
Inference of Biological Pathway from Gene Expression
Profiles by Time Delay Boolean Networks
Tung-Hung Chueh1, Henry Horng-Shing Lu2*

1 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan, Republic of China, 2 Institute of Statistics,

National Chiao Tung University, Hsinchu, Taiwan, Republic of China

Abstract

One great challenge of genomic research is to efficiently and accurately identify complex gene regulatory networks. The
development of high-throughput technologies provides numerous experimental data such as DNA sequences, protein
sequence, and RNA expression profiles makes it possible to study interactions and regulations among genes or other
substance in an organism. However, it is crucial to make inference of genetic regulatory networks from gene expression
profiles and protein interaction data for systems biology. This study will develop a new approach to reconstruct time delay
Boolean networks as a tool for exploring biological pathways. In the inference strategy, we will compare all pairs of input
genes in those basic relationships by their corresponding p-scores for every output gene. Then, we will combine those
consistent relationships to reveal the most probable relationship and reconstruct the genetic network. Specifically, we will
prove that O( log n) state transition pairs are sufficient and necessary to reconstruct the time delay Boolean network of n
nodes with high accuracy if the number of input genes to each gene is bounded. We also have implemented this method
on simulated and empirical yeast gene expression data sets. The test results show that this proposed method is extensible
for realistic networks.
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Introduction

In order to understand complex biological networks and

pathways, we need to investigate global structures instead of

individual behaviors since there are interactions and associations

between genes. Due to the invention of high throughput

technology, genome-wide expression profiles can be measured

simultaneously [1]. However, it is still a great challenge to identify

complex biological networks from genome-wide data because the

number of gene interactions is huge [2]. In recent years, there has

been a significant progress in research concerning genetic network

models and network reconstruction problems.

Clustering and dimension reduction are important methods for

grouping genes that have similar expression profiles [3,4]. In the

framework of clustering, it is important to define the degree of

similarity between genes. By the method of clustering, we can

group genes that have similar expressions. However, we still

cannot find the causal relationship between genes. Hence, apart

from the relationship of similarity, we will also have to consider

another causal relationship between genes.

There have been many methods proposed in the literature to

tackle the problem of genetic regulatory network reconstruction.

For instance, the steady state approach have been used to model

gene regulatory networks [5]. In addition, the Bayesian network

model is an important technique that has been studied extensively

in the past two decades [6–11]. A Bayesian network is a directed

acyclic graph (DAG) comprised of two components. The first

component is comprised of nodes that correspond to a set of

variables and a set of directed edges between variables with

Markov properties. The second component describes a conditional

distribution for each variable given its parents in the graph.

Recently, Bayesian network models have been applied to analyze

microarray expression and biological data [12–15]. However,

Bayesian network algorithms have limitations when dealing with

large-scale gene regulatory networks because of their complex

modeling structure [16]. Although algorithms for reconstructing

Bayesian networks have already been developed [17,18], the

algorithms’ computational costs remain a concern for the

searching of all potential network structures on the genome-wide

expression data.

Therefore, we are considering a simpler model: Boolean

networks, which have been studied extensively in a variety of

contexts. Boolean networks [19,20] can effectively explain the

dynamic behaviors of living systems. Moreover, for large-scale

gene regulatory networks, Kim et al. [21] have used Boolean

network with chi-square test on the yeast cell cycle microarray

gene expression data sets. The chaos and attractors of Boolean

network are also discussed widely from the aspect of power

spectrum [22–24]. Recently, Boolean network also have been used

as a discrete model for the lac operon [25].

Boolean networks were originally introduced by Kauffman, and

received attention in the studies of gene regulatory networks

because of their simple structures [26]. In a Boolean network
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model, nodes represent the gene expression states. The status of a

gene is quantized to one of the two states: on or off, representing a

gene as active or inactive respectively. The wiring of rules between

nodes in the graph represents a functional link between genes and

determines the expressions of target genes after giving a series of

input genes. Under the structure of Boolean networks, the target

gene is determined by a set of genes with specific rules. For each

gene, if the indegree (i.e., the number of input genes to each gene)

is bounded by a constant K , only O( log n) pairs of state transition

are necessary and sufficient to reconstruct the original network

with n nodes [27,28]. However, Boolean networks have been

criticized for their deterministic nature. The assumption that every

affected gene would be expressed immediately at the next time

step may be unsound.

