Table 2.
Type of visual cues | Algorithm | Parameters |
---|---|---|
Color-oriented | Color histogram intersection | Type of color space: RGB, HSV Classifier: KNN Distance: correlation |
Texture-oriented | BVW approach | Classifier: SVM with Gaussian kernel Interest points detectors: SIFT Feature representation: SURF Codebook generation: KNN |
Instrument categorization | Viola-Jones approach | Features: Haar-like rectangular Negative images: 2000 Positive images: 500 |
Detection of other instruments | BVW approach | Classifier: SVM with Gaussian kernel Interest points detectors: SURF Feature representation: SURF Codebook generation: KNN |
Alternative method | Global features classification | Spatial features: RGB, HSV spaces, Haralick descriptors, DCT, spatial moments Wrapper method: RFE-SVM Filter method: MI Classifier: SVM with Gaussian kernel |