
Adjusting confounders in ranking
biomarkers: a model-based ROC
approach
TaoYu, Jialiang Li and Shuangge Ma
Submitted: 6th December 2011; Received (in revised form): 10th February 2012

Abstract
High-throughput studies have been extensively conducted in the research of complex human diseases. As a repre-
sentative example, consider gene-expression studies where thousands of genes are profiled at the same time. An im-
portant objective of such studies is to rank the diagnostic accuracy of biomarkers (e.g. gene expressions) for
predicting outcome variables while properly adjusting for confounding effects from low-dimensional clinical risk fac-
tors and environmental exposures. Existing approaches are often fully based on parametric or semi-parametric
models and target evaluating estimation significance as opposed to diagnostic accuracy. Receiver operating charac-
teristic (ROC) approaches can be employed to tackle this problem. However, existing ROC ranking methods focus
on biomarkers only and ignore effects of confounders. In this article, we propose a model-based approach which
ranks the diagnostic accuracy of biomarkers using ROC measures with a proper adjustment of confounding effects.
To this end, three different methods for constructing the underlying regression models are investigated. Simulation
study shows that the proposed methods can accurately identify biomarkers with additional diagnostic power
beyond confounders. Analysis of two cancer gene-expression studies demonstrates that adjusting for confounders
can lead to substantially different rankings of genes.
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INTRODUCTION
In the study of complex human diseases, such as

cancer, diabetes and cardiovascular diseases, clinical

risk factors and environmental exposures have been

shown to have insufficient predictive power for diag-

nosis and prognosis prediction [1]. High-throughput

studies have been conducted, aiming to profile

human genome and search for biomarkers with add-

itional diagnostic power. To avoid confusion of ter-

minology, in this article, we use microarray

gene-expression profiling study as a representative

example, though the proposed approach has many

applications beyond gene-expression study. In

gene-expression studies, an important goal is to

identify and rank gene expressions with additional

diagnostic power beyond clinical risk factors and en-

vironmental exposures [2].

Denote Y as the response variable and

X ¼ ðX1, . . . ,XqÞ as the q gene expressions to be

ranked, with q � 103�4. For each subject, a set of

p confounders U (clinical risk factors and environ-

mental exposures) are measured, with p � 101. For

example in cancer studies, U may include variables

such as age, gender, race, medication history, expos-

ure to radiation and others. Compared with gene

expressions, clinical and environmental risk factors

have a lower dimensionality, can be more easily

and accurately measured, and have more important
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implications for public health. In addition, some of

such risk factors are modifiable, making them more

relevant to clinical practice.

Many published studies adopt a model-based

ranking approach and proceed as follows: (i) for

gene k(¼ 1 , . . . , q), fit a statistical model

y � fðXkÞ, where f is a pre-specified parametric

or semi-parametric model; (ii) based on the fitted

model, compute a ranking statistic rk for gene

k(¼ 1 , . . . , q); (iii) rank biomarkers based on the

magnitudes of rks. Consider, for example, a diagnosis

study with binary response. A commonly adopted

model f is the logistic regression model, and the

ranking statistic can be taken as the absolute value

of regression coefficient estimate, its significance level

or value of the maximized likelihood function.

When standard regression models (e.g. logistic

model for binary response, Cox model for survival

response) are adopted, such an approach can be easily

extended to accommodate effects of confounders.

The most impressive feature of this approach is its

computational simplicity. However, the aforemen-

tioned ranking statistics all measure estimation signifi-
cance, which is not a direct measure of diagnostic
accuracy. Recent studies, such as [3] and references

therein, have shown that with high-throughput

data, there is no one-to-one correspondence be-

tween estimation significance and diagnostic accur-

acy. The difference can be significant when the

sample size is not large and there are many

biomarkers.

As an alternative to the aforementioned approach,

ROC approaches directly evaluate the differential

ability of biomarkers [4]. In addition, they are able

to focus on the whole spectrum of specificity and

sensitivity and provide lucid interpretations. Pepe

et al. [5] and Ma and Song [6] use ROC approaches

to rank diagnostic performance of biomarkers with

binary and survival response variables, respectively.

However, those studies focus on biomarkers only

and ignore the effects of confounders. Intuitively, it

is possible to follow a strategy similar to the

model-based approach described above and extend

[5, 6] to accommodate confounders in biomarker

ranking. However, such an extension encounters

computational difficulties. Without making any nor-

mality assumption on the biomarkers (which usually

does not hold with practical data), the empirical

ROC objective function is not continuous.

Maximizing such an objective function demands

either computationally extensive searching or

functional approximation [7]. To the best of our

knowledge, there is still a lack of numerical

method that is computationally affordable and gen-

erically applicable.

