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A Retinal Source of Spatial Contrast Gain Control
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Sensory cortex is able to encode a broad range of stimulus features despite a great variation in signal strength. In cat primary visual cortex
(V1), for example, neurons are able to extract stimulus features like orientation or spatial configuration over a wide range of stimulus
contrasts. The contrast-invariant spatial tuning found in V1 neuron responses has been modeled as a gain control mechanism, but at
which stage of the visual pathway it emerges has remained unclear. Here we describe our findings that contrast-invariant spatial tuning
occurs not only in the responses of lateral geniculate nucleus (LGN) relay cells but also in their afferent retinal input. Our evidence
suggests that a similar contrast-invariant mechanism is found throughout the stages of the early visual pathway, and that the contrast-
invariant spatial selectivity is evident in both retinal ganglion cell and LGN cell responses.

Introduction

Natural stimuli are composed of a wide range of stimulus fea-
tures, which can vary greatly in signal strength. To extract these
features properly, sensory systems employ methods to detect and
respond selectively to stimulus features even while there are changes
in signal strength and signal background. A primary method to ad-
dress this problem is to apply gain mechanisms that acclimate signal
strength without modifying the relevant signal features.

In V1, where stimulus strength is defined by contrast, neurons
maintain invariant selectivity to specific visual features (e.g., ori-
entation, spatial phase) under widely varying contrast conditions
(Sclar and Freeman, 1982; Li and Creutzfeldt, 1984; Albrecht and
Geisler, 1991; Finn et al., 2007). For low-contrast (weak) signals
the spiking responses of V1 neurons are rapidly amplified, but for
higher-contrast (strong) signals, responses are compressed, effec-
tively creating a dynamic range across different contrasts (Dean,
1981; Tolhurst et al., 1981; Albrecht and Hamilton, 1982).

A number of phenomenological models have been developed
to describe such invariant tuning in V1 (Hamos et al., 1987; Al-
brecht and Geisler, 1991; Heeger, 1992; Carandini et al., 1997).
For the contrast gain control model, outputs of a linear filter are
scaled by a contrast-dependent function involving either an
intrinsic mechanism (Albrecht and Geisler, 1991) or divisive
normalization (Heeger, 1992; Carandini et al., 1998). Al-
though contrast gain control models accurately represent cor-
tical contrast invariance and provide concise explanations for
many cortical responses, they do not provide visibility into the
location of the first emergence of invariance in the visual pro-
cessing pathway.
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Indeed, the origin of cortical contrast invariance has remained
a mystery. It is possible that subcortical afferents from the LGN
relay cells to V1 or retinal inputs to the LGN (Dubin and Cleland,
1977; Shapley and Enroth-Cugell, 1984; Hamos et al., 1987; Bac-
cus and Meister, 2002; Gollisch and Meister, 2008) could drive or
contribute to the observed cortical invariance. Both LGN relay
cells and retinal ganglion cell (RGCs) show a reduction in re-
sponse gain with increasing contrast of an optimal stimulus
(Shapley and Victor, 1978, 1979; Shapley and Enroth-Cugell,
1984; Troy et al., 1993; Bonin et al., 2006).

To determine whether cortical contrast invariance for spatial
phase arises in subcortical visual processing stages, we made extra-
cellular recordings in vivo from the LGN to measure the spiking
modulation of responses to optimal and nonoptimal contrast-
reversing gratings. A key element of cortical contrast invariance is
that response saturation is governed by stimulus contrast for both
optimal and nonoptimal stimulus conditions. We found that, as for
V1 simple cells, LGN relay cells exhibit response saturation that is
governed by the same contrast for optimal or nonoptimal stimuli.
Further, we also recorded s-potentials, which reflect single RGC in-
puts to LGN cells, and found that s-potentials show response satu-
ration at the same contrast for all stimuli. Therefore the appropriate
signals that underlie cortical contrast invariance for spatial phase
emerge as early as the retina in the visual pathway.

