
Epistasis network centrality analysis yields pathway
replication across two GWAS cohorts for bipolar
disorder
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Most pathway and gene-set enrichment methods prioritize genes by their main effect and do not account for variation due to
interactions in the pathway. A portion of the presumed missing heritability in genome-wide association studies (GWAS) may be
accounted for through gene–gene interactions and additive genetic variability. In this study, we prioritize genes for pathway
enrichment in GWAS of bipolar disorder (BD) by aggregating gene–gene interaction information with main effect associations
through a machine learning (evaporative cooling) feature selection and epistasis network centrality analysis. We validate this
approach in a two-stage (discovery/replication) pathway analysis of GWAS of BD. The discovery cohort comes from the
Wellcome Trust Case Control Consortium (WTCCC) GWAS of BD, and the replication cohort comes from the National Institute of
Mental Health (NIMH) GWAS of BD in European Ancestry individuals. Epistasis network centrality yields replicated enrichment of
Cadherin signaling pathway, whose genes have been hypothesized to have an important role in BD pathophysiology but have not
demonstrated enrichment in previous analysis. Other enriched pathways include Wnt signaling, circadian rhythm pathway, axon
guidance and neuroactive ligand-receptor interaction. In addition to pathway enrichment, the collective network approach
elevates the importance of ANK3, DGKH and ODZ4 for BD susceptibility in the WTCCC GWAS, despite their weak single-locus
effect in the data. These results provide evidence that numerous small interactions among common alleles may contribute to the
diathesis for BD and demonstrate the importance of including information from the network of gene–gene interactions as well as
main effects when prioritizing genes for pathway analysis.
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Introduction

Genome-wide association studies (GWAS) of psychiatric
disorders (schizophrenia, bipolar disorder (BD), major depres-
sive disorder and others) have suggested a highly polygenic
architecture1 with a high degree of heterogeneity. Given the
relative lack of replicated common risk variants2–4 with a large
effect size, interest has turned to other potential explanations
(including rare variants and epistasis5–9) for the presumed
missing heritability.10,11 Recent analyses have suggested that
a substantial proportion of additive genetic variability is in fact
well tagged by common variants when considered in aggregate,
for example, explaining B37–40% of the genetic variability
for BD.12,13 These analyses have also suggested that the
remaining missing heritability may be a function of imperfect
linkage disequilibrium with rare causal risk variants. Although
a large degree of additive genetic variance is supported both
theoretically and empirically, it is important to note that a large
additive contribution to genetic variance does not preclude the
contribution of models involving epistasis between single-
nucleotide polymorphisms (SNPs).14,15 The variation encoded

in the nodes and edges may be used to estimate the amount of
additional variation accounted for by the epistasis network.
However, the goal of the current study is to demonstrate the
senstivity of epistasis networks to discover new susceptibility
genes in GWAS.

The recognition that numerous variants act together to
increase disease susceptibility has also led to the develop-

ment of gene-set or pathway enrichment approaches, which

aggregate association evidence at the level of a single gene

or biological pathway.16–18 As applied to SNP data, these

approaches typically rely on association evidence calculated

marginally for each SNP, thus ignoring potential effects due to

interactions.19,20 Here, we consider a network approach that

prioritizes genes and pathways based on the aggregation of

effects due to gene–gene interactions as well as marginal

(main) effects. This approach consists of four main steps,

summarized in Figure 1: (1) filtering to remove noise SNPs

from consideration, (2) representing association evidence in

terms of an epistasis network, (3) prioritizing SNPs/genes

in the network using an eigenvector centrality algorithm and
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(4) pathway enrichment based on epistasis network centrality
prioritization. We first remove noise SNPs with an optimized
version of the evaporative cooling machine learning (ECML)
filter. We have shown that the ECML filter, which is based on
the combination of Relief-F and Random Forests, has the
power to detect both epistatic and main effects, whereas
Random Forest alone has very weak power to detect epistatic
effects in high dimensional data.21

