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Abstract After an association between genetic variants

and a phenotype has been established, further study goals

comprise the classification of patients according to disease

risk or the estimation of disease probability. To accomplish

this, different statistical methods are required, and specif-

ically machine-learning approaches may offer advantages

over classical techniques. In this paper, we describe

methods for the construction and evaluation of classifica-

tion and probability estimation rules. We review the use of

machine-learning approaches in this context and explain

some of the machine-learning algorithms in detail. Finally,

we illustrate the methodology through application to a

genome-wide association analysis on rheumatoid arthritis.

Introduction

Unraveling the genetic background of human diseases

serves a number of goals. One aim is to identify genes that

modify the susceptibility to disease. In this context, we ask

questions like: ‘‘Is this genetic variant more frequent in

patients with the disease of interest than in unaffected

controls?’’ or ‘‘Is the mean phenotype higher in carriers of

this genetic variant than in non-carriers?’’ From the

answers, we possibly learn about the pathogenesis of the

disease, and we can identify possible targets for therapeutic

interventions. Looking back at the past decade, it can be

summarized that genome-wide association (GWA) studies

have been useful in this endeavor (Hindorff et al. 2012).

Another goal is to classify patients according to their risk

for disease, or to make risk predictions. For classification,

also termed pattern recognition, typical questions are: ‘‘Is

this person affected?’’, which asks for a diagnosis, or ‘‘Will

this individual be affected in a year from now?’’, thus

asking for a prognosis, or ‘‘Will this patient respond to the

treatment?’’, and ‘‘Will this patient have serious side effects

from using the drug?’’ These questions ask for a prediction.

In each case, a dichotomous yes/no decision has to be made.

In risk prediction, in contrast, we ask for probabilities

such as ‘‘What is the probability that this individual is

affected?’’, or ‘‘What is the probability that this person will

be affected in a year from now?’’

These two concepts, classification and risk prediction,

have received different levels of attention, and this by

different groups. Specifically, classification is considered

mainly using nonparametric approaches by the machine-

learning community, while estimation of probabilities is

generally approached by statisticians using parametric

methods, such as the logistic regression model. Probability

estimation at the subject level has a long-standing tradition

in biostatistics, since it provides more detailed information

than a simple yes/no answer, and applications include all

areas of medicine (Malley et al. 2012). Since in the bio-

statistical community the term ‘‘risk prediction’’ is reserved

for therapies, thus by calling for treatment response prob-

abilities or side effects probabilities, we will avoid this

term in the following and use the more general term of

probability estimation (Steyerberg 2009).

It is important to emphasize that neither classification

nor probability estimation automatically follow from
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association results. To put it more clearly, association

means that the chance to be affected is, in the mean, greater

in those carrying the disease genotype than in those who do

not. However, when looking at the distributions of proba-

bilities in cases and controls, there will often be a large

overlap and the boundary between the two groups will not

be sharp. Hence, the ability to discriminate cases from

controls based on the genotype—the binary classification

problem—is difficult.

When we consider classical measures for strength of

association on the one hand, such as the odds ratio (OR),

and for classification on the other hand, such as sensitivity

(sens) and specificity (spec), there is a simple relationship

between them with OR ¼ sens
1�sens

� spec
1�spec

(Pepe et al. 2004).

This relationship can be used to demonstrate that an single

nucleotide polymorphism (SNP) can show a strong asso-

ciation but be a poor classifier. For example, if an SNP has

a high sensitivity of 0.9 and a strong association of

OR = 3.0, the specificity is only 0.25. Many more exam-

ples for this are given in the literature (Cook 2007; Wald

et al. 1999). This result does not mean that either associ-

ation studies or classification rules are not worthwhile.

Instead, we should keep in mind that association, classifi-

cation and probability estimation are different aims with

their own values.

In the following, we will focus on classification and

probability estimation based on GWA data. For this, we will

describe in the next section how to construct and evaluate

classification and probability estimation rules. In recent

years, approaches from the machine-learning community

have received more attention for this. Therefore, we will

present a systematic literature review on the use of

machine-learning methods. Some of these methods will

then be described in more detail before we finally show

examples of construction and evaluation of classification

and probability estimation rules using a number of different

methods on data from a GWA study on rheumatoid arthritis.

Construction and evaluation of a classification/

probability estimation rule

The overall process of rule construction and evaluation is

shown in Fig. 1.

How can a rule be constructed?