Materials and Methods

Physiology. Single-unit extracellular recordings were made from V1 and
LGN neurons in anesthetized, paralyzed male and female cats (2—4 kg).
Anesthesia was induced with ketamine (5-15 mg/kg) and acepromazine
(0.7 mg/kg), followed by intravenous administration of a mixture of
propofol and sufentanil (Yu and Ferster, 2010). After surgery the animal
was placed in a stereotactic frame for the duration of the experiment.
Recording stability was increased by suspending the thoracic vertebrae
from the stereotactic frame and performing a pneumothoracotomy. Eye
drift was minimized with intravenous infusion of vecuronium bromide.
Anesthesia was maintained during the course of the experiment with
continuous infusion of propofol and sufentanil. Body temperature, EKG,
EEG, CO,, blood pressure, and autonomic signs were continuously
monitored. The nictitating membrane was retracted using phenyleph-
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rine hydrochloride and the pupils were dilated using topical atropine.
Contact lenses were inserted to protect the corneas. Supplementary
lenses were selected by direct ophthalmoscopy to focus the display screen
onto the retina. Extracellular electrodes (1-2 M), Microprobe; 2—6 M(),
FHC) were advanced either into V1 (area 17, ~2 mm lateral of midline)
or the LGN (6 mm anterior and 9 mm lateral, Horsley-Clarke coordi-
nates) with a motorized drive (Sutter Instrument Company). After the
electrode was in place, warm agarose solution (3—4% in normal saline)
was placed over the craniotomy to protect the surface of the cortex and
reduce pulsations. V1 recordings were limited to simple cells, which are
known to receive direct LGN input. LGN recording were made from both
X-cells and Y-cells. To determine cell type we first measured spatial fre-
quency tuning using drifting gratings. We then presented contrast-
reversing gratings at a spatial frequency higher than the spatial frequency
determined to be the cutoff in response to drifting gratings.

Neurons with a frequency doubling response were labeled Y-cells, and
those without were labeled X-cells.

All procedures were approved by the Animal Care and Use Committee
of the University of Texas at Austin.

Visual stimulation and records. Visual stimuli were generated by a Ma-
cintosh computer (Apple) using the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) for Matlab (Mathworks) and presented on a Sony video
monitor placed 50 cm from the animal’s eyes. The video monitor had a
noninterlaced refresh rate of 100 Hz and a spatial resolution of 1024 X
768 pixels, which subtended 40 cm horizontally and 30 cm vertically. The
video monitor had a mean luminance of 50 cd/cm *. Grating stimuli were
presented for 1.5 s, preceded and followed by 250 ms blank (mean lumi-
nance) periods. We initially characterized stimulus orientation, spatial
frequency, spatial location, and size best evoking a response. In V1 we
chose the preferred eye and in the LGN the eye chosen depended on
whether we recorded in layer A or Al. Both drifting sinusoidal gratings
and counterphase flickering gratings at different spatial phases were pre-
sented at different contrast levels (2-90%). In V1 and LGN, both small
(radius 1-2 degrees) and large (radius 4—12 degrees) gratings were used.
Raw voltage trace and spike times identified online were sampled at
16-25 kHz during recordings. V1, LGN, and s-potential spike times were
converted to spike rate by cycle-averaging responses at the stimulus tem-
poral frequency for each contrast and spatial phase. The Fourier trans-
form was used to measure the modulation at the temporal frequency of
the visual stimulus (F1). FI responses for each stimulus condition were
used in subsequent analysis and model fitting.

Extracting s-potentials. To extract the times of the s-potentials, we
began by first constructing a template of the s-potential waveform by
examining a 1.25 ms window before each LGN relay cell spike.
S-potential waveforms were evident in that window, but the timing of the
s-potentials was different for each LGN cell spike. To identify s-potential
times preceding LGN spikes, a Gaussian mixture model (GMM) was
used to determine the portion of the raw trace attributable to the
s-potential, similar to Bayesian spike sorting methods using GMM:s (Le-
wicki, 1998). The GMM assumed each voltage trace segment was com-
posed of three components summed together: the s-potential waveform,
a constant LGN cell waveform, and Gaussian noise with constant vari-
ance. Because s-potentials could appear at different temporal positions
relative to an LGN spike, we formed a prior distribution (discrete) of
s-potential temporal positions that was Gaussian-shaped with a SD of
0.0625 ms and had a maximum shift of 0.5 ms from mean position. Priors
enforcing sparseness and smoothness were added over s-potential and
LGN waveforms to regularize the estimates (to avoid overfitting the
data). Under this model we obtained maximum a posteriori (MAP) es-
timates for s-potential waveforms in each recording. A brief mathemat-
ical description of our likelihood model and posterior is given as:

(Wi | Sy, N, %) ~ N(Ss, + L, 0°])
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where W is the collection of all windows from the voltage trace, W; is an
individual voltage trace, L is an LGN spike waveform, S is an s-potential
waveform, S,; is an s-potential waveform shifted in time by At, and Nis
the normal distribution.