We have previously used information theory to construct
epistasis networks (which we label as a genetic association
interaction network, itGAIN); however, in the present study,
we rely upon regression models, primarily to be able to assign
statistical significance to nodes and edges inferred in the
network (which we label as a regression-based genetic
association interaction network (reGAIN) to differentiate it
from an information theory-based approach). Other groups
have recently investigated the graph properties of epistasis
networks, illustrating, for example, that hub (highly connected)
SNPs do not necessarily correspond to SNPs with large main
effects.22 For the final step in our approach, we prioritize edges
and nodes in the epistasis network using an eigenvector

centrality algorithm we have developed called SNPrank.21,23

SNPrank can be understood by the analogy of a random SNP
surfer circulating through the network, accumulating bits
of interaction and main effect information from each SNP
regarding association with the phenotype. In a previous appli-
cation of this approach to a genetic association study of
the immune response to smallpox vaccine, we identified an
intronic SNP in the retinoid X receptor a (RXRA) gene, which
is known to be a mediator of vitamin D signaling and has recently
been shown to be involved in innate immune response.23

Here, we apply the combined approach of ECMLþ
reGAINþSNPrank to two previous GWAS of BD: the Well-
come Trust Case Control Consortium (WTCCC)24 and a more
recent National Institute of Mental Health (NIMH) GWAS.25

The original WTCCC study of BD, consisting of 1868 cases
and 2938 controls, did not find any single SNP associations
surpassing commonly accepted thresholds for genome-wide
significance (Po5� 10� 8). However, a recent collaborative
analysis of BD, which combined the WTCCC data with other
studies for an overall sample of 4387 cases and 6209 controls,
found a strong association for the imputed SNP rs10994336

Figure 1 Epistasis network analysis flowchart. Overview of the data analysis workflow used to identify variants due to epistasis network centrality and test for replication of
pathways. The analysis steps in the dotted frame are carried out for the three GWAS at the top (WTCCC, NIMH and, as a secondary analysis, the two GWAS combined). On
the bottom left, the enriched pathways are compared between the WTCCC and NIMH GWAS, and replication is defined when a pathway has an FDR-adjusted P-value less
than 0.05 for both. On the bottom right, tables are created for the top genes based on their epistasis network centrality for each of the data combinations.
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(ANK3) on chromosome 10q21 (P¼ 9.1� 10� 9).26 In the
recent NIMH GWAS of European ancestry (EA) and African
ancestry (AA) individuals, no SNP reached genome-wide
significance. However, in the EA samples (1001 cases and
1033 controls), which we analyze in the current study, a
sliding-window analysis yielded a high proportion of haplo-
types with Po0.05 in the ANK3 region. In the current work, we
observe a highly connected SNP in ANK3 that is ranked third
by SNPrank in our epistasis network analysis of the original
WTCCC GWAS, and the network rank of this variant is second
when the WTCCC and NIMH-EA GWAS are merged. The
network analysis of the merged data yields a top-10 ranking
to a SNP in diacylglycerol kinase eta (DGKH), which was
implicated for BD in a previous study,27 and top 15 for ODZ4,
which has been identified in Sklar et al.28 The top genes based
on epistasis network analysis for the merged GWAS are given
in Table 3.

The epistasis network prioritization also results in enrich-
ment of plausible biological pathways for BD that replicate
between the WTCCC24 and the NIMH BD GWAS.25 Using the
epistasis network centrality for gene prioritization based on
the Reactome FI database,29 we find replication of enrichment
of the cadherin signaling pathway and evidence consistent
with replication in the Wnt signaling pathway. Genes in the
Cadherin pathway have been implicated in BD pathophysiol-
ogy.30 In addition, it has been suggested that BD is affected by
genes in the Wnt Signaling pathway as well as the circadian
rhythm pathway,31 which are both enriched in the WTCCC
GWAS by this approach. Other enriched pathways include
axon guidance and neuroactive ligand-receptor interaction.
The identification of replicated pathways suggests that network
aggregation of gene–gene interactions and main effects can
provide statistical power to expose hidden variation asso-
ciated with complex diseases. These results also indicate the
importance of taking into account the information concerning
epistasis as well as main effects when prioritizing genes for
pathway analysis.

Materials and methods

Study samples and initial filtering. For the primary/
discovery epistasis network analysis, we used the WTCCC-BD
GWAS, which included bipolar I, bipolar II and schizoaffec-
tive bipolar in the case diagnosis.24 Samples (including 1868
cases and 2938 controls after exclusions) were genotyped
on the Affymetrix 500K array (Santa Clara, CA, USA). For
replication, we used the NIMH-BD GWAS genotyped on the
Affymetrix 6.0 platform.25 The NIMH BD study involved a
sample of individuals of EA (n¼ 1001 cases; n¼ 1033
controls), and one involving a sample of individuals of AA
(n¼ 345 cases; n¼ 670 controls). We focus on the EA
individuals from the NIMH study because the effect of
admixture on these machine learning and network techni-
ques has not been fully investigated. The case diagnosis
included bipolar I and schizoaffective bipolar. For both
studies, we removed SNPs with call rates o95%, minor
allele frequency o1%, or with evidence of deviation from
Hardy–Weinberg equilibrium (Po0.001). As a secondary
analysis, we merged the top SNPs from the WTCCC

and NIMH-EA cohorts. In the merged data, we only include
overlapping SNPs between the Affy 6.0 and 500K chips
rather than impute missing SNPs. Imputation may allow for
the discovery of additional genes and pathways.