Another point of view of constructing genetic network is to focus

on the indication the pairwise relationships between genes. Most of

the works is to find the gene-pairs with similarity relationship [29–

33]. The similarity of a gene-pair represents the two genes with the

same expression or opposite expression. In 2005, Li and Lu

proposed directed acyclic Boolean network and the statistical

reconstruction method of SPAN to infer the pair wise relations of

every element [34]. The proposed method can reconstruct

Boolean networks from noisy array data by assigning an s-p-score

for every pair of genes. In the study, they proposed another

relationship between two genes: relationship of prerequisite under

the Boolean network model. If gene A is a prerequisite for gene B,

then the ‘‘on’’ status of gene A is necessary for the ‘‘on’’ status of

gene B. Boolean implication network, with the similar aspect,

investigated all Boolean implication between pairs of gene for large

scale genome microarray datasets [35]. Following the model,

Wang et al.[36] proposed a two step counting approach for

constructing biological pathways with Boolean network. However,

most of these methods only consider pair wise relationship in order

to decrease the time complexity. Therefore, if the structure of

network is a combination of a set of genes to affect another gene,

the algorithms will lose some information and rules in the genetic

network reconstruction.

In this study, we will consider a much more generalized model

by combining the structure of the above two models. If a Boolean

function with one or several genes is a prerequisite for a target

gene, then the induction of the Boolean function with input genes

is necessary for the expression of the target gene. Hence, the target

will be influenced by the Boolean function with several input

genes. However, the induction of the Boolean function may not

activate the target gene immediately, but at a future time.

Therefore, the target gene may not have been influenced right

now and we will treat these relationships as time delay affection. In

this study, we will infuse these additional relationships for more

generalized systems.

Boolean Network
Boolean networks were introduced by Kauffman (1969) forty

years ago to represent genetic regulatory networks. First, we will

review the definition of a Boolean network. A Boolean network

G(V ,F ) is a directed graph consisting of two components: a set of

nodes V~fv1,v2, . . . ,vng that corresponds to genes, and a list of

Boolean functions F~ff1,f2, . . . ,fng that corresponds to the rule

of interaction and combination of several genes. For every node

vi[V , its expression is simplified to two levels: on and off,

representing a gene as active or inactive. For every Boolean

function fi(vi1 ,vi2 , . . . ,vik )[F , k specified input nodes vi1 ,vi2 , . . . ,vik

are assigned to the node vi in the graph and represent the rules of

regulatory mechanisms between genes. The expression of a gene is

determined by the expression of the gene directly affecting it with a

Boolean function. Therefore, the state of each node vi[V is

determined by the Boolean function fi(vi1 ,vi2 , . . . ,vik ).

For each node vi, the gene expression state at time t is assumed

to take either 0 (not-expressed) or 1 (expressed) and is expressed as

yt(vi). In a Boolean network, every gene expression profile at time

tz1 is completely determined by the expression profile of a set of

genes vi1 ,vi2 , . . . ,vik at time t and the corresponding Boolean

function fi[F . That is, we can write

ytz1(vi)~fi(yt(vi1 ),yt(vi2 ), . . . ,yt(vik )).

Figure 1. Boolean network G(V,F), wiring diagram G9(V9,F9) and its input/output.
doi:10.1371/journal.pone.0042095.g001

Figure 2. One example of time delay Boolean network and its
input/output.
doi:10.1371/journal.pone.0042095.g002

Time Delay Boolean Networks
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For convenience, we converted the Boolean network G(V ,F ) to

the wiring diagram G’(V ’,F ’) (See Figure 1) [37]. For each node

vi[V , suppose vi1 ,vi2 , . . . ,vik are the input nodes assigned to vi.

Then we construct an additional node v’i and connected the edge

from vij to vi’ for each 1ƒjƒk. That is, the set of fv1, . . . ,vng
represents the gene expression profile at time t and the set of

fv’1, . . . ,v’ng corresponds to the gene expression profile at time

tz1. Hence we can treat the set of fv1, . . . ,vng as the input values

and the set of fv’1, . . . ,v’ng as the corresponding output values.

Therefore, the output values of fv’1, . . . ,v’ng are determined by

v’i~fi(vi1 , . . . ,vik ).

The Structure of Time Delay Boolean Network
In the previous subsection, we found that given the values of the

node (V ) at time t, the expressions at time tz1 will be updated

immediately by specific Boolean function (F ). That is, for every

gene vi[V , if the expression profile of a set of genes

fvi1 ,vi2 , . . . ,vikg at time t and the corresponding Boolean function

fi is observed, the gene expression of vi at time tz1 is determined

by ytz1(vi)~fi(yt(vi1 ),yt(vi2 ), . . . ,yt(vik )). However, in real

genetic regulatory situations, the deterministic system has been

criticized due to the existence of misclassification error and noise.