In the first step of rule construction (Fig. 1, part a), the

variants to be used in the rule are selected, and this is in

most cases based on the p values from association analyses

of single marker analyses. In the simplest of all cases, the

rule uses only the genotype of one SNP, and subjects are

assigned a higher risk if they carry one (or two) suscepti-

bility variant(s). Usually, however, a number of SNPs

fulfilling some criterion are combined to a score. For the

construction of the rule from the selected SNPs, a score is

often used that simply counts the number of predisposing

variants a single subject carries. This assumes that all

variants contribute equally to the risk, and a more sophis-

ticated rule weights the variants depending on their

respective genetic effect (Carayol et al. 2010). Ideally,

these genetic effects are estimated in a multivariate model,

but often the results from single SNP analyses are used in

most applications. It is also possible to select SNPs and

construct the rule within the same analysis by using, e.g.,

penalized regression approaches (Kooperberg et al. 2010).

There has been a discussion about the number of SNPs

to be integrated in a score. In many applications, SNPs

were used that were genome-wide significant in previous

analyses. As a result, typically less than 20 SNPs were

combined. However, some examples have shown experi-

mentally (Evans et al. 2009; Kooperberg et al. 2010; Wei

et al. 2009) and theoretically (Zollanvari et al. 2011) that

the results can not only be improved by using thousands of

SNPs, but also require a high number of SNPs for good

classification. In addition, a good prediction is often

achieved more easily if established non-genetic clinical

risk factors are incorporated into the model.

How can a rule be evaluated? Using the ACCE model

Having constructed a rule, its performance needs to be

evaluated in the second step (Fig. 1, part b). This evalua-

tion requires additional approaches that can be illustrated

using the framework of the ACCE project (Haddow and

Palomaki 2004). Details on this project can be found on the

Web site (http://www.cdc.gov/genomics/gtesting/ACCE/)

as well as in chapter 14 of Ziegler and König (2010) and in

Ziegler et al. (2012). Within this framework, we can

evaluate predictive tests based on genetic variants that may

or may not include non-genetic risk factors.

In brief, ACCE is an acronym for the following criteria

used to evaluate predictive genetic tests: (A)nalytic validity

evaluates how well the test is able to measure the respec-

tive genotypes. (C)linical validity is a criterion for how

consistently and accurately the test detects and predicts the

respective disease. (C)linical utility focuses on the influ-

ence of the test on outcome improvement for the patient,

and (E)LSI comprises (E)thical, (L)egal and (S)ocial

(I)mplications of the genetic test. Our aim here is the sta-

tistical evaluation of the classification and probability

estimation rule, which is why we will focus on the clinical

validity of the test.

For this, we firstly require established associations with

the disease of interest. These are rendered from candidate
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gene association studies or from classical GWA studies and

they need to be extensively validated (König 2011).

Secondly, as indicated above, the predictive value of the

test needs to be established that indicates how well the test

is able to differentiate between cases and controls and/or

how good the probability estimates are. Specifically, the

test needs to show calibration and discrimination. For a

good calibration, the predicted probabilities agree well

with the actual observed risk, i.e., the average predicted

risk matches the proportion of subjects who actually

develop the disease. Ideally, this should hold both for the

overall study population and for all important subgroups.

Reasonable measures for discrimination depend on the

scale of the rule result. This might be dichotomous,

because it is based on a single SNP only, or because the

algorithm used for constructing the rule renders a binary

classification. Alternatively, it might be (quasi-) continu-

ous, as is the case if a score has been constructed, or if the

algorithm renders risk probabilities. The respective mea-

sures are shown in Fig. 1, part b, right-hand side.

The classical measures of area under the curve (AUC)

and c-statistic have often been criticized. For example, the

c-statistic is not clinically meaningful, and a marginal

increase in the AUC can still represent a substantial

improvement of prediction at a specific important threshold

(Pepe and Janes 2008). Also, the absolute risk values for

individuals are not visible from this, and the AUC is not a

function of the actual predicted probabilities (Pepe and

Janes 2008). It has therefore been emphasized that the

evaluation of the clinical validity should not rely on a

single measure, but should be complemented by alternative

approaches such as the predictiveness curve.

To evaluate predicted probabilities the Brier score (BS),

which is given by the average over all squared differences

between an observation and its predicted probability, is

preferably used. The Brier score is a so-called proper score

(Gneiting and Raftery 2007), it can be estimated if the

probability is estimated consistently (Malley et al. 2012),

and its variance can be estimated and used to construct

confidence intervals (CIs) (Bradley et al. 2008).