We now detail the methods used in the steps of the analysis
pipeline, which is summarized in Figure 1. To limit the number
of noise (irrelevant) SNPs used in the network analysis, we
filtered SNPs based on ECML, which has power to detect
main and interaction effects.21 We used the 1000 SNPs with
the top ECML score to construct a reGAIN, as described
below. Any filter increases the risk of excluding pure
interaction effects that exhibit negligible marginal effects as
well as excluding some weak main effects. However, filtering
reduces the number of pairwise interactions that must be
calculated, eliminates many irrelevant variants and improves
interpretability of the network. The filter used herein retains
many more potential interaction effects and is approximately
two order of magnitude more SNPs than the threshold used
by WTCCC to define moderate associations in their
Supplementary data (Po0.0001).

Regression-based epistasis network construction
(reGAIN). From the 1000 SNPs remaining after the ECML
filter, we construct a GAIN/epistasis network composed of
main effects and gene–gene interactions between all pairs.
Our previous data-driven GAIN network approach for GWAS
used Shannon information theory for epistasis calculations
and network construction.21,23 However, casting the network
in the statistical framework of a general linear model has
some advantages over information theory. For example, use
of a general linear model framework provides the flexibility to
handle environmental covariates, longitudinal data, missing data,
censoring and cluster structure (for example, family studies)
through the inclusion of appropriate random effects. For the BD
GWAS, we use a likelihood ratio test of association between
disease and a genetic locus, allowing for the possibility that
the genetic effect may be modified by another genetic factor.

log Pr D ¼ 1 jG1;G2ð Þ
Pr D ¼ 0 jG1;G2ð Þ ¼ bb þ b1G1þ b2G2þ b12G1G2

The coefficient bb gives the baseline risk of disease and
coefficients b1 and b2 correct for main effects in the interaction
regression model. For defining gene–gene edge weights b12

in the reGAIN, we are interested in the b12 regression
coefficients that are statistically different from zero. The
statistical framework also allows false discovery rate proce-
dures to be applied to correct for multiple gene–gene
hypotheses. The diagonal element bii of the reGAIN is simply
the main effect regression coefficient without interactions.
These interaction and main effect regression coefficients for
all SNPs in the filter become matrix elements in the SNPrank
Markov transition matrix, discussed next.

Eigenvector network centrality (SNPrank) for gene
prioritization in pathway enrichment. We use the
SNPrank23 network centrality/importance score to prioritize
the 1000 SNP nodes in the reGAIN for pathway enrichment.
This score accounts for main effects and gene–gene
interactions encoded in the reGAIN matrix. Briefly, SNPrank
constructs a stochastic transition matrix from the reGAIN
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matrix B (see above). The matrix accounts for single-locus
effects through the main effects along the diagonal bii and
accounts for pair-wise interactions through the interaction
coefficients bij on the off-diagonal elements. Higher-order
interactions (linear combinations of multiple pair-wise inter-
actions and main effects) are incorporated through a
recursive power method to calculate the dominant eigen-
vector of the transition matrix. The elements of the dominant
eigenvector are the SNPrank scores of each genetic node in
the reGAIN. The eigenvector is normalized so the elements
sum to one, like a probability field. Thus, we use a QQ plot
to estimate the number of genes to include in pathway
enrichment below; we use the top n¼ 200 genes for both
GWAS (WTCCC and NIMH).