In addition, some of the gene expression may result in time delay

when the gene is influenced by one or several input genes. That is,

the induction of Boolean function may not activate the target gene

immediately, but in the future. Hence, it would have been much

more flexible to use a non-deterministic network system. In this

subsection, we will consider two relationships between the Boolean

function and the target gene instead of the deterministic relation.

First, we will introduce the structure of time delay Boolean

networks. Suppose there are n elements, v1,v2, . . . ,vn in a Boolean

network. For any elements vi with specific Boolean function fi, we

have two kinds of pair wise relationship: prerequisite and similarity.

We say that a Boolean function fi with specific k input genes

vi1 ,vi2 , . . . ,vik at time t is the prerequisite for the target gene vi at

time tz1, if the on-status of Boolean function at time t is necessary

for the on-status of gene vi at time tz1. This relationship is denoted

by fi(yt(vi1 ),yt(vi2 ), . . . ,yt(vik ))[ytz1(vi). In other words, if the

Boolean function fi is not active at time t, gene vi will be inactive at

time tz1. If it does not cause confusion, we will omit the notation of

y and input genes as denoted by fi[vi. Moreover, for every gene vi,

we use �vvi as its dual (from 0 to 1, or from 1 to 0) in this paper.

Therefore, for any Boolean function and target gene with a

prerequisite relationship there are a total of two possible relation-

ships: fi[vi and fi[�vvi. In this model, we do not consider the

situation of a dual of Boolean function prerequisite to the target

gene, that is �ffi[vi and �ffi[�vvi. Since for any Boolean function whose

dual is a prerequisite to the target gene, there must exist another

Boolean function that is a prerequisite to the target gene. For

instance, if �ffi(v1,v2)[v3, where fi(v1,v2)~(v1 and v2), then

f ’
i (v1,v2)[v3, where f ’

i (v1,v2)~(�vv1 or �vv2). Therefore, for the

prerequisite relationship, we only consider the Boolean function

that is a prerequisite to target gene and the dual of target gene.

The other type of relationship between Boolean function and

target gene is similarity. We say that the Boolean function fi and

Table 1. Count and probabilities table for vj , vh and v’i assuming no misclassification error.

v9i/vjvh 00 01 10 11 v9i/vjvh 00 01 10 11

0 m000 m010 m100 m110 0 q000 q010 q100 q110

1 m001 m011 m101 m111 1 q001 q011 q101 q111

doi:10.1371/journal.pone.0042095.t001

Table 2. Count profiles for the basic eight relationships without misclassification error.

(vj or vh)[v9i (vj or vh)[�vv0i

v9i/vjvh 00 01 10 11 v9i/vjvh 00 01 10 11

0 + + + + 0 0 + + +

1 0 + + + 1 + + + +

(vj or �vvh)[v’i (vj or �vvh)[�vv0i

vjvhv’i/ 00 01 10 11 vjvhv’i/ 00 01 10 11

0 + + + + 0 + 0 + +

1 + 0 + + 1 + + + +

(�vvj or vh)[v’i (�vvj or vh)[�vv0i

vjvhv’i/ 00 01 10 11 vjvhmiv’i/ 00 01 10 11

0 + + + + 0 + + 0 +

1 + + 0 + 1 + + + +

(�vvj or �vvh)[v’i (�vvj or �vvh)[�vv0i

vjvhv’i/ 00 01 10 11 vjvhv’i/ 00 01 10 11

0 + + + + 0 + + + 0

1 + + + 0 1 + + + +

doi:10.1371/journal.pone.0042095.t002

Time Delay Boolean Networks
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target gene vi are similar if the status of the Boolean function and

the status of the target gene are in the same expression, and we

denoted this by fi,vi. In the same way, we do not consider the

situation of Boolean function similar to the dual of target gene

such as fi,�vvi in this study. Since if there is one Boolean function

that is similar to the dual of target gene, there must exist another

Boolean function that is similar to the target gene.

In the diagram, if a Boolean function fi is a prerequisite to vi, we

draw a directed arrow from the vertex fi to vi and if fi is similar to

vi, we use an undirected line to connect fi and vi.

In the model of time delay Boolean network we proposed, the

output of the gene expression is not completely determined by the

input state and Boolean function. The output expression may have

more than one possible result in the time delay Boolean network.