If the genetic test is to be compared to a standard risk

prediction tool, e.g., based on clinical parameters, measures

can be used that are based on the re-classification of sub-

jects as described in detail by Cook (2007) and Pencina

et al. (2008).

It should be noted that there are no general thresholds

that define a test to be clinically valid. For example, a

model is not good in all cases where the AUC exceeds, say,

0.8. Alternative prediction models, the aim of testing, the

burden and cost of disease, and the availability of treatment

always need to be considered. Therefore, a detailed eval-

uation of the constructed models is necessary (Teutsch

et al. 2009).

How can validation of the rule be established?

The evaluation of a probability estimation or classification

rule comprises the validation of its performance in further

steps (Fig. 1, part c). Specifically, validation of a rule

means that it acts accurately on new, independent data, and

not only on the original—the training—data on which it

was developed. To this end, we ideally estimate the mea-

sures described above on independent test data.

To get a less biased estimate of the performance sta-

tistics in the training data, either cross-validation or boot-

strapping is generally recommended. Bootstrapping is

already in-built in some of the methodological approaches

as described below. However, if feature selection is

a. Construct rule

c. Validate rule

b. Evaluate rule

Select variants

Criteria for dichotomous rule:
• sensi�vity, specificity, posi�ve and

nega�ve predic�ve value with
confidence intervals (Pepe 2003)

• Hosmer-Lemeshow-type test with
graphical display (Gillman and
Minder 2009)

Combine variants

Establish associa�on

Establish predic�ve value

Criteria for (quasi-)con�nuous rule:
• Receiver opera�ng curve (ROC)
• Area under the curve (AUC) with

confidence interval, equivalent
to c-sta�s�c

• Predic�veness curve (Pepe et al. 
2008)

Fig. 1 Path to construct,

evaluate and validate a rule

of classification or probability

estimation
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combined with model building, one needs to be aware that

either a two-loop cross-validation or bootstrapping needs to

be used. This means that a bootstrap sample is drawn in the

first step. In the second step, the algorithm is trained and

tuned on the in-bag samples. In the final step, the perfor-

mance of the algorithm is evaluated using the out-of-bag

samples. If model building and estimation is done on the

same dataset, goodness of fit of the classification or pre-

diction model may be substantially overestimated (Simon

et al. 2003); for a discussion of different cross-validation

approaches, see Molinaro et al. (2005).

Bootstrap and cross-validation can also be used to

compare different algorithms on the training data; see, e.g.,

Malley et al. (2012). If test data and even different kinds of

test data are available, the methods described by König

et al. (2008) can be used for formal statistical comparisons

of different machines.

It is important to note that bootstrapping and cross-

validation are also often used for judging the stability of a

model. However, validation is different from model sta-

bility. Specifically, even if variables appear in different

bootstrap steps in very similar ways, this does not mean

that using the same algorithm on independent data will give

a similar model.

What are typical results?

Although for many complex diseases, there have been

impressive numbers of genetic regions identified to be

associated, the typical results for classification and proba-

bility estimation are that the predictive values are only

moderate (Gail 2008; Kooperberg et al. 2010). Many

examples for this have been given by Janssens and van

Duijn (2008), and one systematic collation of evidence on

genetic tests is given by the Evaluation of Genomic

Applications in Practice and Prevention (EGAPP) initiative

(Teutsch et al. 2009). Some authors have argued that

usually, too few markers have been included in the rule,

which is substantiated in experiments (Evans et al. 2009;

Hua et al. 2005a, b; Kooperberg et al. 2010; Raudys and

Pikelis 1980; Wei et al. 2009; Zollanvari et al. 2011).

Another reason might be that the way SNPs have been

selected and combined is not well suited for the purpose of

classification or probability estimation. As described

above, SNPs are selected based on their strength of asso-

ciation with the phenotype. Again, this does not mean that

they render good classification or probability estimation

results. In addition, the combination of SNPs in scores is

usually based on parametric regression models, which does

not necessarily provide an optimal classification.

Therefore, it might be more meaningful to develop

classification and probability estimation models using

methods specifically targeted at classification and

probability estimation. Specifically, machine-learning

algorithms offer some advantages as described below. In

consequence, there has been a rising trend to apply them

also in the context of GWA data. To obtain an overview

about what is possible and has been done in the GWA

context, we will next provide a systematic review before

we describe some of the methods in more detail.