Pathway enrichment analysis. To identify enriched path-
ways from the n¼ 200 top genes, we used the Reactome FI
database29 of expert-curated human biological pathways.
Reactome pathways are described as a series of molecular
events that transform one or more input entities into one or
more output entities catalyzed or regulated by other entities.
Entities include small molecules, proteins, complexes, post-
translationally modified proteins and nucleic acid sequences.
SNPs are assigned to genes based on proximity to the 50 and
30 ends of the first and last exons. For SNPs whose proximity
is greater than 20 kb, we look for linkage disequilibrium
information that may inform gene assignment.32 If a SNP is
not easily assigned, we do not use it in pathway analysis. We
use this conservative approach to limit false positive assign-
ments and false positive enriched pathways. Genes are not
repeated in the enrichment if more than one SNP from a
gene is found in the top list. We calculated the P-value for the
significance of the overrepresentation of a biological pathway
pi with the hypergeometric distribution

Pðpi Þ¼ 1�
C

mðiÞ
MðiÞC

n�mðiÞ
N �MðiÞ

Cn
N

;

where N is the number of background genes (genes anno-
tated to any pathway), n is the number of top genes
prioritized by SNPrank, M(i) is the total number of genes in
pathway pi, whereas m(i) is the number of top SNPrank
genes that intersect the set of pathway genes pi.

Two corrective measures were taken to reduce false
positive pathway enrichments. The first is correction due to
multiple hypothesis testing. All pathways tested for enrich-
ment were sorted in ascending order and the corrected
P-value was given by

�pðpi Þ¼P
pðpi Þ
Rðpi Þ

;

where P is the total number of pathways and R(x) is the rank
order of pathway x. Second, we generated pathway-specific
and GWAS-specific enrichment distributions to correct for
gene-size bias. Gene length can bias pathway enrichment,33

which can be particularly significant for large brain-function
genes.8 We select n¼ 200 SNPs randomly from the GWAS,
map SNPs to genes and calculate mrand(i) (the number of the
randomly selected genes that intersect the set of genes in
pathway pi). We repeat this sampling 1000 times to create a
null distribution of mrand for each pathway. If a pathway has a

gene-size bias, this should be reflected in the random
distribution of mrand. We use the mean and standard deviation
of mrand(i), to calculate a z-score and P-value for each
observed m(i) (from the epistasis network centrality ranking of
the GWAS). The gene-size corrected P-value for Wnt
signaling is P¼ 0.000337 for the WTCCC data and P¼ 0.06
for the NIMH data; and for cadherin signaling P¼ 0.032 for
both WTCCC and NIMH. Cadherin signaling meets our
replication criteria when corrected for multiple tests and gene
length. Although Wnt signaling does not technically replicate
when corrected for gene length, the consistency of high
significance in WTCCC and near significance in NIMH make
this pathway very suggestive for involvement in BD.

Network pruning with edge significance for visualization
of network. For SNPrank gene ranking, we used the full
network of ECML-filtered SNPs because we suspect multiple
small interactions with potentially weaker significance will
contribute to the overall expression of the phenotype. False
connections have the potential to bias the network, but we
expect the false edges to be randomly distributed. We did not
observe a gene length bias that might artificially inflate the
network importance of longer genes. For improved inter-
pretation of the network, we pruned the network based on
edge strength. We used an edge strength threshold of
bij¼ 0.575 to highlight the gene nodes and edges that have
the strongest effects and to reduce the obscuring effect
(network hairball) of many weak connections. The maximum
threshold was chosen (edges below this threshold were
pruned) subject to the constraint of minimizing the number of
network islands. Gene symbols are used to label nodes. If
more than one SNP from a gene is found in the network, then
the SNP with the highest SNPrank score represents the gene
and its interactions.

Results

The Materials and methods section contains details of
the regression-based epistasis-network pathway-enrichment
analysis as well as descriptions of the WTCCC-BD24 and
NIMH-BD25 GWAS data sets. In brief, the WTCCC-BD GWAS
was used for discovery and NIMH-BD for replication. We
retained the top 1000 SNPs based on ECML feature selection,
which has demonstrated power to detect both main effects
and gene–gene interactions in GWAS.21 From these top 1000
SNPs, we constructed an epistasis network of main effects
and gene–gene interactions between all pairs using the
reGAIN method discussed below and in McKinney et al.20 We
then applied SNPrank23 to the epistasis network to further
remove noise SNPs and enrich the top list of SNPs for main
effects and interactions. We retained the top genes for
pathway enrichment analysis based on the QQ plot of the
SNPrank eigenvector scores, which resulted in a cutoff of
approximately 200 genes. This cutoff removes network nodes
whose SNPrank scores are consistent with a uniform
distribution in the range (0,1). We used the same cutoff for
both the discovery and replication data sets to define the
number of top genes for use in the hypergeometric distribution
for pathway enrichment. We used pathway annotations from
the Reactome FI pathway database.29
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We list the most significant epistasis network pathway
enrichment results in Tables 1–2 for the WTCCC and NIMH
GWAS of BD. We find replication evidence of enrichment of
the cadherin signaling pathway (P¼ 0.004 in WTCCC and
P¼ 0.0094 in NIMH-EA) and evidence of replication in the
Wnt signaling pathway (P¼ 0.0008 in WTCCC and P¼ 0.06 in
NIMH-EA). Genes in the cadherin pathway as well as
protein partners in the Wnt pathway have been implicated
as possible components of a molecular pathway in suscep-
tibility to BD pathophysiology.30 It has also been suggested
separately that BD is affected by genes in the Wnt signaling
pathway as well as the circadian rhythm pathway,31 both

