are represented by solid circles. The solid black line shows the average signal
detect curve across all probe sets for each preprocessing method.
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observation that phenotypic effects on gene expres-

sion may take the form of differential co-expression.

For further details of these methods, we refer the

reader to the original manuscripts.

Because GCRMA uses a shrinkage estimator,

which means a given gene may have identical gene

expression estimates on multiple arrays, any method-

ology which relies on variance estimates may be

negatively affected. The problem is compounded

when permutation tests are used, particularly when

the number of constant values is large enough that

among several thousand replications the probability

that one will contain a sample of constant values is

significantly greater than zero. To include GCRMA

in this assessment, we filtered genes whose expression

estimates consisted of >25% repeats.

To assess how conservative each preprocessing al-

gorithm is, we calculated the prevalence within each

data set as the number of gene sets with an adjusted

P-value less than a specified threshold false discovery

rate (FDR) estimated by the Benjamini–Hochberg

procedure): Prevaij ¼ {no. of adjusted P-values � a
for data set i, method j}. The average rank of the

prevalence scores (a lower rank corresponds to a

larger number of gene sets called differentially ex-

pressed) across the compendium of data sets provides

an assessment of which preprocessing methods are

the least conservative (Table 3). Custom versions of

PLIER and MBEI (ignoring mismatch probes)

appear to have the highest prevalence with fRMA

joining the top tier in the Bayesian network analysis.

GCRMA, MAS5.0 and PLIER (default) have

the lowest prevalence for all FDR thresholds in

both analyses, meaning that they are the most

conservative.

To assess agreement between algorithms, we com-

puted the concordance between preprocessing

methods with respect to those gene sets determined

to differ significantly. We calculated two measures of

concordance based on: (i) the Spearman rank cor-

relation of adjusted P-values between two prepro-

cessing methods and (ii) the ability of a given

preprocessing method to detect gene sets called ex-

pressed by other methods. Specifically, suppose Vadj

is an N�M matrix of adjusted P-values such that

Vadj
ij is the P-value associated with gene-set i and

preprocessing method j. Let Ej
a be the set of gene

sets i for which Vadj
ij � a calculated using prepro-

cessing method j. Then define an M�M matrix Aa

with elements.

Aa
jk ¼ mean

j 6¼k
jrankj V

adj
ij

� �
�rankk V

adj

ik

� �
j : i 2 Ea

j g,

This relationship measure represents the ability of

preprocessing method k to detect significant gene

sets detected by method j, and so is asymmetric.

Computing the average across all preprocessing

methods allows one to assess the ability of a given

preprocessing method to call differentially expressed

those gene sets called differentially expressed using

other preprocessing methods.

The first metric can be used to determine which

preprocessing methods provide similar results by

examining the matrix of pairwise correlations aver-

aged across the compendium of datasets (Table 4). As

one would expect, the two versions of RMA pro-

duce similar results; however, the two versions of

PLIER and MBEI do not produce highly similar

results. This suggests that RMA background correc-

tion, which does not use mismatch data, has a lesser

effect on the results than the potential use of

Table 2: A list of the 30 publicly available data sets
used to create the experimental compendium including
the GEO experiment ID, microarray platform, tissue
and number of samples

GEOID Platform No. of
samples

Tissue

GSE2443 U133A 20 Prostate
GSE3585 U133A 12 Heart
GSE4107 U133Plus2 22 Colonic mucosa
GSE4488 U133Plus2 16 Whole blood
GSE5090 U133A 17 Omental adipose tissue
GSE5389 U133A 21 Orbitofrontal cortex
GSE5390 U133A 15 Dorsolateral prefrontal cortex
GSE5563 U133Plus2 19 Vulva
GSE6236 U133A 28 Reticulocytes
GSE6364 U133Plus2 37 Endometrium
GSE6613 U133A 105 Whole blood
GSE6872 U133Plus2 21 Semen
GSE7148 U133A 14 Peripheral blood leukocytes
GSE7305 U133Plus2 20 Endometrium
GSE7893 U133A 21 Peripheral blood CD14þ leukocytes
GSE8514 U133Plus2 15 Adrenal gland
GSE8581 U133Plus2 58 Lung
GSE8823 U133Plus2 24 Alveolar macrophages
GSE10161 U133A 27 Heart
GSE10245 U133Plus2 58 Nonsmall cell lung cancer
GSE11524 U133Plus2 30 Platelet
GSE14001 U133Plus2 23 Ovary
GSE14671 U133Plus2 59 CD34þ cells
GSE14905 U133Plus2 82 Skin
GSE16155 U133Plus2 19 Ependymoma
GSE16538 U133Plus2 12 Lung
GSE17639 U133Plus2 12 Reticulocytes
GSE18781 U133Plus2 55 Peripheral blood
GSE22688 U133A 38 Blood outgrowth endothelial cells
GSE20504 U133Plus2 10 Umbilical cord blood-derived