Our goal is to develop a ROC-based ranking

approach, which can identify and rank the diagnostic

accuracy of biomarkers while properly adjusting for

confounders. The proposed approach advances from

the existing model-based ranking approach by dir-

ectly evaluating diagnostic accuracy and from the

existing ROC approach by accommodating con-

founders. It, hence, can be more informative than

existing approaches. Furthermore, the proposed ap-

proach is readily implemented in existing software

packages and computationally affordable, since its

computational complexity is linear in terms of the

number of biomarkers in data.

METHODS
When confounders U are present, ranking the q bio-

markers X1 , . . . ,Xq follows a strategy similar to that

with model-based ranking described in the above

section. However, there are two key differences.

The first is that for gene k, the statistical model is

y � fðU,XkÞ. Challenge arises as the effect of U
needs to be modeled and estimated q times, each

time with a different Xk. The second difference is

that the ranking statistic is now taken as a

ROC-based measure, which is more informative

than estimation significance. In the following subsec-

tions, we investigate gene-expression data with

binary and censored survival responses separately.

Adjustment with binary response
variable
Consider a diagnosis study, where Y¼ 0/1 denotes

the presence/absence of a certain disease or two dif-

ferent stages of the same disease. The proposed ap-

proach can be easily extended to accommodate

categorical responses with multiple levels following

[8] by replacing area under the ROC curve (AUC)

with volume under the multi-dimensional ROC

surface.

We first ignore confounders and consider gene

expressions only. For gene k(¼ 1 , . . . , q), consider

the logistic regression model

log
p

1� p
¼ b0 þ Xkbk, ð1Þ

where p ¼ P(Y¼ 1jXk), b0 and bk denote the un-

known intercept and regression coefficient,
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respectively. Denote ðbb0,
bbkÞ as the maximum likeli-

hood estimate (MLE) of (b0,bk) based on n inde-

pendent and identically distributed (iid) subjects.

For subject i, in the sample, we can make a

model-based diagnostic decision by calculating the

predicted probability of a positive outcome as

bpki ¼ 1= 1þ exp � bb0 þki
bbk� �n oh i

and declaring that the predicted outcome to be one

or zero according to whether the value of bpki is

greater or less than a threshold t2(0,1). The setbpki : i ¼ 1 . . . n
� �

can now be viewed as a sample

for a ‘diagnostic marker’ pk. For a fixed threshold t,
the sensitivity and specificity of pk are

sek tð Þ ¼ P pk > tjY ¼ 1
� �

, spk tð Þ ¼ P pk < tjY ¼ 0
� �

,

respectively. The curve of sek versus 1 � spk across all

t values is called the ROC curve [4]. An overall

summary measure is the area under the ROC

curve (AUC) which is defined as AUCk ¼R 1

0
sekðtÞdf1� spkðtÞg. AUC has the probability inter-

pretation of AUCk ¼ Pðpk1 < pk2jY1 ¼ 0,Y2 ¼ 1Þ,

which facilitates a relatively simpler way to estimate

AUC by

Xn
i¼1

Xn
j¼1

I pki < pkj ,Yi ¼ 0,Yj ¼ 1
� �

=
Xn
i¼1

Yi n�
Xn
i¼1

Yi

 !
:

ð2Þ

When the effects of confounders are ignored,

fAUCk:k¼1 , . . . , q} can be used to rank biomarkers,

with larger AUC values indicating higher diagnostic

accuracy. We refer to this method as M0 (method of

no-adjustment) hereafter. This method has been

adopted in [5] for binary response and [6] for survival

response. With M0, rankings using pk and Xk as diag-

nostic markers are identical because of the invariance

of AUC under monotone increasing transformations.

Therefore, there is actually no need to fit regression

models to obtain this type of ranking. Moreover,

even with no adjustment for confounders, there are

multiple possible ways of ranking biomarkers. One

instant example is to simply rank, the P-values of

estimated bks from (1). However, we have observed

from numerical studies that this method performs

quite similar to M0 (details omitted). Intuitively,

we expect that there exists very limited room to

find more effective methods for ranking biomarkers

without properly accounting for the effects of

confounders.

MethodM1: individual adjustment
We now consider a more realistic model, where p
depends on not only X but also U. In particular, for

gene k, we extend model (1) as

log
p

1� p
¼ b0 þUTb1 þ Xkb2k, ð3Þ

where b1 is the length-p vector of unknown regres-

sion coefficients. For subject i, we can obtain its in-

dividual covariate-adjusted risk represented by

bpki ¼ 1= 1þ exp � bb0 þUT
i
bb1 þki

bb2k

� �n oh i
,

where bb0,
bb1,
bb2k are the MLEs of the regression co-

efficients in (3). We then calculate the AUC value

for gene k by regarding fbpki : i ¼ 1 . . . ng as the diag-

nostic marker values and applying a similar formula

as (2).