enriched in the WTCCC GWAS by the epistasis network
approach. These pathways are not significantly enriched
when SNPs are prioritized by single-locus statistics as
observed for example in the WTCCC-BD in Torkamani
et al.19 Other enriched pathways of note based on epistasis
networks include axon guidance (NIMH-EA (P¼ 0.028))
and neuroactive ligand-receptor interaction (WTCCC
(P¼ 0.0008)), which is also the most significantly enriched
when the WTCCC and NIMH-EA GWAS are merged.
Genes and edges for the WTCCC reGAIN network in
Figure 2 are annotated by pathway membership for the
replicated pathways.

Table 1 WTCCC pathway enrichment

Pathway P-value Genes in network

Wnt signaling pathway(P)a 0.0008 CTNNA2, DACT1, FBXW11, CDH16, CDH18, CDH10,
CDH11, GNA14, SMARCA2, CDH2, CHD1L, FHL2,
PRICKLE1, FAT3, HOXA6

Neuroactive ligand-receptor interaction(K) 0.0008 GRIN2B, GRIK2, GABRB1, NTSR1, CYSLTR2, ADRA2A,
GABRG3, ADRB2, HRH2, LEP

Cadherin signaling pathway(P)a 0.004 CTNNA2, CDH16, CDH18, CDH10, CDH11, CDH2, FAT3
Shigellosis(K) 0.0054 ELMO1, FBXW11, DOCK1, ABL1
Bacterial invasion of epithelial cells(K) 0.0085 CTNNA2, ELMO1, CAV3, DOCK1
Calcium signaling pathway(K) 0.0141 ATP2B1, GNA14, NTSR1, CYSLTR2, ADRB2, HRH2
CFTR and beta 2 adrenergic receptor (b2ar) pathway(B) 0.019 AGT, ADRB2
Circadian rhythm—mammal(K) 0.027 FBXW11, BHLHE40
Signaling events mediated by HDAC class III(N) 0.0292 PPARGC1A, FHL2
Receptor-ligand complexes bind G proteins(R) 0.0302 AGT, GNA14, ADRA2A, ADRB2, HRH2
ID(C) 0.0315 ADD1, ID2
Corticosteroids and cardioprotection(B) 0.0315 AGT, ADRB2
b-Arrestins in gpcr desensitization(B) 0.0338 AGT, ADRB2
Activation of camp-dependent protein kinase pka(B) 0.0338 AGT, ADRB2
Role of b-arrestins in the activation and targeting of map kinases(B) 0.0387 AGT, ADRB2
O-glycan biosynthesis(K) 0.0438 GCNT1, GALNTL4
Roles of b arrestin-dependent recruitment of src kinases in
gpcr signaling(B)

0.0491 AGT, ADRB2

Genes were prioritized by epistasis network analysis as described in the Materials and methods. Pathways are shown with adjusted hypergeometric enrichment
P-valueo0.05.
aThese pathways suggest replication in the NIMH-BD GWAS for European ancestry (see Table 2).