Endothelial colony forming cells
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mismatch data in PLIER and MBEI. Furthermore,

GCRMA (which differs from RMA only in the

background correction step) does not produce results

similar to either version of RMA, providing add-

itional evidence that whereas RMA background cor-

rection has a relatively small effect on the results,

alternative background correction methods can

have a substantial effect. The second metric can iden-

tify preprocessing methods that call differentially ex-

pressed a sizeable number of gene sets called

differentially expressed by other methods. Similar

to Table 3, we report the average rank across the

compendium of datasets (Table 5). The two versions

of RMA and the custom version of PLIER appear to

have the greatest concordance; however, this could

be due to the high similarity between the two ver-

sions of RMA seen in Table 4. To address this, we

recomputed the second concordance metric using

only one version of each preprocessing algorithm.

The results were similar to those seen in Table 5

with the only major difference being that the

custom version of PLIER showed the greatest con-

cordance with RMA coming in second.

Finally, to assess our level of confidence in the

ranks reported in Tables 3 and 5, we use a bootstrap

procedure. Specifically, we generate K simulated

ranking matrices R�1 , . . . ,R�k , based on the preva-

lence and concordance test statistics previously

described, each obtained by randomly resampling

N data sets with replacement from the compendium

of 30 data sets. For each R�k , a summary vector �R�k of

the column averages is constructed. We then define

the probabilistic summary B̂jr as the proportion of

bootstrapped summary vectors �R�k in which prepro-

cessing method j ranked at least r. Thus, B̂j1 is inter-

pretable as the confidence level for the inference

statement that method j is the most favored with

respect to a given metric. The procedure assumes

independence across data sets, but permits statistical

dependence between preprocessing methods, which

must be anticipated.

The cumulative distribution function (CDF) for

the highest ranked preprocessing method for each

metric and FDR threshold can be seen in the

lower half of Tables 3 and 5. Regarding preva-

lence, we are quite confident that the highest

ranked method is in the top three for all FDR

thresholds and both methods of analysis. For

Bayesian network analysis and FDR thresholds of

0.05 and 0.25, we are quite confident that the

highest ranked method is in the top two. With

regard to concordance, we are even more confi-

dent in the highest ranked method. We can be

nearly certain that the highest ranked method is

in the top three and in general, quite confident

that it is in the top two, the only exception

being the Bayesian network analysis with an FDR

threshold of 0.01.

Table 3: Assessment of prevalence for each preprocessing method based on the compendium of 30 experiments

t2-statistic Bayesian network

FDR 0.01 0.05 0.25 0.01 0.05 0.25

PLIERçno MM 4.03 3.83 3.48 3.95 3.23 2.72
MBEIçno MM 4.08 3.78 3.52 4.23 3.53 3.35
fRMAçdefault 4.53 4.63 4.43 4.00 3.93 3.70
RMAçdefault 4.92 4.60 4.73 4.92 5.05 4.55
RMAçno BG 5.22 5.00 4.65 4.82 5.13 4.42
MBEIçdefault 4.63 4.77 4.48 5.03 5.02 5.62
PLIERçdefault 5.37 5.23 4.93 6.12 6.67 6.82
GCRMAçdefault 5.83 6.50 7.50 5.57 5.62 6.87
MAS5.0çdefault 6.38 6.65 7.27 6.37 6.82 6.97

CDF of highest ranked method
P(rank�1) 0.46 0.52 0.48 0.48 0.67 0.93
P(rank� 2) 0.83 0.89 0.93 0.78 0.97 1.00
P(rank� 3) 0.94 0.96 0.98 0.99 1.00 1.00
P(rank� 4) 0.99 0.99 1.00 1.00 1.00 1.00
P(rank� 5) 1.00 1.00 1.00 1.00 1.00 1.00