We illustrate the above construction by an example in Figure 2. It

has three elements, one similarity and two prerequisite relation-

ships. The possible outputs for every input state are listed in the

right part of the graph. If we knew the network structure, some of

the inputs would have more than one possible output expression in

the time delay Boolean network.

Methods

Identification Algorithm
First, we only consider Boolean networks in which the

maximum number of input genes is bounded by a constant K

for every target gene, because it has been proven that the number

of profiles required grows exponentially if K is not bounded [38].

For simplicity, we only show algorithms for the case of K~2.

However, the algorithm can be intuitively generalized to any K in

a straightforward way. For the inference of genetic network, we

need to clarify the following questions for each target gene.

N Which input genes will affect the target gene?

N What kind of Boolean functions will be used for combining

those input genes?

N What kind of relationship exists between the Boolean function

and the target gene?

In this subsection, we propose an algorithm to clarify the above

questions. The algorithm below is conceptually very simple since it

simply uses output Boolean functions with input genes and

relationships with target genes that are consistent with the data.

First, for each output gene expression at time tz1 such as v’i, we

consider all the pairs of elements in V at time t, for instance vj and

vh. Then we count the eight incidents of (vj ,vh,v’i) being (0,0,0),

(0,0,1), . . ., (1,1,1) from the sample and arrange them in a 2|4
table; see the left part of Table 1. We mark a cell ‘‘+’’ if the count is

positive and mark it ‘‘0’’ otherwise.

For detecting whether there exists a Boolean function which is a

prerequisite to the target gene, we will compare the 2|4 output

table with the left four basic relationships in Table 2. We consider

the basic relationships to be consistent with the output table if the

position of 0 cell in the basic relationships is also 0 in the output

table. By comparing the output table with the four basic

relationships, we can find relationships that are consistent with

the output tables. If there is more than one relationship that is

consistent with the output tables, we would use the Boolean logic

gate ‘‘and’’ to combine the Boolean function and transfer the

result to another Boolean function. Hence, the final Boolean

function is the prerequisite to the target gene. Similarly, by

comparing the 2|4 output table with the right four basic relations

in Table 2, we could get another Boolean function which is the

prerequisite to the dual of target gene.

Moreover, if only one Boolean function occurred in above

relationship, that is, if there is only one Boolean function that is the

prerequisite to the target gene or the dual of target gene, we will

treat that relationship as our final relationship between the

Boolean function and the target gene. However, if both of the two

prerequisite relationships happened (i.e. Afi and f ’i s:t: fi[v’i and

f ’i[�vv’i), we need to check whether these two relationships are in

conflict. If the dual of fi is equivalent to f ’i, our conclusion for

inference will be that fi is similar to the target gene (that is, fi*v’i);

Table 3. Count and probabilities table for vj , vh and vi’ with misclassification error.

v9i/vjvh 00 01 10 11 v9i/vjvh 00 01 10 11

0 n000 n010 n100 n110 0 r000 r010 r100 r110

1 n001 n011 n101 n111 1 r001 r011 r101 r111

doi:10.1371/journal.pone.0042095.t003

Table 4. Splitting counts caused by misclassification error.

v9i/vjvh
00 01 10 11

m000,000 m000,001 m010,000 m010,001 m100,000 m100,001 m110,000 m110,001

0 m000,010 m000,011 m010,010 m010,011 m100,010 m100,011 m110,010 m110,011

m000,100 m000,101 m010,100 m010,101 m100,100 m100,101 m110,100 m110,101

m000,110 m000,111 m010,110 m010,111 m100,110 m100,111 m110,110 m110,111

m001,000 m001,001 m011,000 m011,001 m101,000 m101,001 m111,000 m111,001

1 m001,010 m001,011 m011,010 m011,011 m101,010 m101,011 m111,010 m111,011

m001,100 m001,101 m011,100 m011,101 m101,100 m101,101 m111,100 m111,101

m001,110 m001,111 m011,110 m011,111 m101,110 m101,111 m111,110 m111,111

doi:10.1371/journal.pone.0042095.t004

Time Delay Boolean Networks

PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e42095



otherwise, we will treat it as if there is no relationship between the

input genes and the target gene because we did not gather enough

information to judge true relationships between v’i and (vj ,vh) at

this moment. By the above identification procedure, we can find

the corresponding input genes, Boolean function and their

relationship for every target gene.