A systematic literature review on machine-learning

approaches in the context of GWA studies

The aim of the systematic literature review was to gain an

overview over which approaches have been used in the

context of GWA data. For this purpose, we restricted the

search to papers describing analyses of many SNPs, opti-

mally from GWA studies, in humans. Other genetic vari-

ations such as microsatellites, copy number variations or

gene expression levels were not considered. On the meth-

ods side, we considered supervised learning approaches

only, although unsupervised methods may be used for the

novel classification of subtypes of disease. An example for

this is the genetic classification of Crohn’s disease subtypes

(Cleynen et al. 2010).

In detail, we started out by searching the PubMed

database at http://www.ncbi.nlm.nih.gov/sites/entrez?db=

PubMed on 1 September 2011, using the search terms

shown in Table 1 and limiting the languages to English and

German. This yielded 509 hits without duplicates. Based

on titles and abstracts, we excluded 360 hits as shown in

Fig. 2. The remaining 149 articles were read and a further

71 were excluded. The remaining 78 articles were evalu-

ated, and their reference lists were screened for further

relevant references. Additionally, hits identified as reviews

were screened for further references. From these, another

75 articles were retrieved and read, and 38 excluded as

shown in Fig. 2. Thus, 37 relevant articles were identified

and evaluated.

Of the identified 115 relevant articles in total, 91

described the application of machine-learning methods to

SNPs in candidate genes or regions only, where these were

defined based on previous results or biological knowledge.

The number of SNPs analyzed per study ranged from 2 to

7,078 with a median of 39 SNPs per study. In 11 papers

(Arshadi et al. 2009; Cleynen et al. 2010; Cosgun et al.

2011; Davies et al. 2010; Liu et al. 2011; Okser et al. 2010;

Roshan et al. 2011; Wei et al. 2009; Yao et al. 2009; Zhang

et al. 2010; Zhou and Wang 2007), SNPs were selected

from a GWA study based on their marginal effects in single

SNP association tests. In four of these papers (Arshadi

et al. 2009; Liu et al. 2011; Roshan et al. 2011; Yao et al.

2009), the number of SNPs utilized exceeded 10 K. Two

articles described the analysis of entire chromosomes with
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machine-learning methods (Phuong et al. 2005; Schwarz

et al. 2009). Finally, 11 papers described the application of

machine-learning methods to entire GWA data sets. Of these,

two focused on the description of the method or software

without a description of the results (Besenbacher et al. 2009;

Dinu et al. 2007), and the remaining nine (Goldstein et al.

2010; Greene et al. 2010; Jiang et al. 2009, 2010; Schwarz

et al. 2010; Wan et al. 2009; Wang et al. 2009; Wooten et al.

2010; Yang et al. 2011) are described in the following.

Five of the studies applying machine-learning algo-

rithms to GWA data used random forests (RF; Goldstein

et al. 2010; Jiang et al. 2009; Schwarz et al. 2010;

Wang et al. 2009; Wooten et al. 2010) on a variety of

disease phenotypes. Whereas Wooten et al. (2010) used RF

to pre-select interesting SNPs based on their importance

values, the others specified the aim as identification of

associations (Goldstein et al. 2010; Wang et al. 2009) or

gene–gene interactions (Jiang et al. 2009; Schwarz et al.

2010). Compared with the results from the previous clas-

sical analyses, all papers describe that novel genetic

regions were identified but not yet validated.

In two further studies, multifactor dimensionality

reduction (MDR, Moore 2010) was applied to detect gene–

gene interactions in sporadic amyotrophic lateral sclerosis

(Greene et al. 2010) and age-dependent macular degener-

ation (Yang et al. 2011). Based on this, Greene et al. (2010)

developed a two-SNP classifier that was subsequently

validated, and Yang et al. (2011) describe their results to be

consistent with the original publications.

Wan et al. (2009) describe the development of a novel

approach called MegaSNPHunter and applied it to Par-

kinson’s disease and rheumatoid arthritis. Again, they

identified novel interactions that warrant independent val-

idation. Finally, a Bayesian network approach was sug-

gested by Jiang et al. (2010) and applied to the analysis of

late-onset Alzheimer’s disease. Their results were in sup-

port of the original results, and interactions were not spe-

cifically looked at.

In summary, there were only very few applications of

machine-learning methods to GWA data. Most of them

supported classical results and named novel regions, which

yet need to be validated in independent studies. Thus, the

final success of these approaches cannot be judged at this

time point.