Once the template s-potential waveform was recovered, we examined
the entire voltage record to determine all s-potential spike times. A mov-
ing window was applied to the entire voltage trace and, at each time
point, compared with the template s-potential waveform. We computed
a likelihood value of each window being generated by a multivariate
Gaussian distribution with mean equal to the estimated s-potential wave-
form and constant, temporally uncorrelated variance. A threshold was
applied to the likelihood to identify s-potentials. Thresholds were chosen
individually for each recording to match differences in noise conditions.
The threshold was initially set to be 2 SDs above the mean of the likeli-
hood values at all the times. These values were then tuned to enforce a
conservative estimate of s-potential counts. A strict 1 ms refractory pe-
riod was enforced after each threshold was crossed, which counted as an
identified s-potential event. Before a known LGN spike occurred, the
threshold was lowered to represent a prior on the s-potential probability,
but the final output did not assume an s-potential occurred before all
LGN spikes.

Results

Where does contrast gain control first emerge along the visual
pathway to form invariant spatial tuning? Contrast saturation in
response to drifting gratings is exhibited in RGCs, LGN relay cells
and V1 simple and complex cells (Dean, 1981; Tolhurst et al.,
1981; Albrecht and Hamilton, 1982; Shapley and Enroth-Cugell,
1984; Cheng et al., 1995). It is unclear, however, whether the
contrast saturation at subcortical stages also exhibits spatial in-
variance: that is, saturation occurring at a single stimulus con-
trast, independent from the spatial position of the visual
stimulus. To determine at which visual processing station this
spatial invariance first emerges, we measured contrast saturation
of neurons in the LGN and RGCs with contrast-reversing grat-
ings while systematically changing the spatial phase of the grating.

We initially characterized contrast saturation properties of
individual V1 simple cells and LGN neurons using single-unit
extracellular recordings (Fig. 1 A,B). In each recording we pre-
sented contrast-reversing gratings of preferred spatial phase, spa-
tial frequency, and temporal frequency while stimulus strength
was varied by changing contrast. In V1, orientation of drifting
gratings stimuli was also optimized. Both V1 neurons and LGN
relay cells exhibited response saturation with increasing contrast
for the modulation component (F1) of their responses (Fig.
1C,D). To quantify the degree of response saturation at high
contrasts, responses were fit with the Naka-Rushton/Michaelis-
Menten equation (Naka and Rushton, 1966; Baylor and Hodg-
kin, 1973):

m

c

R e ¥ s @)
where « is a gain factor, ¢50 is the semisaturation constant and m
is the output nonlinearity exponent. Neurons in both V1 and
LGN showed typical contrast response functions as stimulus
strength increased, with semisaturation contrast values (C50) for
V1 neurons lower than that of LGN relay cells (C50y,, = 14.5 =
12.6 SD and C50,y = 19.4 = 4.9 SD) (Fig. 1C,D) (Sclar et al.,
1990; Finn et al., 2007).

In some LGN recordings, a small waveform often preceded
relay cell action potentials. These s-potential waveforms are a
consequence of RGC action potentials that provide input to the
recorded LGN relay cell (Fig. 1 B), and thus represent the RGC
input to the LGN. To extract accurately the s-potentials, we first
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identified the s-potential waveforms pre- A
ceding relay cell action potentials and

then used this waveform model to iden-

tify s-potentials throughout the complete

raw extracellular trace for that recorded

cell (see Materials and Methods). From
extracted s-potentials, we fit a contrast re-
sponse function using Equation 1 (Fig.

1 D), which also exhibited saturation with e
increasing contrast for F1 responses
across cells (C504p = 19.7 = 4.4 SD).

Although our records indicate that
contrast saturation is exhibited along
the visual pathway from retina to LGN
to V1, these records do not distinguish
between mechanisms that may underlie
saturation. It may be the case that re-
sponse saturation at high contrast is due
to an inability of the neuron to elicit a
larger number of action potentials be-
cause of intrinsic mechanisms (“re-
sponse saturation” model). In this
model, the neuron’s input is linearly re-
lated to stimulus contrast, and the con-
trast saturation is due to an output
nonlinearity. Importantly, if response
saturation were due to such an intrinsic
mechanism then presenting a stimulus
with different spatial configurations—
thereby eliciting weaker responses—should have different sat-
uration profiles (Fig. 1E). An alternative explanation for
response saturation is that the neuron’s input itself passed
through a saturating nonlinearity, which does not depend on
the stimulus configuration (“gain control” model). An impor-
tant prediction from this model is that the spatial configura-
tion of the stimulus should not affect the contrast at which
response saturation occurs (Fig. 1 F). Previous work in V1 has
demonstrated that spiking response saturation occurs at the
same contrast for different spatial stimuli, supporting a gain
control model for cortical responses (Albrecht and Geisler,
1991; Heeger, 1992; Carandini et al., 1997).