The upper portion of the table shows the average rankof the prevalence scores across the compendium of datasets. A lower rankcorresponds to a
larger number of gene sets called differentially expressed.The lower portion of the table displays the CDF of the highest rankedmethod, providing
an assessment of our confidence in the highest ranking.Note:MM, mismatch; BG, background correction
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CONCLUSION
We have described the performance of commonly

used preprocessing algorithms focusing on several

multivariate analyses. We began by assessing the

effect of preprocessing on one of the simplest and

most fundamental multivariate statistics—the correl-

ation coefficient. In addition to inferences based

solely on correlation between genes, estimates of

Table 4: The average correlation between preprocessing methods across the compendium of 30 experiments

fRMAç
default

GCRMAç
default

MBEIç
no MM

MBEIç
default

MAS5.0ç
default

PLIERç
no MM

PLIERç
default

RMAç
default

RMAç
no BG

t2-statistic
fRMAçdefault 1.00 0.60 0.63 0.62 0.61 0.78 0.61 0.77 0.77
GCRMAçdefault 0.60 1.00 0.54 0.59 0.59 0.61 0.57 0.63 0.62
MBEIçno MM 0.63 0.54 1.00 0.67 0.50 0.68 0.57 0.66 0.66
MBEIçdefault 0.62 0.59 0.67 1.00 0.59 0.64 0.64 0.64 0.64
MAS5.0çdefault 0.61 0.59 0.50 0.59 1.00 0.59 0.53 0.60 0.60
PLIERçno MM 0.78 0.61 0.68 0.64 0.59 1.00 0.63 0.87 0.88
PLIERçdefault 0.61 0.57 0.57 0.64 0.53 0.63 1.00 0.62 0.62
RMAçdefault 0.77 0.63 0.66 0.64 0.60 0.87 0.62 1.00 0.93
RMAçno BG 0.77 0.62 0.66 0.64 0.60 0.88 0.62 0.93 1.00

Bayesian network
fRMAçdefault 1.00 0.49 0.47 0.47 0.42 0.64 0.33 0.61 0.60
GCRMAçdefault 0.49 1.00 0.41 0.46 0.42 0.50 0.35 0.52 0.51
MBEIçno MM 0.47 0.41 1.00 0.52 0.36 0.52 0.31 0.49 0.49
MBEIçdefault 0.47 0.46 0.52 1.00 0.41 0.47 0.37 0.47 0.47
MAS5.0çdefault 0.42 0.42 0.36 0.41 1.00 0.42 0.32 0.42 0.42
PLIERçno MM 0.64 0.50 0.52 0.47 0.42 1.00 0.34 0.74 0.77
PLIERçdefault 0.33 0.35 0.31 0.37 0.32 0.34 1.00 0.34 0.33
RMAçdefault 0.61 0.52 0.49 0.47 0.42 0.74 0.34 1.00 0.86
RMAçno BG 0.60 0.51 0.49 0.47 0.42 0.77 0.33 0.86 1.00

Spearman rank correlation coefficients are computed using P-values from either a t2-statistic or a test of the equivalence of Bayesian networks.
The upper table is based on Pairwise Spearman rank correlation coefficients of P-values (GSA methods based on t-statistic and Bayesian network
equivalent test) were calculated for each data set, and preprocessing pair.Themaximum standard error among entries is 0.037.
Note:MM, mismatch; BG, background correction.

Table 5: Assessment of concordance for each preprocessing method based on the compendium of 30 experiments

t2-statistic Bayesian network

FDR 0.01 0.05 0.25 0.01 0.05 0.25

RMAçdefault 2.73 2.60 2.57 3.40 3.00 2.47
RMAçno BG 3.13 2.80 2.53 3.50 2.83 2.33
PLIERçno MM 3.50 3.23 3.03 3.47 2.70 2.80
fRMAçdefault 4.53 4.23 4.03 4.27 4.03 3.93
MBEIçdefault 5.47 5.70 5.73 5.37 5.47 6.00
MBEIçno MM 5.90 5.93 6.37 5.43 5.73 5.77
GCRMAçdefault 6.47 6.80 6.87 6.03 6.33 6.13
PLIERçdefault 5.87 6.10 6.27 6.90 7.67 8.30
MAS5.0çdefault 7.40 7.60 7.60 6.63 7.23 7.27

CDF of highest ranked method
P(rank�1) 0.96 0.76 0.50 0.49 0.60 0.66
P(rank� 2) 1.00 1.00 0.95 0.77 0.85 0.97
P(rank� 3) 1.00 1.00 1.00 1.00 1.00 1.00