With this adjustment method, the effect of con-

founders is estimated q times, each time with a dif-

ferent gene. This strategy has been commonly

adopted with simple model-based approaches. The

q estimates of confounder coefficients bb1 are usually

different. This may cause difficulty in interpreting

the effects of confounders (e.g. when the signs of a

confounder are different in different models) and in

making a fair comparison across the q genes. Such a

concern motivates the development of the following

two adjustment methods, which have the same con-

founding effect estimate in all of the q regression

models.

MethodM2: marginal adjustment
We propose first fitting the logistic model

log
p

1� p
¼ b0 þUTb1, ð4Þ

which involves the confounders only. Denote the

MLE of ðb0,b1Þ as (eb0,
eb1). For gene k, we then con-

sider the logistic regression model

log
p

1� p
¼eb0 þUTeb1 þ Xkb2k,

where b2k is the only unknown parameter andeb0 þUTeb1 is considered as the known offset value

in the model. Denote the MLE of b2k as bb2k. For

subject i, the marginal covariate-adjusted risk is then

given by

p̂ki ¼ 1= 1þ exp � eb0 þUT
i
eb1 þ Xkib̂2k

� �n oh i
:

Adjusting confounders in ranking biomarkers 515



The rest of the ranking procedure is the same as

described above.

With method M2, the confounding effect is esti-

mated in the absence of genes and then kept constant

in downstream analysis. It measures the ‘net’ effect of

confounders, which is the main quantity of interest

in classic epidemiologic studies. Compared with M1,

different genes are now compared on a more

common ground. The computational complexity

of this method is similar to that of M0.

The development of complex human diseases is

associated with the combined effects of confounders

and multiple genes. Thus, a more sensible data gen-

erating model assumes that

log
p

1� p
¼ b0 þUTb1 þ XTb2, ð5Þ

where X ¼ ðX1, . . . ,XqÞ
T is the whole set of bio-

markers. Marginal ranking of biomarkers amounts to

marginalization of the above joint model by focusing

on one gene at a time. From the joint-modeling

perspective, the estimate of b1 and hence effect of

confounders should be generated in the presence of

X. Motivated by such a consideration, we propose

the following method.

MethodM3: joint adjustment
We first fit regression model (5). Denote ðeb0,

eb1) as a

proper estimate of ðb0,b1Þ. With this estimate, the

rest of the ranking procedure is the same as that with

method M2.

When n� qþ p, ðeb0,
eb1Þ can be obtained from

simple likelihood approaches. However, with

gene-expression data, usually n�q. Thus a straight-

forward MLE is not attainable. To facilitate practical

implementation, we propose a screening-based pen-

alization approach, which proceeds as follows.

(1) Apply method M0. That is, for gene

k(¼ 1 , . . . , q), calculate its AUC value without

adjusting for confounders. Rank the q genes

using their unadjusted AUC values;

(2) Select the top k genes from the sorted list of

genes to be X in model (5);

(3) Fit model (5) with a penalized logistic regression

approach and obtain ðeb0,
eb1Þ.

With recent development in regularized estima-

tion (e.g. penalization) methods, it is possible to fit

a joint-regression model with confounders and all

genes. Among the thousands of profiled genes,

only few are expected to have diagnostic power for

the response. Recent studies, such as [9], suggest that

marginal screening in Step (1) may not only reduce

computational cost for penalized estimation but also

more importantly lead to more accurate estimates.

Theoretically speaking, a partial orthogonality con-

dition can guarantee the consistency of screening.

The goal of the screening is to conduct a rough

selection. Thus, k should not be too small. In our

numerical study, we set k� n, as it is expected

that the number of genes with diagnostic power

to be much smaller. Data-driven methods such as

cross-validation can be used to determine k, how-

ever, may lead to higher computational cost.

Compared with sample size, the number of con-

founders and genes passed screening may be compar-

able or larger. Thus, penalized estimation, which can

effectively stabilize the estimation, is needed in Step

(3). With generalized linear models, several penaliza-

tion approaches can be adopted. Comprehensive

overviews of the development of these approaches

and their properties can be found in [10–14] and

many others. In our numerical study, penalized

Bregman divergence with deviance loss in [13] and

the adaptive Lasso approach in [14] are adopted for

gene-expression data with binary and censored sur-

vival responses respectively.