Table 1 Results from PubMed search at ncbi.nlm.nih.gov/sites/en-

trez?db = PubMed on 1 September 2011

Search term No. of hits

Genome-wide association machine learning 41

Genome-wide association random forest 15

Genome-wide association support vector 55

Genome-wide association boost* 24

Genome-wide association neural network 10

Genome-wide association logic regression 2

Genome-wide association MDR 15

SNPs machine learning 120

SNPs random forest 35

SNPs support vector 246

SNPs boost* 37

SNPs neural network 51

SNPs logic regression 21

* Asterisk indicates that the search is automatically expanded to all

terms starting with this term

•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•

Fig. 2 Flowchart of the systematic literature search
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A critical issue is that in no study, quality control was

discussed in detail, but only standard control was applied.

Given that most of the studies used publicly available data,

this comes as no surprise. However, experience has shown

that an ultimate quality control includes the visual

inspection of the signal intensity plots (Ziegler 2009)

which is still challenging to perform in a standardized way

(Schillert et al. 2009).

A final point to note is that there was often obscurity

about the use of terms in interpretations. Specifically, many

papers seemingly aimed at the identification of interac-

tions, but merely analyzed single SNP associations or

classifications. Also, there was rarely a clear differentiation

between classification or probability estimation and asso-

ciation as described above. Thus, we conclude that the real

advantages of machine-learning approaches were not fully

exhausted in most previous applications.

Machine-learning approaches for classification

and probability estimation

Machine-learning approaches

Probability estimation and classification based on classical

statistical approaches have not been vastly successful so far,

and it might be more promising to use machine-learning

approaches instead. Most machine-learning approaches are

immanently built to render good classification, and only a

few have been adapted to probability estimation (Malley

et al. 2012). None of the machine-learning approaches are

meant to statistically test for association.

Popular machine-learning approaches have been

described in detail in some excellent textbooks and review

papers. Table 2 lists the most popular approaches and

provides references to the literature. In the ‘‘Appendix’’,

we describe classification and regression trees (CART),

probability estimation trees (PETs), and RF for both clas-

sification (RF-Class) and probability estimation (RF-Reg)

in more detail.

It is important to repeat that the classical logistic

regression model or its generalizations rely on several

crucial assumptions which are rather strict and limit the use

of logistic regression in practice. In fact, to avoid problems

in parameter estimation in case of misspecification, all

important variables and their interactions must be correctly

specified. A solution of this general probability estimation

problem is obtained by treating it as a nonparametric

regression problem. Informally, the aim is to estimate the

conditional probability g xð Þ ¼ P y ¼ 1 xjð Þ of an observa-

tion y being equal to 1 given the variables x. By noting that

P y ¼ 1 xjð Þ ¼ E y xjð Þ, it can be seen that the probability

estimation problem is identical to the nonparametric

regression estimation problem f xð Þ ¼ E y xjð Þ. Hence, any

learning machine performing well on the nonparametric

regression problem f xð Þ will also perform well on the

probability estimation problem g xð Þ.
The nonparametric regression estimation problem has

been considered in the literature in detail (Devroye et al.

1996; Györfi et al. 2002), and many learning machines are

already available. These include RF, k-nearest neighbors,

kernel methods, artificial neural networks or bagged

k-nearest neighbors. However, some learning machines are

known to be problematic and may not allow consistent

estimation of probabilities (Malley et al. 2012; Mease and

Wyner 2008; Mease et al. 2007). Large-margin support

vector machine (SVM) classifiers can also be used for con-

sistent probability estimation (Wang et al. 2008). There are,

however, conceptual differences in the probability estima-

tion approaches for those SVM machine-learning approa-

ches which have generally been proven to provide consistent

estimates (for a discussion, see Malley et al. 2011).

Consistency of probability estimates

The reader needs to be aware that some software packages

seem to offer probability estimation using specific options,

such as the prob option in the randomForest package of R.

However, the availability of such an option does not mean

that its output may be interpreted as a consistent estimate

of a probability. Consistency means that the estimate of the

probability converges to its true probability value if the

sample size tends to infinity.

Some machines are not universally consistent. For

example, even RF is not consistent if splits are performed to

purity. Thus, if trees are grown to purity so that only a single

observation resides in a terminal node, the probability

estimate is based on only a sample of size n = 1. Averaging

over a number of trees in the corresponding RF does not

necessarily generate correct probabilities. Therefore, some

impurity within the tree is required for consistency of RF. In

contrast, bagging over trees split to purity does return

consistency (Biau et al. 2008). In addition, bagged nearest

neighbors provide consistent probability estimates under

very general conditions (Biau and Devroye 2010; Biau et al.