Identification Algorithm with Noisy Array
In previous subsection, we discussed an identification method

for data without noise. In this section we will consider the situation

of noisy array data. We assume that every element in the entry of

(Iij , Oij ), j~1,2, . . . ,m switches to its reverse status with a

misclassification probability p independently; that is

I�ij~
Iij with probability 1{p ;

1{Iij with probability p :

�
ð1Þ

O�ij~
Oij with probability 1{p ;

1{Oij with probability p :

�
ð2Þ

Thus, the observed array (I�ij , O�ij ) contains misclassification error.

Our goal is to reconstruct time delay Boolean network from noisy

array of binary data (I�ij ,O
�
ij ).

Similar to section 2, we assume that the maximum number of

input genes is bounded by 2 for every target gene. We treat the

data in the 2|4 table as a multinomial distribution with eight cells

whose probabilities are q000,q001, . . . ,q111 as shown in the right

part of Table 1, where q000zq001z . . . zq111~1. Similarly, we

extract the data with misclassification error for every output gene

and each pair of input genes as the 2|4 table. Now the observed

data n000,n001, . . . ,n111 are not generated from the multinomial

q000,q001, . . . ,q111, but from another multinomial r000,r001, . . . ,r111

as shown in Table 3, where r000zr001z . . . zr111~1.

Because of the misclassification error, a portion of the samples

of m000 may change to the other seven cells. We use the notations

of m000,000,m000,001, . . . ,m000,111 to represent the counts of eight

cells changed from m000. Analogous notations are defined for

m001,m010, . . . ,m111. The splitting is shown in Table 4. Conse-

quently, the generated probabilities (q000,q001, . . . ,q111) are calcu-

lated as follows: qi1i2i3,j1j2j3~pI(i,j)(1{p)3{I(i,j)qi1i2i3 , where

I(i,j)~
P3

k~1 Dik{jkD. Here, we adopt the notation qi1 i2i3,j1j2 j3

analogous to mi1 i2i3,j1j2 j3 . The above parameters and splits are

shown in Table 4. In the table, it is easy to find that the

correspondence between two sets of counts and probabilities is the

following:

nj1j2j3
~

P
i1,i2,i3~0,1

mi1 i2i3,j1j2j3

rj1j2 j3
~

P
i1,i2,i3~0,1

qi1i2i3,j1j2j3

8><
>:

and ð3Þ

mi1 i2i3
~

P
j1,j2,j3~0,1

mi1i2i3,j1j2j3

qi1 i2i3
~

P
j1,j2,j3~0,1

qi1i2i3,j1j2 j3

8><
>:

For the complete data fmi1i2i3,j1 j2j3g, the log-likelihood is given by

L~
X

i1,i2,i3,j1,j2,j3~0,1

mi1i2i3,j1j2 j3
log qi1i2 i3,j1j2j3

ð4Þ

where qi1i2i3,j1j2j3
are those splitting probabilities. Since the

complete data fmi1i2i3,j1 j2j3
g are not observable, we use the EM

algorithm to maximize the log-likelihood. In the E-step, the

splitting counts of complete data fmi1i2i3,j1j2j3
g are evaluated by

the conditional expectations using the current values of the

parameters by the following formula

Ep,q000,q001,...,q111
(mi1i2i3,j1j2j3

Dnj1j2j3
)~

nj1j2 j3
qi1 i2i3,j1j2j3P

i’1 i’2i’3~0,1

qi’1i’2 i’3,j1j2j3

ð5Þ

where i1,i2,i3,j1,j2,j3~0,1. One probabilities of q000,q001, . . . ,q111

are zero in those different hypotheses specified in Table 5. In the

M-step, we maximize the conditional expectation of the log-

likelihood for the complete data to obtain the maximum likelihood

estimates (MLEs) of the parameters. According to the MLEs, we

can compute the p-score for every pair of input genes and target

gene, which are obtained by estimating for the misclassification

probability under every prerequisite relationship.

For the first step, we would like to determine the most probable

relationships between every pair of input genes and one output

gene. Next, we find the most probable Boolean function with pair

input genes for every output gene and select candidate pairs of

input genes and output gene for the watch list. Finally, we

reconstruct a time delay Boolean network by integrating the

relationship of those genes selected.

For one output gene v
0
i and a pair of input genes vj and vk, we

define the p-scores p(vj or vk)[�vv
0
i
, p(vj or �vvk)[�vv

0
i
, p(�vvj or �vvk)[�vv

0
i
,

p(vj or vk)[v
0
i
, p(�vvj or vk)[v

0
i
, p(vj or �vvk)[v

0
i
, p(�vvj or �vvk)[v

0
i

are, respective-

ly, the maximum likelihood estimates of p under the triangular

model: q000~0, q010~0, q100~0, q110~0, q001~0, q011~0,

q101~0, q111~0.