To determine whether the response saturation or gain control
model applies to contrast saturation at each stage of visual pro-
cessing, we measured contrast response functions for V1 simple
cells (n = 11) while varying the spatial phase of stationary sinu-
soidal contrast-reversing gratings. At high contrasts, some spatial
phases elicited strong responses (Fig. 2A, 135 degrees), while
others elicited weak responses (Fig. 2 A, 225 degrees). The spiking
selectivity of cortical neurons did not change with contrast, but
instead low-contrast responses are scaled versions of high-contrast
responses, indicative of contrast-invariant spatial tuning. For further
examination of this scaling, contrast response functions were plotted
for each stimulus spatial phase (Fig. 2 B), and the C50 at each spatial
phase was extracted from Naka-Rushton/Michaelis-Menton fits.
While semisaturation constants varied little (mean C50 = 12.7 * 5.4
SD), the contrast governing saturation did not systematically depend
on whether the stimulus evoked strong or weak responses (r* =
0.054). The contrast-invariant spatial tuning in our V1 recordings
are thus consistent with a contrast gain control model, instead of the
response saturation model which predicts that saturation would de-
pend on absolute response, not contrast.

Contrast-reversing gratings produced responses in LGN relay
cells (n = 36) resembling those in V1 simple cells. Stimulus spatial

Figure 1.
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Contrast response curves along the visual pathway. 4, Example extracellular traces from a simple cell in V1. B, Example
extracellular traces from an LGN relay cell (marked RC) and the s-potential (marked SP) that preceded the LGN relay cell action potential. (C,
D) Contrast response functions are plotted based on the F1amplitude from the cortical simple cell (€) and the s-potential and LGN relay cells
(D). Dashed lines indicate fits using Equation 1. Two different models could account for response saturation: (E) In the response nonlinearity
model, saturation occurs at the same response amplitude whether the stimulus is optimal or not. Instead the (50 systematically changes
with different spatial stimuli; F, In the gain control model, saturation occurs at the same contrast for different stimuli. Instead the maximum
response depends on whether the stimulus is optimal.

phase substantially varied overall response amplitude (Fig. 2C), but
individual contrast saturation curves across stimulus spatial
phases were similar (Fig. 2D) (mean C50 = 23.0 = 3.3 SD). A
similar pattern also emerged in isolated s-potentials from inner-
vating retinal action potentials in LGN relay cell recordings (n =
12). RGC responses varied in amplitude relative to spatial phase
and invariantly scaled with contrast (Fig. 2E, F). Analogous to V1
and LGN cell responses, RGC semisaturation constants from
Naka-Rushton/Michaelis-Menten fits varied little with stimulus
spatial phase (mean C50 = 21.6 = 2.5 SD) and contrasts govern-
ing saturation were uncorrelated with response strength (r*> =
0.085). This pattern of responses suggests that a stimulus-
invariant contrast gain control mechanism operates across mul-
tiple visual processing stages including V1, the LGN, and the
retinal output.

To compare directly the gain control model and response
nonlinearity model in describing spiking responses to contrast-
reversing gratings, we performed a least-squares fit using each
model (Fig. 3). We defined the gain control model using the
following equation (Albrecht and Geisler, 1991):

Cm n
R = Rmax{h : mmJ (3)
"+ o

+

In the gain control model a linear input (/) is scaled by a gain
control factor and passed through a threshold nonlinearity
(Fig. 4B). The gain control factor is dependent on stimulus
contrast, a semisaturation constant, and an exponent. In
agreement with previous cortical studies (Albrecht and Gei-
sler, 1991) we find that this gain control model accurately
predicts our recorded measurements from V1 neurons (r* =
0.91, Fig. 3A). We also fit the data to a response nonlinearity
model using the following equation:
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Figure2. Contrast response curves for different spatial phases. 4, Example V1 neurons spik-
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ing F1 responses to contrast-reversing gratings of different spatial phases and contrasts are
plotted relative to the stimulus spatial phase. Solid lines indicate the fits of the contrast gain
control model. B, The same data from 4, plotted as a function of contrast for each spatial phase.
Solid lines indicate separate fits to each spatial phase using Equation 1, and the (50 for each
spatial phase isindicated. €, D, Same format as 4, B for an LGN relay cell. E, F, Same format as A,
B for a retinal s-potential.

