Skip to main content
. Author manuscript; available in PMC: 2012 Sep 4.
Published in final edited form as: IEEE Trans Biomed Eng. 2011 Dec 23;59(4):966–976. doi: 10.1109/TBME.2011.2181168

Table 2.

Parameters of the classification algorithms used for extracting visual cues.

Type of visual cues Algorithm Parameters
Color-oriented Color histogram intersection Type of color space: RGB, HSV
Classifier: KNN
Distance: correlation
Texture-oriented BVW approach Classifier: SVM with Gaussian kernel
Interest points detectors: SIFT
Feature representation: SURF
Codebook generation: KNN
Instrument categorization Viola-Jones approach Features: Haar-like rectangular
Negative images: 2000
Positive images: 500
Detection of other instruments BVW approach Classifier: SVM with Gaussian kernel
Interest points detectors: SURF
Feature representation: SURF
Codebook generation: KNN
Alternative method Global features classification Spatial features: RGB, HSV spaces, Haralick descriptors, DCT, spatial moments
Wrapper method: RFE-SVM
Filter method: MI
Classifier: SVM with Gaussian kernel