2008). For the consistency of artificial neural networks and

kernel methods, the reader may refer to Györfi et al. (2002,

Ch. 6). The reader should, however, note that neural net-

works belong to the class of model-based approaches, and

the relationship between neural networks and regression

analysis has been well established (Sarle 1994).

The final question is whether consistent probability

estimates can be obtained under any sampling scheme. The

simple answer to this question is no. In fact, prospective

sampling, not case–control or cross-sectional sampling, is

required to guarantee unbiased probability estimates. This

1644 Hum Genet (2012) 131:1639–1654

123



has been considered in detail for the logistic regression

model by Prentice and Pyke (1979) and by Anderson

(1972). If the logistic regression model is applied to data

from a case–control study, the regression coefficients are

identical. Only the estimate of the intercept is different.

More specifically, the intercept a of the prospective likeli-

hood is a simple function of the intercept of the retrospec-

tive likelihood a*, and it is given by a = a* ? ln(p1/p0),

where p1 and p0 are the sampling proportions of cases and

controls, respectively, from the general population. Thus, if

the sampling proportions are known, probabilities can be

estimated as if the data came from a prospective study.

A similar function for relating prospective and retro-

spective study designs is unknown for machine-learning

approaches. Thus, the interpretation of probability esti-

mates from machine-learning approaches based on retro-

spective data is not necessarily consistent.

Examples for data analysis: genome-wide association

data on rheumatoid arthritis

Description and preparation of the data

To illustrate some of the methods described so far, we

applied them to a data set from a GWA study on

rheumatoid arthritis. This data set had been provided for

the Genetic Analysis Workshop 16 (Amos et al. 2009) and

comprises 868 cases and 1,194 controls who had been

genotyped on the Illumina 550k platform.

After exclusion of monomorphic SNPs and SNPs

showing deviation from Hardy–Weinberg equilibrium at

p \ 0.0001, 515,680 SNPs were available for further

analysis. Population stratification is known to be prevalent

in this data set (Hinrichs et al. 2009), and we accordingly

estimated the inflation factor k to be 1.39. Therefore, we

used multidimensional scaling with pruned SNPs to

obtain an unstratified subset of individuals. Exclusion of

617 subjects reduced k to 1.05 using the pruned SNPs.

Further analyses were thus based on 707 cases and 738

controls.

Missing genotypes were imputed using PLINK (version

1.07, Purcell et al. 2007) with default method and para-

meters. The entire HapMap (release 23, 270 individuals,

3.96 million SNPs) was utilized as reference panel for the

imputation. A negligible number of SNPs could not be

imputed, resulting in 506,665 SNPs with complete data for

further analysis.

To obtain independent data sets for rule construction and

rule evaluation, the data set was split into a training (476

cases and 487 controls) and a test data set (231 cases and

251 controls).

Table 2 Machine-learning approaches

Machine Reference

Single machines

Artificial neural networks (ANN) Arminger and Enache (1996); Sarle (1994); Zou et al. (2008)

Diagonal linear discriminant analysis (DLDA) Guo et al. (2007); McLachlan (2004)

k-nearest neighbors (kNN) Steinbach and Tan (2009)

Linear discriminant analysis (LDA) Guo et al. (2007); McLachlan (2004)

Logic regression Chen et al. (2011); Schwender and Ruczinski (2010)

Logistic regression (logReg) Hilbe (2009); Kleinbaum and Klein (2010)

Naı̈ve Bayes Hand (2009)

Quadratic discriminant analysis (QDA) Guo et al. (2007); McLachlan (2004)

Support vector machines (SVM) König et al. (2008); Noble (2006); Schölkopf and Smola (2002)

Tree-based methods: Breiman et al. (1984)

C4.5 Ramakrishnan (2009)

Classification trees Steinberg (2009)

Logistic regression tree with unbiased selection (LOTUS) Chan and Loh (2004); Loh (2011)

CRUISE, M5, QUEST Loh (2011)

Probability estimation trees (PETs) Provost and Domingos (2003); Steinberg (2009)

Regression trees Steinberg (2009)

Ensemble machines

Boosting Hastie et al. (2009); König et al. (2008)

Bootstrap aggregation (bagging) Breiman (1996); König et al. (2008)

Deterministic forest Zhang et al. (2003)

Random forest (RF) Breiman (2001); König et al. (2008); Malley et al. (2012); Schwarz et al. (2010)
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Fig. 3 a ROC curves for all methods in selected SNP sets in the test data. b ROC curves for Random Jungle in regression mode in all SNP sets in

the test data
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Construction of classification and probability

estimation rules

In the training data set, we performed single SNP analyses

using a trend test resulting in associations shown in Sup-

plementary Fig. 1. Based on a genome-wide significance

threshold of 5 9 10-8, 183 SNPs were associated with

disease status. Analyzed in the test data set, 65 SNPs of

these were again genome-wide significant.