(heom |
k= Rma{(h o + RSOJ

+

(4)

In this model, a linear input (h) is scaled by contrast and then
passed through a final nonlinearity (Fig. 4A). The final nonlin-
earity is composed of an exponent, half-maximum response con-
stant, and threshold rectification. Compared with the gain
control model, the response nonlinearity model fails to repro-
duce key aspects of our recorded cortical neuron responses (Fig.
3B). In particular, this model predicts that saturation depends on
the overall response to the stimulus; however, our recorded re-
sponses saturate at similar contrasts despite differences in re-
sponse amplitude at each spatial phase. Consequently the
response nonlinearity model consistently overestimated cortical
responses (1> = 0.71). In V1, it is clear that a contrast-dependent
gain control model, invariant to stimulus spatial phase, best de-
scribes responses to contrast-reversing gratings (Albrecht and
Geisler, 1991).

We then compared the ability of these two models to capture
response saturation of LGN relay cells and innervating RGC ac-
tion potentials, as described by s-potentials (Fig. 3C—F). For both
LGN relay cells and RGCs, the contrast gain control model pro-
vided better fits than the response nonlinearity model for the
same reason as in cortical neuron records: the rate of saturation is
spatially invariant and response saturation strongly depends on
contrast. A gain control model predicted recorded LGN relay cell
and RGC responses (r* = 0.91 and > = 0.89 respectively), while
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Figure 3. Comparison of the gain control and response nonlinearity models. A, Contrast

response curves were it to functions with gain-control model fits for the example V1 neuron in
Figure 2. B, The contrast responses were fit with the response-nonlinearity model. C, D, Same as
A, Bforan LGN relay cell. E, F, Same as A, B for the s-potential recording.

the response nonlinearity model overestimated responses, espe-
cially for high-contrast stimuli (> = 0.84 and r* = 0.86, respec-
tively). The similarity in r-squared values for these models is
because of the shared correlation between models, since both
models have the same linear input determining phase selectivity.
To quantify accurately the differences we used a correlation anal-
ysis that removes shared correlation and classifies neurons as gain
control, response nonlinearity, or unclassed (Fig. 4C) (Movshon
etal., 1986). Correlations were computed using the pairs of actual
and predicted responses from each model for all stimuli. The
equations for partial correlation were:

(rge = TrN * Toown)
R = 5
N (e L ®
(rey = T6c * Toom)
R = 6
w \/(1 - éc)(l - rlz)oth) ( )

where R and Ry, are the partial correlations, rgc and gy are
the correlations between the gain control and response nonlin-
earity model predictions with measured responses, and 7, is
the correlation between predicted responses from each model.
The z-transform of R;. was then plotted as function of the
z-transform of Ry, for all recordings, showing that a gain control
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model best describes measured F1 re- A
sponses in V1 simple cells, LGN relay cells,

Response-nonlinearity Model
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and RGC:s (Fig. 4C).
In all three stages of the early visual

Input=—Jp ﬁ —

—J Output

pathway, most of our recordings were
classified as gain control (Cortex: 82%,

LGN: 72%, s-potential: 58%), while few B
were classified as response nonlinearity
(Cortex: 0%, LGN: 11%, s-potential: 8%)
(Fig. 4C). Almost all records have a posi-
tive gain control correlation (R, mean =
0.55 £ 0.21 SD, Fig. 4C). Some cells were
unclassed, which may be a result of similar
predictions from the response nonlinear-
ity and gain control models. For example,
if cells do not saturate significantly, the
response nonlinearity and gain control
models make similar predictions. We
found no differences, however, in C50
values between LGN relay cells classified
as gain control and those unclassed
(Welch’s t test, p > 0.2). In addition,
while we had records from both LGN X and Y cells, there were
no differences in classification between these two cell types
(ANOVA, p > 0.4, Fig. 4C).