Remarks
An important characteristic of ROC approaches is

that they are ‘model-free’. The proposed approach

needs to fit logistic regression models and thus may

suffer from model mis-specification. There are stu-

dies, such as [7, 15], advocating using AUC as the

objective function for building composite diagnostic

markers. The binormal AUC function relies on the

normality assumption, which usually does not hold

with gene-expression data. The empirical AUC ob-

jective function is a sum of indicator functions. In

practice, computationally expensive searching or ap-

proximation is needed for optimization. We have

experienced with some of the available computa-

tional approaches and found that they either have

prohibitively high-computational cost or tend to

perform poorly when there are a few covariates

(e.g. more than five). Because of the computational

concerns, we turn to the proposed model-based

approach. The logistic regression model is the most

widely adopted model for binary data. If there is

evidence in favor of other models (e.g. probit
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model), the proposed approach can be easily

extended.

Adjustment with survival response
variable
For survival response variable, the status of a subject

at each time point is binary (death or alive). The

ROC curve and the corresponding AUC can be

constructed at each time point. A single measure of

diagnostic accuracy can then be obtained by integrat-

ing AUC over the time. We refer to [16] and others

for the development of time-dependent ROC

techniques.

With survival response variable, the most com-

monly adopted model is the Cox proportional

hazards model. With slight abuse of notation, we

continue to denote by Y the survival outcome in

this section. The Cox model assumes that

h yð Þ ¼ h0 yð ÞexpðXbÞ, where h yð Þ and h0 yð Þ denote

the hazard function and the baseline hazard function

at time y, respectively; b is the regression coefficient

for a generic covariate X (which can be a confounder

or a gene). The partial likelihood estimation of b can

be obtained by existing software packages, such as

coxph in R, stcox in STATA or PROC PHREG in

SAS. After fitting the model, let Ẑi ¼ expðXib̂Þ be

the hazard score for subject i. A larger value of bZi
corresponds to a higher level of hazard and shorter

survival time predicted based on Xi. Thus, we can

treat fZig
n
i¼1 as if they were a set of diagnostic

markers.

With survival response variable Y and a generic

diagnostic marker Z, a commonly implemented

diagnostic accuracy summary measure is the time-

integrated AUC [17] defined as

C ¼ P Z1 > Z2,Y1 < Y2

� �
,

where Zj is the diagnostic test statistic and Yj is the

corresponding survival time for the jth subject (j¼ 1,

2) randomly sampled from the population. A larger

value of C indicates that a greater value of Z is asso-

ciated with a shorter survival Y more often than not.

This time-integrated AUC measures the concord-

ance between Z and Y and can be used to rank

markers. This definition also facilitates a simple for-

mula to estimate the time-integrated AUC asXn
i¼1

Xn
j¼1

IðZi > Zj,Yi < YjÞ=
Xn
i¼1

Xn
j¼1

IðYi < YjÞ: ð6Þ

In survival analysis, observations are often subject

to censoring. Some data sets even have a mixture of

different types of censoring. Thus, not all pairs of

(Yi,Yj) have a definitive order. Some pairs of obser-

vations are less informative than others. We refer to a

recent study [18] for detailed algorithms for comput-

ing, the time-integrated AUC under various censor-

ing scenarios (omitted here for brevity). With the

Cox model and above definition of time-integrated

AUC, adjusting for confounders can follow the same

strategy as with binary data. All the three proposed

adjustments, individual adjustment, marginal adjust-

ment and joint adjustment, can be conducted.

AUC by refitted cross-validation
In the approach described above, the model fitting

and AUC calculation are carried out using the same

data. When the sample size is not very large, and

there are a number of covariates, there is a concern

of over-fitting and hence overly optimistic diagnostic

measure. We propose a refitted cross-validation pro-

cedure in AUC evaluation, following the strategy in

[19]. The procedure proceeds as follows:

(1) For a data set with n subjects, randomly split into

two sets with equal sizes referred to as set I and

set II;

(2) With binary (survival) data, construct the logistic

(Cox) model using set I. Apply the fitted model

from set I, make a prediction for subjects in set II,

and compute AUCI, the ranking AUCs for set II;

(3) Repeat Step 2 by exchanging the roles of set I

and set II, and construct the ranking AUCs

referred to as AUCII;

(4) Use (AUCI þ AUCII)/2 as the ranking statistics.

To avoid bias caused by an extreme partition,

repeat the above process multiple times and take

the average AUCs as the ranking statistics.