According to the EM algorithm described above, we can

evaluate the p-score for every output gene. We use the MLE p̂p to

measure how well each hypothesis fits: the smaller the score is, the

more likely that the corresponding hypothesis could be true.

If the samples are generated from a time delay Boolean

network, p-score are quite useful for the discovery of true

Table 5. The eight basic relationships and their probabilistic
hypotheses and p-scores.

Relation Hypothesis Scores

(vj or vh)[�vv0i q000 = 0 p(vj or vh)[�vv0
i

(vj or �vvh)[�vv0i q010 = 0 p(vj or �vvh)[�vv0
i

(�vvj or vh)[�vv0i q100 = 0 p(�vvj or vh)[�vv0
i

(�vvj or �vvh)[�vv0i q110 = 0 p(�vvj or �vvh)[�vv0
i

(vj or vh)[v’i q001 = 0 p(vj or vh)[v’i

(vj or �vvh)[v’i q011 = 0 p(vj or �vvh)[v’i

(�vvj or vh)[v’i q101 = 0 p(�vvj or vh)[v’i

(�vvj or �vvh)[v’i q111 = 0 p(�vvj or �vvh)[v’i

doi:10.1371/journal.pone.0042095.t005

ð3Þ

Time Delay Boolean Networks
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relationships. Here we can consider the maximum compatibility

criterion: to choose the maximum threshold value so that the

selected relationships contain no conflicts [34]. We collect those

relationships whose p-scores are smaller than a threshold. Known

biological results are helpful for the determination of a threshold.

For example, if we know the relationship (v1 or v2)[v3 is true,

then the p-scores smaller than p(v1 or v2)[v3
should be in our watch

list. As more relationships are included in the watch list, the more

likely we are to observe incompatible ones. In general, we can

choose the threshold that allows the maximum number of

relationships with no conflicting relationships. Next we will

demonstrate the method by illustration examples.

Results and Discussion

Theoretical Results
First, we will analyze the number of input/output pairs required

for the network reconstruction of time delay Boolean network to

be unique. The theoretical results of classical Boolean networks

only consider the similar relationship [27,38,39]. The following

results prove the theoretical results time delay Boolean networks

that has a more flexible structure and consider both similar and

prerequisite relationship.

Proposition 1. For all subsets of V with 2K genes, if all assignments

(i.e., 22K assignments) of Boolean values appear in input expression patterns

and all of its possible output expression patterns of the target gene are present,

the identification of genetic network is determined to be unique, if it exists.

(Proof) Let z be any gene in V and suppose z is controlled by a

Boolean function g(xi1 , . . . ,xik ) with similarity or prerequisite

relationship (i.e., g*z or g[z). If the Boolean function g is similar

to z, the case is proved for the classical Boolean networks in Akutsu

et al. (1998). Next, we consider the case of Boolean function g as a

prerequisite to z. In this case, there must exist a specific input value

fa1, . . . ,akg for fxi1 , . . . ,xikg such that z have two possible values

0 and 1. Hence, any other genes would not control z because all

assignments of Boolean values are appearance. Let us illustrate the

above statement by the example for the case of K~1 and K~2. If

K~1 and x[z, when the input of x is 1, the outcome of z being

both 0 and 1 will appearance. Therefore, given the input of x~1,

the outcome of z is not deterministic no matter the value of any

other gene y is 1 or 0. Hence, any other gene y would not affect

gene z. If K~2 and g(x1,x2)[z for some Boolean function g,

there must exist an input (a1,a2) such that g(a1,a2)~1. Then, for

any other pair of gene fy1,y2g where fy1,y2g\fx1,x2g~w, the

outcome of z is not deterministic for any input of fy1,y2g, if the

input of fx1,x2g is fa1,a2g. In a case of fy1,y2g\fx1,x2g=w, we

can prove that gene yi which does not belong to fx1,x2g would

not affect the gene z in a similar way.

Proposition 2. The probability that one sub-assignment with all of its

possible results in the target gene does not appear among m random input

expression pattern is at most 2(1{
1

22Kz1
)m.

(Proof) For any fixed set of nodes fvi1 ,vi2 , . . . ,vi2K
g, the

probability that a sub-assignment vi1~vi2~ . . . ~vi2K
~1 does

not appear in one random input expression pattern is 1{
1

22K
.