To construct classification and risk scores in the training

data, we used the following approaches:

• ‘‘allele count’’: count the number of risk alleles over all

included SNPs for every person,

• ‘‘logOR’’: weight SNPs using respective log odds ratio

from single SNP analysis,

• ‘‘lasso’’: least absolute shrinkage and selection operator

(lasso) combining shrinkage of variable parameter esti-

mates with simultaneous variable selection by shrinking

some of the coefficients of the full model to zero

(Tibshirani 1996); extent of shrinkage was determined

using tenfold cross-validation to identify the parameter

with highest cross-validated classification accuracy,

Table 3 Areas under the curve for all scores in the training and test data

SNP selection Score AUC train (95 % CI) AUC test (95 % CI)

0.012 % Allele count 0.9075 (0.8898; 0.9252) 0.8644 (0.8320; 0.8968)

(63 SNPs) LogOR 0.8824 (0.8617; 0.9030) 0.8565 (0.823; 0.8900)

LogReg 0.9449 (0.9321; 0.9577) 0.8492 (0.8152; 0.8831)

Lasso 0.9433 (0.9303; 0.9563) 0.8511 (0.8174; 0.8849)

RJ-Reg 1.0000 (0.9999; 1.0000) 0.8883 (0.8599; 0.9167)

0.025 % Allele count 0.8964 (0.8770; 0.9158) 0.8527 (0.8189; 0.8866)

(125 SNPs) LogOR 0.8602 (0.8373; 0.8832) 0.8326 (0.7966; 0.8686)

Lasso 0.9573 (0.9464; 0.9683) 0.8604 (0.8279; 0.8928)

RJ-Reg 1.0000 (0.9999; 1.0000) 0.8877 (0.8591; 0.9163)

0.049 % Allele count 0.9288 (0.9132; 0.9444) 0.8510 (0.8168; 0.8852)

(249 SNPs) LogOR 0.8733 (0.8515; 0.8950) 0.8374 (0.8019; 0.8729)

Lasso 0.9824 (0.9763; 0.9885) 0.8622 (0.8298; 0.8945)

RJ-Reg 1.0000 (1.0000; 1.0000) 0.8925 (0.8644; 0.9206)

0.098 % Allele count 0.9548 (0.9436; 0.9660) 0.8565 (0.8230; 0.8900)

(496 SNPs) LogOR 0.8884 (0.8682; 0.9085) 0.8426 (0.8076; 0.8775)

Lasso 0.9960 (0.9939; 0.9981) 0.8555 (0.8228; 0.8882)

RJ-Reg 1.0000 (1.0000; 1.0000) 0.8914 (0.8631; 0.9198)

0.196 % Allele count 0.9742 (0.9659; 0.9824) 0.8248 (0.7881; 0.8615)

(991 SNPs) LogOR 0.9092 (0.8913; 0.9271) 0.8429 (0.8080; 0.8778)

Lasso 0.9987 (0.9979; 0.9996) 0.8495 (0.8155; 0.8834)

RJ-Reg 1.0000 (1.0000; 1.0000) 0.8902 (0.8617; 0.9188)

0.782 % Allele count 0.9075 (0.8898; 0.9252) 0.7251 (0.6803; 0.7700)

(3960 SNPs) LogOR 0.9616 (0.9513; 0.9719) 0.8456 (0.8110; 0.8802)

Lasso 1.0000 (1.0000; 1.0000) 0.8477 (0.8136; 0.8817)

RJ-Reg 1.0000 (1.0000; 1.0000) 0.8919 (0.8634; 0.9203)

3.125 % Allele count 0.9967 (0.9950; 0.9984) 0.6474 (0.5988; 0.6961)

(15,835 SNPs) LogOR 0.9982 (0.9970; 0.9982) 0.8340 (0.7977; 0.8340)

Lasso 1.0000 (0.9999–1.0000) 0.8586 (0.8257; 0.8916)

RJ-Reg 1.0000 (1.0000; 1.0000) 0.8829 (0.8534; 0.9124)

12.5 % LogOR 1.0000 (1.0000; 1.0000) 0.7984 (0.7590; 0.8378)

(63,334 SNPs) RJ-Reg 1.0000 (1.0000; 1.0000) 0.8854 (0.8563; 0.9146)

AUC area under the curve, CI confidence interval, Lasso least absolute shrinkage and selection operator, RJ-Reg Random Jungle regression

Allele count: score constructed based on number of risk alleles

LogOR: score constructed by weighting variants with respective log odds ratio from single marker analyses

LogReg: score constructed from logistic regression
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• ‘‘logReg’’: logistic regression model using the SNPs in

the smallest set (see below) simultaneously,

• ‘‘RJ-Reg’’: RFs in the regression mode using Random

Jungle (Schwarz et al. 2010); default parameters for

probability estimation were used with stopping at a

terminal node size of five to get consistent probability

estimators.