SIMULATION
Binary response variable
We simulate 100 sets of gene-expression data. In

each set, there are n¼ 100 iid subjects. Subject i has

a binary outcome Yi, q¼ 19 995 gene expressions

Xi¼ (X1,i , . . . ,Xq,i)
T and P¼ 5 confounding covari-

ates Ui¼ (U1,i , . . . ,Up,i)
T. ðUT

i ,X
T
i Þ

T , i¼ 1, . . . , n
are simulated as iid Nð0qþp,Þ random vectors,

where 0qþp denotes the (qþ p)� 1 zero vector,

�¼diag(�1,�2,�3), where �1, i¼ 1, 2, 3, are
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symmetric matrices with diagonal elements set equal

to 1 and off-diagonal elements equal to 0.4; �1, 2

and 3 respectively have dimensions pþ 50ð Þ�

ðpþ 50Þ, 5� 5 and q� 55ð Þ � ðq� 55Þ. We gener-

ate the binary response via

pi ¼
1

1þ exp � b0 þUT
i b1 þ XT

i b2

� �� �� 	 , ð7Þ

Yi � Bernoulli pið Þ, ð8Þ

where b0¼ 1, b1¼ (2, 2, 1, 1, 1)T, b2¼ (0 T
50 , 0.5,

0.5, 0.5, 0.5, 1.5, 1.5, 1.5, 0 T
q�50�7 )T.

That is, for each subject, we simulate five con-

founding covariates U1 , . . . ,U5 and 19 995 gene ex-

pressions X1 , . . . ,X19995. The regression coefficients

of U1,U2 are set as 2, whereas those of U3,U4,U5 as

1. Gene expressions are simulated as having a

three-group structure. Genes within the same

groups have a compound-symmetry correlation

structure with correlation coefficient 0.4, and genes

within different groups are independent. In group

one, X1 , . . . ,X50 are simulated as not associated

with response, i.e. b2,k¼ 0, for k¼ 1 , . . . , 50.

These genes are correlated with the confounding

covariates. In group two, X51 , . . . ,X57 are simulated

as associated with response, with regression coeffi-

cients in (7) set as 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 1.5.

In group three, X58 , . . . ,X19995 are not associated

with response. In addition, genes in groups two

and three are not correlated with confounding

covariates.

We apply the four methods to simulated data.

With 100 replicates, we compute the frequencies

that genes are ranked in top 20 by different methods.

In Table 1, we show the frequencies for seven im-

portant genes as well as those for seven randomly

selected unimportant genes that are correlated with

confounders. As can be seen from Table 1, for im-

portant genes, the three proposed adjustment meth-

ods significantly outperform the commonly adopted

M0 by ranking them much more frequently in top

20. The performances of the three proposed methods

are ordered as M1 < M2 < M3 as expected, though

the difference is not dramatic. From the second part

of Table 1, we can see that the no-adjustment

method, which is still commonly adopted, may

rank unimportant genes that happen to be correlated

with confounders in the top. Such genes represent

‘redundant’ information given confounders, are of

significantly less interest, and should be ranked low.

The three proposed methods can effectively solve

this problem. For unimportant genes not correlated

with confounders, all four methods have almost zero

frequencies ranking them in top 20 (detailed results

omitted).

Scatter plots of AUCs are constructed to further

illustrate efficacy of the proposed methods in gene

ranking. The upper four panels of Figure 1 display

the scatter plots of the AUCs of X41 (which does not

have diagnostic power but is correlated with con-

founders) versus those of X54 (which has diagnostic

power but is not correlated with confounders) for

the 100 simulated data sets. Since X41 is simulated

as unimportant whereas X54 as important, an effect-

ive method is expected to result in larger AUC

values for X54 than those for X41. Consequently,

the majority of the points in Figure 1 should be

below the 45� reference line; and the more the

points deviate from this line, the better the

method. The upper four panels of Figure 1 show

that with M0, the points are ‘randomly’ scattered

around the reference line, suggesting that the

AUCs of X41 and X54 are similar and this method

cannot effectively distinguish between the relative

importance of these two genes. The proposed

three methods, on the other hand, can effectively

solve this problem. In particular, almost all points

are located below the reference lines, suggesting

that with the proposed methods, gene X54 can be

ranked as having more diagnostic power than gene

X41. Similar phenomena are observed with other

pairs of genes (details omitted). The lower four

panels of Figure 1 present the scatter plots of the

AUCs of X41 versus those of X598 (a randomly

selected unimportant gene not correlated with

Table 1: Simulation study with binary response: fre-
quencies of genes ranked in the top 20 out of 100
datasets