Thus, among the m random input expressions, the probability that

vi1~vi2~ . . . ~vi2K
~1 appears is t times is equal to

m!

t!(m{t)!
(

1

22K
)t(1{

1

22K
)m{t, where tƒm. In addition, the

probability that all of the possible results in the target gene does

not appear among t times input is smaller than (
1

2
)t{1 for

1ƒtƒm and equal to 1 for t~0. Hence the probability that one

sub-assignment and all of its possible results does not appear

among m random input expression is smaller than

(1{
1

22K
)mz

Xm

t~1

m!

t!(m{t)!
(

1

22K
)t(1{

1

22K
)m{t(

1

2
)t{1, and

this can be bounded by 2(1{
1

22Kz1
)m by an algebra calculation.

Table 6. By the time delay Boolean network in Figure 1, we generate 100 samples with p = 0.05.

Samples Hypotheses Relation

Input Output q000 = 0 q010 = 0 q100 = 0 q110 = 0 q001 = 0 q011 = 0 q101 = 0 q111 = 0

v1,v2 v1
9 0.493 0.418 0.273 0.379 0.148 0.178 0.372 0.343

v1,v3 v1
9 0.438 0.147 0.248 0.222 0.016 0.245 0.182 0.241 (v1 or v3)[v91

v2,v3 v1
9 0.318 0.260 0.571 0.214 0.189 0.293 0.138 0.374

v1,v2 v2
9 0.326 0.300 0.304 0.297 0.091 0.092 0.232 0.209

v1,v3 v2
9 0.338 0.216 0.349 0.197 0.039 0.069 0.038 0.243 (v1 and v3)[v92

v2,v3 v2
9 0.326 0.253 0.390 0.174 0.052 0.141 0.017 0.169

v1,v2 v3
9 0.211 0.011 0.355 0.029 0.040 0.228 0.011 0.294

v1,v3 v3
9 0.338 0.290 0.402 0.734 0.669 0.291 0.379 0.360 v2,v93

v2,v3 v3
9 0.247 0.312 0.030 0.011 0.039 0.011 0.283 0.241

doi:10.1371/journal.pone.0042095.t006

Figure 3. Network reconstruct from the expression data of
yeast Saccharomyces cerevisiae.
doi:10.1371/journal.pone.0042095.g003
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Next we prove the main theorem.

Theorem 1. For the identification of one time delay Boolean network of

n nodes with maximum indegree ƒK , O(22Kz1:(2Kza): log n)
uniformly and randomly sampled input patterns are sufficient for exact

inference with probability at least 1{
1

na
.

(Proof) We consider the probability that the condition of

Proposition 1 is not satisfied under m random input expression

patterns.

By Proposition 2, the probability that vi1 ~vi2~ . . . ~vi2K
~1

with all of its possible results in the target gene does not appear

among the m random input expression patterns is bounded by

2(1{
1

22Kz1
)m for any fixed set of nodes fvi1 ,vi2 , . . . ,vi2K

g. Since

the number of combinations of 2K nodes from a set of n

possibilities is bounded by 22K :n2K , the probability that the

condition of Proposition 1 is not satisfied is at most

22K :n2K :2(1{
1

22Kz1
)m. It is not difficult to see that

22K :n2K :2(1{
1

22Kz1
)m

vp holds for mw ln 2:22Kz1:(2Kz1z

2K log nz log
1

p
). Hence, we obtain the theorem by letting the

non-identification probability p~
1

na
.

Next we develop an information theoretic lower bound on the

number of input/output pairs needed for the identification of a

time delay Boolean network.

Theorem 2. If the maximum indegree ƒK , at least

V(2KzK log n) input/output pairs are required for the identification of a

time delay Boolean network in the worst case.

(Proof) The number of time delay Boolean networks is given by

all the possible combination of Boolean function with k nodes

from a set of n possibilities with all possible relations between

Boolean functions with target node. Since there are V(nK ) possible

combinations of input nodes, 22K

possible Boolean functions and 3

possible relations between Boolean function with each node, there

are V((22K :nK :3)n) Boolean networks whose maximum indegree is

at most K . On the other hand, there are at most 2n possible output

patterns with one input expression pattern. Therefore,

V(log2n ((22K :nK :3)n)) which is the same as V(2KzK log n)
input/output pairs are required in the worst case.