We did uncover a striking similarity between the classification
of s-potential and LGN relay cell pairs: 83% of the pairs had
matched classifications. The remaining cells had partial correla-
tion values that closely straddled the classification line between
gain control and unclassed. This similarity is perhaps unsurpris-
ing because individual LGN relay cells in the cat are known to be
innervated by only one or very few RGC inputs (Cleland et al.,
1971; Hamos et al., 1987) and s-potential efficacy is reported as
>50% (Cheng et al., 1995; Sincich et al., 2007). Because of the
strength of this synaptic connection, resemblance of LGN spiking
responses to spikes from presynaptic RGC counterparts would be
expected.

Since stimulus size was optimized for each recording in the
LGN, and this may or may not reflect size preference in V1, we
asked whether a gain control model best described LGN relay cell
and RGC F1 responses to larger stimuli. From additional LGN
recordings (n = 19) using large stimuli (4—12 degree diameter)
we found that the majority of the records were still classified as
gain control (LGN: 63%, s-potential: 60%), and that only few
were classified as response nonlinearity (LGN: 22%, s-potential:
0%). A comparison of classification for large and optimal size
stimuli in individual recordings did reveal that a minority of
neurons switched between the unclassed and gain control model,
but the direction of this switch was not consistent.

An alternative formulation of the gain control model suggested
by Albrecht and Geisler (1991) (Eq. 3) is based on a linear-nonlinear
(LN) cascade model. This model separates the components of gain
control (normalization) and rectification nonlinearity. To deter-
mine whether a gain control model based on the LN cascade model
also fit our records relative to the response nonlinearity model, we
substituted the model suggested by Albrecht and Geisler (1991) (Eq.
3) with a LN formulation based on Carandini et al. (1997):

INpUt =P ﬁ

Input—=>p

Gain-control Model

Retina

Z-Transformed
Gain Control Correlation

— / Output 2 °

-2 0 2 4 6 8 10
Z-Transformed
Response Nonlinearity Correlation

Figure4. Modelsdescribing contrast saturationin the visual pathway and correlation analysis. A, Response-nonlinearity model
has a single final nonlinearity that depends on stimulus strength and scales contrast saturation rate (as in Fig. 1£). B, Gain control
model has an independent mechanism invariant of stimulus strength and scales peak response amplitude with stimulus strength
(asinFig. 1F). €, Scatterplot of Fisher z-transformations of partial correlations between the actual responses and those predicted
from the gain control model (ordinate) and from the response nonlinearity model (abscissa). Each point indicates a different
cortical cell (purple), LGN relay cell (red: open Y, closed X, lightly shaded, not X/Y classified) and RGC s-potentials (blue). Following
Movshon et al. (1986) and Smith et al. (2005), solid lines indicate basis for classification.

where F is the linear response, c50 is the semisaturation constant,
and 7 is the response rectification nonlinearity. Using the partial
correlation analysis above resulted in a similar distribution of
neurons classified as gain control (Cortex: 72%, LGN: 56%, s-po-
tential: 58%), and a minority classified as response nonlinearity
(Cortex: 0%, LGN: 14%, s-potential: 25%). The precise formula-
tion of the gain control model, therefore, does not seem to alter
our finding that response saturation occurs early in the visual
pathway in a manner that depends on stimulus contrast, and not
on response saturation. The gain control model captured the
response saturation for majority of neurons, while the response
nonlinearity model was able to capture response saturation for
only a minority of neurons. This demonstrates that aspects of
cortical contrast gain control such as spatial invariance are ob-
served at early precortical stages in the visual pathway.

Discussion

A remarkable feature of cortical neuronal responses is the ability
to preserve selectivity even in the face of large changes in signal
strength. Despite differences in stimulus contrast, V1 neurons are
able to maintain invariant selectivity for stimulus features such as
spatial phase or orientation. Yet the underlying mechanisms and
visual processing stage at which such invariance first emerges
have remained unknown. To identify where spatial phase invari-
ance first emerges, we measured F1 responses of LGN relay cells
and innervating RGCs while measuring contrast-response func-
tions to contrast-reversing stationary gratings for which these
neurons are strongly tuned. We found that invariance to these
grating stimuli is evident in all central visual responses we mea-
sured: tuning for the contrast-reversing gratings scaled with con-
trast, maintaining invariance despite large changes in contrast
across retina, LGN and cortex. Although the observed stimulus
invariance could arise independently and duplicatively from
mechanisms acting separately at each visual processing stage, the
simplest explanation is that the spatial invariance observed in
LGN relay cells and V1 neurons is inherited from their feedfor-
ward ganglion cell inputs, demonstrating that spatial invariance
for contrast-reversing gratings originates in the retina.