Table 2 NIMH-EA pathway enrichment

Pathway P-value Genes in network

M phase(R) 0.009 RPS27, NUF2, PPP2CA, SGOL1, KIF2A
Cadherin signaling pathway(P)a 0.0094 CDH10, PCDH7, CDH6, CDH8, CDH7, CDH9, FYN
Glycosphingolipid biosynthesis—globo series(K) 0.0149 B3GALT5, ST3GAL1
Glycosaminoglycan biosynthesis—keratan sulfate(K) 0.017 ST3GAL1, B4GALT1
Syndecan-3-mediated signaling events(N) 0.0214 FYN, MC4R
Protein processing in endoplasmic reticulum(K) 0.0233 STT3B, UGGT1, SEC61A1, SEL1L, SEC23B, PARK2
Map kinase inactivation of smrt corepressor(B) 0.0238 RXRA, THRB
Axon guidance(K) 0.0282 ARHGEF12, FYN, LRRC4C, CXCL12, ROBO2
PDGFR-alpha signaling pathway(N) 0.0289 RAPGEF1, CAV3
LPA receptor-mediated events(N) 0.0397 LPAR3, GNAL, TIAM1, TNFAIP3
Ephrin B reverse signaling(N) 0.0403 FYN, TIAM1
RXR and RAR heterodimerization with other nuclear receptor(N) 0.0465 RXRA, THRB
Glycosphingolipid biosynthesis—lacto and neolacto series(K) 0.0497 B3GALT5, B4GALT1
Pyruvate metabolism and TCA cycle(R) 0.053 PDHX, SUCLA2
Reelin signaling pathway(N) 0.053 RAPGEF1, FYN
NR transcription pathway(R) 0.0599 PGR, NR3C2
Alpha-synuclein signaling(N) 0.0599 FYN, PARK2
Wnt signaling pathway(P)a 0.0606 PPP2CA, CDH10, MYH13, PCDH7, CDH6, CDH8,

CDH7, CDH9, SMARCAD1

Genes were prioritized by epistasis network analysis as described in the Materials and methods and pathway enrichment adjusted P-values calculated by the
hypergeometric distribution.
aThese pathways were statistically significant in the WTCCC-BD GWAS (see Table 1).
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Epistasis network centrality (SNPrank) results of the top
individual SNPs for the WTCCC, NIMH and merged data sets
may be found in Supplementary Table 1. There is consistent
evidence in the GWAS literature for the role of ANK3 for BD
susceptibility, yet no ANK3 SNPs are ranked higher than 600
in a single-locus analysis of the WTCCC data unless the data
is merged with other studies to create a larger sample size.26

Without pooling additional samples, the epistasis network
centrality analysis of the WTCCC data yields a variant in
ANK3 (rs10509126) that is ranked third by SNPrank. The
network centrality rank (SNPrank) of this variant moves higher
in the rankings when the WTCCC and NIMH-EA GWAS are
merged (rank second). As shown in Figure 2, this ANK3 SNP
has the largest number of gene–gene interaction connections
in the WTCCC GWAS data. The merged network analysis

yields a top-10 SNPrank (rank seventh) to a SNP in DGKH,
which was implicated for BD in a previous study27 but not in
the WTCCC and NIMH data sets. The merged analysis yields
a rank of 15 for a variant in ODZ4, which was identified in
Sklar et al.28

Discussion

Motivated by the complex, interconnected nature of biological
pathways involved in biological processes such as mood
regulation, we infer epistasis network signatures of BD from
two published GWAS. An underlying assumption of pathway
and gene-set approaches is that genes influence phenotypic
expression as part of a biological network; however,
most gene-set and pathway studies use statistical gene

Table 3 Top genes from epistasis network centrality of combined WTCCCþNIMH GWAS

Chromosome SNP rs-id Gene symbol SNPrank score Univaraite odds ratio Univariate P-value