X51 X52 X53 X54 X55 X56 X57

M0 40 32 32 39 64 75 67
M1 68 69 66 64 93 85 88
M2 68 71 74 76 93 90 92
M3 66 73 79 83 95 95 93

X16 X19 X22 X27 X28 X32 X34

M0 24 29 35 33 28 27 33
M1 0 0 1 0 0 0 1
M2 0 0 1 1 0 0 0
M3 0 0 1 1 0 1 0

Genes X51 . . .X57 are associated with response; Genes X16, X19, X22,
X27, X28, X32 and X34 are not associated with response but correlated
with confounders.
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Figure 1: Simulation study with binary response. Upper four panels: AUC of X41 vs. X54. Lower four panels: AUC
of X41 vs. X598. Solid green line: 45� reference line.
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confounders). Now that as both genes are unimport-

ant, an effective method should yield points centered

on the 45� reference line. The lower four panels of

Figure 1 show that the three proposed adjustment

methods are able to achieve such a property, while

the no-adjustment method tends to have larger AUC

values for gene X41.

Survival response variable
We simulate 100 sets of gene-expression data. In

each set, there are n¼ 150 iid subjects. Each subject

has 5995 gene expressions and five confounding cov-

ariates. The regression coefficients of confounders are

set as (1, 1, 1, 1, 1)T, and the regression coefficients

of important genes are set as (0.5, 0.5, 0.5, 0.5, 1,

1, 1)T. The values of other parameters as well as the

procedures of generating U1 , . . . ,Up, X1 , . . . ,Xq are

the same as those for binary response data. Following

[20], we generate the survival outcomes (Yi,Ci) of

subject i as

Y 0i ¼ H�1ð�logðWiÞexpf�UT
i b1 � XT

i b2gÞ

Yi ¼ min Y 0i ,Vi
� �

Ci ¼ I Y 0i > Vi
� �

,

where Wi � Uniform½0,1�; H�1 tð Þ ¼ ðl�1tÞ1=n is

the inverse cumulative hazard function of the Wei-

bull distribution, l ¼ 1,n ¼ 2; Vi � Uniform½0,4�
serves as the time of censoring for subject i. The

censoring rate is about 39%.

Gene ranking results of different methods are pre-

sented in Table 2. The observations are similar to

those made in Table 1, with the proposed adjust-

ment methods significantly outperforming the

no-adjustment method. A difference from Table 1

is that here with the seven important genes, we ob-

serve no difference among the three proposed meth-

ods. Scatter plots similar to those in Figure 1 are

obtained. We omit the figure for presentational

brevity.

Remark
More simulations are presented in Supplementary

Data (available online at http://bib.oxfordjournals

.org/). Conclusions similar to those above are

drawn. In our simulation studies, methods M2 and

M3 lead to similar results. Both methods account for

confounders with fixed offsets across all markers. In

addition, as the ‘overall correlation’ between gene

expressions and confounders is not dramatically

strong, the fixed offset estimates under the two

methods can be reasonably close. Performance of

accuracy measures is expected to be stable under

a uniform adjustment with accurately estimated

offset. Method M3 tends to perform the best since

it incorporates more information from markers. In

this method, the regression coefficients of confoun-

ders are estimated by a Lasso penalization method,

which usually has sound asymptotic properties (see

[10–14] and many others for references).

DATA ANALYSIS
Breast cancer study
Breast cancer is the second leading cause of deaths

from cancer among women in the United States.

Despite major progresses in breast cancer treatment,

the ability to predict the metastatic behavior of

tumor remains limited. The breast cancer study

was first reported in [21]. Ninety-seven lymph

node-negative breast cancer patients 55 years old or

younger participated in this study. Among them, 46

developed distant metastases within 5 years (meta-

static outcome coded as 1) and 51 remained metas-

tases free for at least 5 years (metastatic outcome

coded as 0). Clinical risk factors (confounders) col-

lected include age, tumor size, histological grade,

angioinvasion, lymphocytic infiltration, estrogen re-

ceptor (ER) and progesterone receptor (PR) status.

Expression levels for 24 481 gene probes were col-

lected. We remove genes with severe missingness,

leading to an effective number of 24 188 genes.

We apply the four ranking methods. In Table 3,

we provide the genes ranked in top 10 by methods

M0 and M3 as well as corresponding rankings by

other methods. We observe that the ranking by

M0 is significantly different from those by the three

Table 2: Simulation study with survival response: fre-
quencies of genes ranked in the top 20 out of 100
datasets

X51 X52 X53 X54 X55 X56 X57

M0 63 62 60 63 88 82 84
M1 100 100 99 100 100 100 100
M2 100 100 99 100 100 100 100
M3 100 100 99 100 100 100 100

X16 X19 X22 X27 X28 X32 X34

M0 24 29 31 35 28 30 27
M1 0 2 1 3 0 0 1
M2 0 0 2 1 1 0 0
M3 2 2 0 1 1 0 1

Genes X51 . . .X57 are associated with response; Genes X16, X19, X22,
X27, X28, X32 and X34 are not associated with response but correlated
with confounders.
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proposed methods, suggesting that adjusting for con-

founders can make a difference in practical gene

ranking. The top ranked genes by methods M1,

M2 and M3 are more similar. However, we still ob-

serve a certain degree of difference. Such a difference

is not surprising considering what is observed in

simulation (Table 1). Considering the formulation

of these methods and our simulation results, we rec-

ommend ranking by M3 as the final ranking.