Our records are not the first demonstration of spatial in-
variance in LGN relay cells. Using contrast reversing gratings
similar to those used here, Shapely and Victor (1978) showed
that temporal frequency tuning is invariant to spatial phase,
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despite a scaling in overall response amplitude. Temporal fre-
quency tuning does, however, depend on contrast, shifting
systematically to lower frequencies as contrast is reduced
(Shapley and Victor, 1978, Sclar, 1987).

A number of different intrinsic and synaptic mechanisms
could be the source of retinal spatial contrast gain control (Baccus
and Meister, 2002; Gollisch and Meister, 2008, 2010). In RGCs,
intrinsic sodium, potassium and other leak conductances are al-
tered by fluctuations in stimulus luminance or membrane poten-
tial (Kim and Rieke, 2003; Weick and Demb, 2011). Further,
those intrinsic conductances responsible for the nonlinear trans-
formation of membrane potential into action potentials (spike
threshold) are also attenuated by changes in contrast (Zaghloul et
al., 2005). Alongside intrinsic mechanisms, synaptic mechanisms
also may contribute to spatial contrast gain control, as the bipolar
cells that provide input to RGCs adapt to local contrast. This
adaptation of the bipolar cell response gain leads to systematic
changes in the transfer function between stimulus luminance and
the RGC output (Manookin and Demb, 2006; Beaudoin et al.,
2007, 2008). Thus, both synaptic and intrinsic conductances in
the retina potentially play roles in generating the contrast-
invariant spatial phase tuning observed in our records.

Historically, the observation of contrast saturation in V1 neu-
rons led to the development of two different phenomenological
models for its generation. In one model—the response nonlin-
earity model—saturation with stimulus contrast is attributed to a
nonlinear saturation of response after the stimulus has passed
through its selectivity filter (Fig. 4A). While this model accounts
for response saturation to a single, preferred stimulus, it does not
account for the invariance of LGN relay cell saturation. As shown
in our recorded s-potentials, LGN relay cell responses and corti-
cal cell responses, contrast saturation occurs at the same contrast,
independent of whether a stimulus excites a neuron weakly or
strongly. The response saturation model, however, links satura-
tion to response amplitude, contrary to the observed saturation
that is independent of the ability to evoke responses, and thus
provides relatively poor fits to the data. The second model—the
gain control model—is able to account for observed contrast
saturation because it inserts a nonlinearity associated with con-
trast at the input stage, independent of the ability of the stimulus
to pass through a neuron’s selectivity filter (Fig. 4 B). Our obser-
vations that contrast saturation occurs at the same contrast for
stimuli that weakly or strongly excite neurons are thus consistent
with a gain control mechanism that acts very early in the visual
pathway.

Despite our observation that contrast response curves saturate
at the same contrast for all visual stimuli at each visual processing
station, we did observe a significant difference in the response
saturation at each visual processing station. The semisaturation
contrast was systematically shifted to lower contrasts along the
visual pathway. These differences in contrast saturation indicate
that additional contrast-dependent mechanisms may exist such
as short-term synaptic depression or inhibition to enhance the
initial gain control mechanism provided by retinal mechanisms.

We find invariance for contrast-reversing gratings at each
processing stage we examined, but it is important to emphasize
that all stimulus feature invariance observed along the visual
pathway cannot be ascribed to retinal mechanisms. For example,
contrast-invariant orientation tuning emerges in V1 and cannot
be accounted for by the mean firing rate of the feed forward LGN
relay cells, as they are not selective for stimulus orientation
(Hubel and Wiesel, 1961; Skottun et al., 1987; Troyer et al., 1998).
Instead, contrast-invariant orientation tuning emerges within
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V1—the site at which orientation selectivity also first emerges—
and is therefore due to mechanisms within V1 (Hubel and Wi-
esel, 1961; Finn et al., 2007). Because different aspects of response
selectivity emerge as information advances through the visual
system, gain control mechanisms should exist at each processing
station (Sclar et al., 1990; Simoncelli and Heeger, 1998). Our
observation for contrast-reversing gratings thus indicates that the
retina can account for stimulus invariance for changes in spatial
phase, but leave open a role for additional gain control mecha-
nisms acting at later stages along the visual pathway as different
aspects of the visual scene are processed.
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