5 rs393291 DAP 7.61E-03 1.05 0.6388
10 rs10509126 ANK3 6.64E-03 1.192 0.01619
2 rs10190186 FHL2 6.63E-03 1.195 0.01106
4 rs7679912 ARAP2 6.41E-03 1.209 0.009473
3 rs6773049 ZIC1 6.30E-03 1.143 0.07756
12 rs983421 SUDS3 6.29E-03 1.154 0.05072
13 rs606568 DGKH 6.28E-03 0.8816 0.1125
13 rs17088579 OR7E156P 6.27E-03 1.123 0.1374
12 rs4135067 TDG 6.17E-03 1.091 0.2667
10 rs2094179 KLF6 6.05E-03 1.122 0.1266
1 rs640718 KMO 6.00E-03 1.192 0.009732
1 rs17484306 RRAGC 5.97E-03 1.231 0.00339
6 rs3736712 WDR27 5.93E-03 1.137 0.06991
11 rs12275977 GALNTL4 5.92E-03 1.127 0.09964
11 rs6591941 ODZ4 5.84E-03 1.04 0.6031
3 rs614566 LAMP3 5.80E-03 1.204 0.005761
14 rs6574988 GPR65 5.80E-03 1.234 0.0003089
1 rs495489 POGK 5.79E-03 0.9191 0.2722
1 rs11161999 LMO4 5.70E-03 1.193 0.007684
18 rs17082921 SOCS6 5.69E-03 1.144 0.07807
9 rs17063814 GNA14 5.62E-03 1.21 0.002639
14 rs12588812 RNASE1 5.55E-03 1.137 0.07456
3 rs16852539 GOLIM4 5.53E-03 1.073 0.2998
4 rs7680321 GABRB1 5.51E-03 1.25 0.0001764
8 rs448578 MSR1 5.50E-03 1.111 0.1176
8 rs17069985 CSMD1 5.49E-03 1.105 0.1615
1 rs1890038 CHD1L 5.48E-03 1.137 0.05786
10 rs10443995 DOCK1 5.48E-03 1.047 0.5138
9 rs13290547 DAB2IP 5.47E-03 1.192 0.01176
3 rs9824570 CLSTN2 5.45E-03 0.92 0.1817
16 rs4843366 LOC732275 5.44E-03 1.162 0.013
10 rs1338007 ADRA2A 5.44E-03 1.075 0.3076
9 rs615928 GCNT1 5.44E-03 1.099 0.2024
14 rs10137389 C14orf106 5.43E-03 1.084 0.2648
7 rs56183050 POT1 5.43E-03 1.095 0.1748
12 rs2468244 CEP290 5.42E-03 1.096 0.1677
9 rs3780621 COL15A1 5.41E-03 1.157 0.01337
1 rs6684324 INADL 5.41E-03 1.204 0.003692
13 rs9514132 SLC10A2 5.38E-03 0.9617 0.6074
1 rs1318222 C1orf94 5.37E-03 1.123 0.08309
18 rs1560398 MC4R 5.36E-03 1.035 0.6496
5 rs17653341 ADRB2 5.32E-03 1.055 0.4495
1 rs12046987 MIR101-1 5.30E-03 1.158 0.02022
6 rs7739908 OGFRL1 5.29E-03 1.165 0.02408
18 rs17739703 C18orf34 5.28E-03 0.9017 0.1245
12 rs1861674 LOH12CR1 5.28E-03 1.204 0.001111
7 rs7785575 ELMO1 5.28E-03 1.117 0.08243

Top genes found by the epistasis network analysis workflow described in the Materials and methods for the merged WTCCCþNIMH-EA data sets. Rows are sorted
by SNPrank epistasis network centrality score. Columns are chromosome, SNP rsid, gene symbol, SNPrank score and univariate odds ratio and P-value.
Bold gene symbols are genes that have strong evidence from univariate analysis of other larger-scale GWAS of BD. Ranking for unmerged data may be found in
Supplementary Table 1.
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prioritization limited to the individual effect of each gene or
variant. The goal of the current work was to use pathway
replication evidence for the hypothesis that epistasis network
signatures contain information about the underlying biological
pathways that regulate phenotypic expression of BD. Our
approach used ECML filtering and reGAIN to create a data-
driven BD-specific network consisting of statistical gene–gene
interactions and single-locus associations. We then used
SNPrank to integrate these effects and prioritize genes for
pathway enrichment analysis.

Direct replication of a network signature poses a statistical
challenge due to the complexity of the models that are to be
tested.19,20 We chose a level of replication that uses pathway
enrichment statistics as evidence for network effects in

independent GWAS. We constructed filtered epistasis net-
works and use SNPrank network centrality scores to prioritize
genes for subsequent pathway enrichment analysis. In the
current study, we replicated the enrichment of the cadherin
signaling pathway based on the prioritization of genes through
an epistasis network analysis of the WTCCC and NIMH GWA
studies of BD. Other enriched pathways of interest were
identified including WNT signaling, axon guidance and neuro-
active ligand-receptor interaction (see Tables 1 and 2).