Example with Simulation and Real Data
We will illustrate our method by the example described in

Figure 2. For the pair of samples consist of three elements list in

the right part of Figure 2, we uniformly generated 100 input

samples and their corresponding possible output samples with

misclassification probability p~0:05. For the prerequisite rela-

tionship, if the status of Boolean function with input genes is on,

then we allow the output value to have equal probability of on or

off. The data can be arranged as input/output sample similar to

that obtained from the microarray data with time. Namely, the

input of each sample can represent the gene expression at time t
and the output can represent the gene expression at time tz1. For

each pair of input and output genes, we compute the 8 basic p-

scores that represent the 8 basic hypotheses in Table 5 for all of

pair input genes and output genes. After the calculation, the

simulation results of every p-score are listed in Table 6.

Beside the example with 3 elements, in order to shows the

superiority of the proposed method can be applied to a larger

network, a more comprehensive example with a larger network is

given in Figure S1.

Next, we have to decide the threshold for choosing the relations.

When we increase the threshold of the p-score, the relations whose

p-score are smaller than the threshold will be chosen. Moreover,

when the number is 0.138, the conflict occurs, since we have

(v1 or v3)[v’1 and (�vv2 or v3)[v’1. However, in our model, there

are at most two genes that would affect an output gene. Therefore,

we can choose 0.138 as our threshold and include relations whose

p-score is smaller than the threshold. By these procedures, we can

reconstruct the time delay Boolean network identical to Figure 2.

In the area of gene regulatory network study, Schuller has

summarized regulatory cis-acting elements of structural genes of

the nonfermentative metabolism and described the molecular

interactions among general regulators and pathway-specific factors

[40]. In the gene regulation of gluconeogenesis by Sip4 and Cat8

pathway, the carbon source control could be identified for the

regulator Cat8; see (Figure 6) in Schuller [40]. In this study, we

apply our proposed approach to explore the expression profiles

and show some exploratory result on the Cat8 pathway.

In order to demonstrate the effectiveness of reconstruction, we

use the microarray expression dataset of yeast Saccharomyces

cerevisiae produced by DeRisi et al. [1] and Spellman et al. [41].

In total, the data is comprised of 41 experiments after filtering out

experiments with missing values. By these experimental micro-

array data sets, we can use our proposed method to reconstruct the

biological pathway and the genetic regulation network result is

shown in Figure 3. The result is consistent with the genetic

network in the literature. That is, the restraint of Mig1 or

activation of Snf1 is a prerequisite for the decreasing of Cat8.

Moreover, the restraint of Snf1 or Cat8 is a prerequisite for the

decreasing of Mls1. However, the negative similarity between Snf1

and Mig1 is undetectable in our current model.

Conclusions
In this paper, we have introduced the model of time delay

Boolean network that generalizes the Boolean network model in

order to cope with dependencies that have two kinds of

relationships: similarity and prerequisite. The approach for

reconstruction of genetic network inference from gene expression

data relies on the assumption that the expression of a gene is likely

to be controlled by a relatively small number (say k) of genes. Also,

some bounds on the size of data required for the identification of

the time delay Boolean networks under constant of indegree are

stated and discussed. Moreover, the algorithm of the network

reconstruction from noisy array data is developed.

One characteristic of a Boolean network is that all the variables

in the graph are binary. If the data we observed is continuous or

quantized to have more than two levels, we need to discretize

them. For microarray data, the ratios of expression level would be

one possible approach of discretization. That is, we can treat the

gene as on (active) if the log-ratio of its expression is larger than

zero. We treat it as off (inactive) otherwise. In general, biological

background knowledge will be helpful for setting thresholds for

discretizaion. On the other hand, if the samples are obtained from

a time course, then we can consider the gene as on or off by

detecting whether the gene is either increasing or decreasing with

time.

The work in progress is aimed at evaluating the effectiveness of

the described approach for inferring genetic networks from

biological gene expression time series data. Besides that, imple-

mentation on some other real biological data is also an important

task.

For the implement of the network reconstruction algorithm, the

greatest complexity is the computation of p-score for each of the
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n!

k!(n{k)!
input elements and n output elements, where n is the

number of elements and k is the number of indegree. It is an

iterative algorithm to compute the MLE for the p-scores by EM

procedure while the common practice is to set an upper bound for

iterations in numerical implementation. Consequently, this keeps

the O(nkz1) complexity for the computation of MLE. In addition,

the sorting algorithm for the
n!

k!(n{k)!
n data cost O(nkz1 log n) in

terms of time. Hence, the overall time complexity for the network

reconstruction is O(nkz1 log n) for this algorithm.

Supporting Information

Figure S1 An example of genetic network with 8 nodes.
(PDF)
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