Theupper portion of the table shows the averagerankof the concordance scores across the compendiumof data sets. A lower rankcorresponds to
a larger number of gene sets called differentially expressed using other preprocessing methods also being called differentially expressed using the
given preprocessingmethod.The lower portion of the table displays the CDF of the highest rankedmethod, providing an assessment of our confi-
dence in the highest ranking.Note:MM, mismatch; BG, background correction.
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between-gene correlation are used in differential

co-expression and some network modeling algo-

rithms. Whereas previous studies used various

surrogates for positive correlation, such as known

operons, GO annotations and known protein inter-

actions, the use of spike-in data allows one to assess

the bias and precision of preprocessing methods dir-

ectly. Furthermore, we have shown that examination

of the signal-detect curves and simple measures of bias

and precision based on spike-in data can shed light on

errors that manifest themselves in more complex ana-

lyses. Finally, we have compiled an experimental

compendium of 30 curated data sets that allow us

to assess the relative performance of preprocessing

methods with regard to prevalence and concordance.

Based on our assessments, we conclude that pre-

processing methods that attempt to straighten the

signal detect curve, such as MAS5.0 and PLIER (de-

fault), sacrifice precision in doing so. Moreover, this

lack of precision leads to a large bias when comput-

ing correlation coefficients between probe sets when

the nominal correlation is one. Conversely, by using

a shrinkage estimator, GCRMA further increases

the nonlinearity of the signal-detect curve that also

results in a large bias. However, it should be noted

that GCRMA performed best when estimating a

true zero correlation—it had very small bias and vari-

ance. It appears that methods that strike a balance

between the bias and precision of the signal detect

curves, such as fRMA, have consistently small bias

and variance when computing correlation coeffi-

cients between probe sets with a nominal correlation

of either one or zero. While some preprocessing

methods did perform better than others, it is reassur-

ing that nearly all the preprocessing methods yielded

better results than those based on the unpreprocessed

probe-level data—the exceptions being MAS5.0 and

PLIER (default) for a nominal correlation of one.

These conclusions are further supported by our

assessment of prevalence and concordance. MAS5.0

and PLIER (default) were consistently more conser-

vative and showed lower concordance than the other

preprocessing methods. It is possible that higher

prevalence and greater concordance does not imply

better performance. Higher prevalence can be

achieved by increasing the number of false positives,

as well as by increasing the number of true positives,

and if the majority of preprocessing methods are

making the same errors, they would show higher

concordance. However, given the lack of precision

of both MAS5.0 and PLIER (default) and the fact

that one expects a sizeable number of differentially

expressed gene sets in each data set, it is fair to assume

that their low prevalence is due primarily to a lower

number of true positives—decreased precision would

lead to decreased power to detect differentially ex-

pressed gene sets. This is further supported by the

fact that preprocessing methods with higher preva-

lence also show greater concordance with each

other. However, without knowing which gene sets

are truly differentially expressed, one cannot defini-

tively determine which preprocessing algorithms

perform best.

As microarray data begins to be used for more

complex multivariate analyses, it is important to re-

visit preprocessing methodology to determine its

effect on subsequent analyses. While this review pro-

vides a first look at some of the more common multi-

variate analyses, there are numerous others whose

results may be strongly affected by preprocessing.

Furthermore, as methods to assess gene expression

evolve, it is necessary to carefully evaluate whether

current preprocessing methods are still appropriate.

For example, because the Affymetrix Human Gene

1.0 ST arrays contain probes designed to target the

entire transcript (the Human Gene U133 arrays con-

tained probes targeting primarily the 30-end),

alternative-splicing could lead to violations of the

modeling assumptions underlying most current pre-

processing algorithms. Specifically, most preprocess-

ing algorithms assume that each probe within a

probe set is measuring the same transcript and per-

forms similarly across samples. However, this may

not be the case if there are multiple splice variants

of a given gene.

Key Points

� Using spike-in data to examine the signal detect curves and
assess thebias andprecision of preprocessing algorithmsprovide
greater insight than previous assessments.

� Preprocessing algorithms that strike a balance between bias
and precision appear to yield the best results.

� Preprocessing greatly improves estimation of correlation coeffi-
cients for nominal correlations of both zero and one.

� MAS5.0 and PLIER (default) are the only two algorithms assessed
that do not clearly outperform the unpreprocessed data.

� Assessments of prevalence and concordance based on a large
compendium of data sets can shed light on the behavior of and
relationships between prepreocessing algorithms.
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