Follicular lymphoma study
Follicular lymphoma is the second most common

form of non-Hodgkin’s lymphoma, accounting for

about 22% of all cases. A study was conducted to

determine whether the survival risks of patients

with follicular lymphoma can be predicted by the

gene-expression profiles of tumors and standard clin-

ical risk factors at diagnosis [22]. Fresh-frozen

tumor-biopsy specimens and clinical data from 191

untreated patients who had received a diagnosis of

follicular lymphoma between 1974 and 2001 were

obtained. The median age at diagnosis was 51 years

(range 23–81), and the median follow-up time was

6.6 years (range: less than 1.0–28.2). The median

follow-up time among patients alive at last follow-up

was 8.1 years. Eight records with missing survival

information are excluded from the analysis. Clinical

covariates measured include extra nodal site, age,

normalized LDH, performance status, stage and

IPI.1 (IPI¼ 2 or 3) and IPI.2 (IPI¼ 4 or 5). We

remove subjects with missing clinical covariate meas-

urements. A total of 156 subjects are included in

analysis. Affymetrix U133A and U133B microarray

gene-chips were used to measure gene-expression

levels. A log2 transformation was first applied to

the Affymetrix measurements. As genes with

higher variations are of more interest, we filter the

44 928 gene-expression measurements with the fol-

lowing criteria: (1) the max expression value of each

gene across 156 samples must be greater than the

median max expressions; and (2) the max^min expres-

sions should be greater than their median. 6506 out

of 44 928 genes pass the above unsupervised

screening.

Analysis results using the four different ranking

methods are shown in Table 4. The overall pattern

is similar to that in Table 3. We again observe that

different rankings are obtained by adjusting for con-

founders. Unlike with the breast cancer data, the

ranking by M0 is more similar to those by adjustment

methods. The rankings by M2 and M3 are closer to

each other.

DISCUSSION
In high-throughput biomedical studies, there are

two general strategies investigating high-dimensional

biomarkers. The first is to study their joint effects in a

single statistical model. In recent literature, a large

amount of regularization studies have been con-

ducted along this direction. The second is to study

their marginal effects possibly in the presence of con-

founders but not other biomarkers. Most biological

and clinical studies take this strategy. From a biolo-

gical point of view, the development and progression

of diseases are associated with the combined effects

of confounders and multiple genes. Thus, the

joint-effect strategy may seem more sensible.

However, marginal analysis and ranking may provide

insights not available in joint-effect analysis (e.g.

streamlining genes for further investigation, or an-

swering questions like ‘what is the optimal model

if only one or a small number of genes are allowed

in the model’), and thus can be of considerable

importance.

In marginal ranking, while focusing only on bio-

markers may be of some interest, more sensible rank-

ing analysis should properly account for the effects of

low-dimensional confounders, which may include

clinical risk factors and environmental exposures in

human disease research. In this article, we focus on

ranking resulted from using AUC. It is noted that the

proposed methods can be straightforwardly extended

to using partial AUC [5] or weighted AUC [23] to

accommodate scenarios where a subinterval of ROC

Table 3: Analysis of breast cancer data: genes ranked
in top 10 by methods M0 (left) and M3 (right) and cor-
responding rankings by other methods

Genes Rankings by method Genes Rankings by method

M0 M1 M2 M3 M0 M1 M2 M3

10755 1 120 58 31 271 944 8 1 1
16274 2 436 239 160 403 92 1 2 2
13143 3 3399 1562 303 8 4938 36 10 3
10513 4 1701 9488 304 272 286 4 3 4
19 642 5 3450 5728 1991 1439 85 3 4 5
7374 6 1385 345 249 24 023 589 69 39 6
22 328 7 251 995 76 921 31 9 9 7
296 8 403 311 141 194 2897 24 12 8
11285 9 319 5215 209 23488 1697 13 7 9
4682 10 542 580 411 593 5941 7 8 10
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curve should be taken into account or the area under

the ROC curve should be considered under a

weighted scheme. Because of the computational dif-

ficulty encountered by ROC approaches, we build

composite diagnostic models/markers using a single

gene and confounders based on parametric or

semi-parametric regression models. Three different

methods for adjusting confounders are developed.