The enrichment of genes in the cadherin, Wnt and axon
guidance signaling pathways is suggestive of a developmen-
tal origin for BD. The Wnt/B-catenin pathway is the canonical
pathway controlling cell proliferation and differentiation
during embryonic development.34 Cadherins guide neuronal
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Figure 2 Epistasis network for WTCCC GWAS of bipolar disorder. Network inferred following ECML feature selection and regression-based genetic association
interaction network (reGAIN) for the WTCCC GWAS of bipolar disorder, annotated by top enriched pathways. An edge threshold (0.575) was chosen as described in Materials
and methods; interactions below this threshold are hidden. The 146 nodes are colored based on membership of the genes in the pathways with evidence of enrichment
replication (Tables 1 and 2): red diamond (membership in both Wnt signaling pathway and cadherin signaling pathway), green square (Wnt signaling pathway only) and
magenta triangle (Neuroactive ligand-receptor interaction pathway). The weight of an edge is proportional to the gene–gene interaction strength. The 183 edges are colored
based on connection of a gene node to a gene in the given pathway using the scheme above (red squiggle, green dashed, magenta solid). The size of a node is proportional to
its degree (number of edges). Note, ANK3 in the middle is the most connected.
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migration during development and are involved in neuronal
differentiation and synaptogenesis. Interestingly, the schizo-
phrenia susceptibility gene, DISC1, appears to have a role in
the regulation of cell–cell adhesion and neurite outgrowth via
the expression of N-cadherins.35 Wnt pathway genes may
also have a role in synpatic plasticty and adult neurogenesis,
possibly explaining why lithium36 and perhaps valproate,37

increase gray matter volumes in patients with BD—lithium
inhibits GSK3B thereby upregulating WNT signaling.38

Although the cadherin/WNT pathway has not generally been
the focus of genetic studies, a number of genes within this
pathway, including FAT30,39 and PPARD,40 have been
implicated in the development of BD.

In addition to pathways, we find evidence for increased
sensitivity to detect SNPs relevant to BD susceptibility by
aggregating network effects, including the main effect of
nodes. A notable example of this boost in sensitivity is ANK3
(rs10509126). When ranked by univariate statistical signifi-
cance in the WTCCC GWAS, ANK3 SNPs are outside the top
600 SNPs. However, the epistasis network procedure ranks
this ANK3 SNP third in the WTCCC data, and the rank is
second when the WTCCC data is merged with the NIMH-EA
data (see Table 3 and Supplementary Table). The ability to
identify this SNP in the WTCCC data is significant because of
the growing body of support for ANK3 for BD susceptibility
since the WTCCC study. The top SNPrank SNP in the
WTCCC data is ARAP2 gene, which contains ankyrin repeats.
Both ANK3 and ARAP2 are highly connected in the reGAIN in
Figure 2 and interact with genes in the neuroactive ligand-
receptor interaction pathway. The DGKH region, implicated in
a previous study,27 lacks a strong signal in the WTCCC data
by itself, but when merged with the NIMH data, the epistasis
network approach ranks one of the DGKH SNPs seventh.

Baum et al.27 reported the first association between a SNP
in DGKH and BD in the context of a GWAS. The association
with DGKH was recently replicated in a Han-Chinese
population.41 Moreover, a DGKH haplotype consisting of the
SNPs, rs994856, rs9525580 and rs9525584, was recently
associated with BD, unipolar depression and attention deficit
hyperactivity disorder (ADHD),42 which comprise psychiatric
disorders that share substantial overlap with respect to clinical
symptomatology. Interestingly, DGKH is a key protein in the
phosphatidyl-inositol pathway that is also regulated by
lithium.43 A recent large-scale analysis (11 974 BD cases
and 51 792 controls) identified a new variant in ODZ4.28 The
epistasis network analysis of the present study also yielded
variants in the ODZ4 gene for the smaller WTCCC and NIMH
GWAS data sets, and the merged analysis yielded a rank of
15 for a variant in ODZ4. With the growing number of large-
scale GWAS studies, it may be possible to identify novel
variants of biological importance through an epistasis network
approach.

The general linear model used in reGAIN provides a
statistical framework to assign confidence to edges and
nodes in the network. In addition, the SNPrank eigenvector
centrality scores computed from the reGAIN are well suited to
prioritizing genes for pathway enrichment calculations. The
SNPrank scores are more difficult to interpret than an odds
ratio or a P-value; however, the scores have an interpretation
as probabilities because the scores come from the elements

of a normalized eigenvector so that the scores sum to unity.
Thus, we can identify a significance threshold for pathway
enrichment by comparing the observed SNPrank score
distribution with a uniform probability as a theoretical null.

These results suggest that some of the missing heritability
may be due to the neglect of the context of disease-specific
networks of epistatic and main effects. A future challenge is to
quantify the amount of heritability that may be accounted for in
these networks. A strategy toward this end may be to use the
variation in the edge and node regression coefficients of the
network to estimate the heritability. These data-driven net-
work techniques offer an additional tool to identify new
biological pathways, network signatures and markers relevant
to phenotypes due to network interactions.
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