Our numerical studies suggest that (i) adjusting for

confounders may lead to rankings significantly dif-

ferent from no-adjustment analysis; (ii) the proposed

methods can better identify genes with additional

diagnostic power beyond confounders; and (iii) out

of the three proposed methods, M3 is intuitively

most reasonable and has the best performance. The

proposed methods are computationally feasible and

convenient to implement using existing software

packages. For example, in R, the glm function in

the base package and the coxph function in package

survival can be used to fit, respectively, the logistic

regression model and Cox model. The penalized es-

timation with method M3 can be achieved with the

function glmnet and others. The calculation of AUC

can be achieved with functions auc (library pROC)

for binary data and survivalROC (library survivalROC)

for survival data. Computing code for this paper will

be available from the authors upon request.

Ranking investigated in this article amounts to

marginalize a certain joint data generating model.

When there is no confounder, the marginalization

is simple and uniquely defined. However, with the

presence of confounders, there is not a clear way of

marginalization. The three proposed methods are all

intuitively reasonable and reflect different ways of

marginalization. As discussed in previous sections, a

limitation of the proposed analysis is that it builds

diagnostic models via fitting certain parametric or

semi-parametric regression models. Although, in

theory, it is possible to build diagnostic models

using a model-free ROC approach, in practice, we

may encounter significant computational difficulties.

The logistic and Cox models are adopted as they

have been the default in the analysis of binary and

survival data. To the best of our knowledge, there is

a lack of rigorous model determination approach

with high-dimensional data. In this study, we have

focused on methodological development and inves-

tigated performance of the proposed methods via

numerical study. For each gene, the validity of esti-

mation and (time-integrated) AUC calculation is

almost trivial. With a large number of genes, the

uniform consistency of these estimates can be partly

deduced from recent studies [24]. As the problem

investigated is mostly of practical interest, we defer

theoretical investigation to future study. The relative

importance of genes is inferred from the AUC

values. As a secondary analysis, it is possible to

deduce the P-values of the AUCs and use them to

assist ranking and selecting genes. The calculation of

significance level may follow [18] or use bootstrap

approaches. The scenarios presented in simulation

are simpler than what is encountered in practice.

We intentionally choose those settings to demon-

strate that the proposed methods may lead to a big

difference even under simple settings. In the real data

analysis, we are able to show that the proposed

methods lead to different rankings in practice.

However, unlike with simulation data, we are

unable to show whether the genes ranked in top

by the proposed methods are ‘more meaningful’.

In high-throughput studies, gene ranking is usually

step one of the full analysis. Downstream analysis,

e.g. functional analysis, is needed to fully quantify

the association between genes and response.

In this article, we have focused on continuous

biomarkers and two types of response variables—

binary and censored survival. Some of the state-of-

art data such as single nucleotide polymorphism

(SNP) data may have discrete biomarkers. ROC

based approaches are no longer directly applicable

with such data. We leave out the research of adjust-

ing confounders for such data for future study.

Another type of common response variable is con-

tinuous. With continuous response, ROC-based

approaches simplify to the well-known maximum

Table 4: Analysis of follicular lymphoma data: genes
ranked in top 10 by methods M0 (left) and M3 (right)
and corresponding rankings by other methods

Genes Rankings by method Genes Rankings by method

M0 M1 M2 M3 M0 M1 M2 M3

357 1 3 1 1 357 1 3 1 1
5417 2 167 36 23 2345 180 15 3 2
5095 3 12 12 10 6267 11 57 18 3
4445 4 482 74 242 6271 102 2785 19 4
2391 5 136 140 115 3653 74 16 4 5
1232 6 231 197 55 5711 7 6 11 6
5711 7 6 11 6 5946 137 5 5 7
3625 8 70 47 11 6296 122 1 2 8
4769 9 652 180 386 1070 242 91 25 9
6060 10 317 725 186 5095 3 12 12 10
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rank correlation approaches [25]. With the link to

rank estimation approaches, the proposed methods

can be extended to continuous and other types of

response variables.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

	 When ranking biomarkers, ROC approaches directly target
diagnostic accuracy and can be more informative than fully
model-based approaches.

	 Because of computational difficulties, existing ROC approaches
often ignore confounders in ranking high-throughput
biomarkers.

	 The proposedmodel-based ROC approach is intuitively reason-
able and computationally affordable. It can better identify bio-
markers with diagnostic power beyond confounders.

	 Application of the proposed approach may lead to significantly
different rankings with cancer genomic data.
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