It should be noted that only the logReg, the lasso and the

RJ-Reg methods render probability estimates as scores,

whereas the logOR and the allele count method yield

continuous scores.

To vary the number of SNPs used in a specific score, we

performed a backstep iteration procedure within the RF

approach. Starting with the complete set of SNPs and then

within every iteration, the Liaw score was computed. Then,

the 50 % more important SNPs were kept iteratively for the

next step yielding successively smaller SNP sets. From

these, we selected eight different sets with the number of

SNPs ranging between 63 (0.012 %) and 63,334 (12.5 %),

where the last set was only used for the logOR and the

RJ-Reg method.

For a binary classification, we selected the threshold that

maximized the Youden index in the training data for the

scores based on allele count, logOR, logReg and lasso. For

RFs, Random Jungle was utilized in the classification

mode, again using default parameters but without pruning.

The resulting classification is termed ‘‘RJ-Class’’.

Evaluation of classification and probability estimation

rules

Every score applied to the training and test data was

evaluated in the test data by plotting ROC curves (Fig. 3a

showing methods across selected SNP sets and Fig. 3b

showing different SNP sets for RJ-Reg) and estimating

AUCs with 95 % CIs (Table 3). We compared the AUCs

within one methodological approach as well as within one

SNP set using the method by DeLong et al. (1988). The

detailed comparison results are given in Supplementary

Table 1.

Within the allele count method, we found that smaller

SNP sets yielded higher AUCs. The pattern was more

irregular for the logOR method; here, AUC was lowest for

the 0.025 and 0.049 % as well as for the 12.5 % SNP set. No

differences in AUC were observed for the lasso method.

Finally, for RJ-Reg, AUC was highest for medium SNP sets

with 0.049 to 0.782 % of the total number of SNPs.

On comparing the methods within one SNP set, we

found that overall, RJ-Reg led to higher AUCs than any of

the other methods in any SNP set. Furthermore, the allele

count method rendered a higher AUC than the logOR

method in the 0.025 % and the 0.049 % SNP sets, but was

worse than the lasso or the logOR method within the

0.782 % SNP set.

We estimated the Brier score that is based on the

squared differences between observed and predicted

probabilities. As this requires estimated probabilities, we

could only use this for the methods lasso and RJ-Reg, and

the results are shown in Fig. 4. It should be noted that this

analysis is for illustration only, since the comparison of

probabilities usually requires risk estimates from a pro-

spective study design.

For a binary classification, for every score, we selected

the threshold that maximized the Youden index in the

training data. Then, sensitivity and specificity were calcu-

lated with 95 % CIs according to Wilson (1927) and are

shown in Table 4. For a direct comparison between

methods and SNP sets in the test data, we calculated the

differences in the proportions of correctly classified sub-

jects with 95 % CIs using the method by Zhou and Qin

(2005).

The detailed results in Supplementary Table 1 show that

these analyses mostly mirror the results from comparing

the AUCs. The only remarkable difference was that for RJ-

Class, smaller SNP sets led to a better classification,

although for RJ-Reg, medium SNP sets had shown the best

AUC.

In summary, the prediction accuracy based on continu-

ous scores or probabilities was usually better when using

RJ-Reg as compared to the other methods. The number of

SNPs for an optimal prediction was dependent on the

method, whereas it played no role when using the lasso.
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Fig. 4 Brier scores for scores based on lasso or Random Jungle

regression in the test data
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Smaller SNP sets were better for the allele count method,

but a medium number of SNPs was optimal for the RJ-Reg.

Conclusions

Although based on one small data set, our analysis of a

GWA study on rheumatoid arthritis showed two things.

Firstly, when different SNP sets were compared, our results

did not substantiate previous results that using more SNPs

yielded better results; instead, our results indicated that the

best SNP set may depend on the actual method used for

rule construction. Secondly, in this data set, there was a

consistent advantage of using Random Jungle over other

methods.

In contrast, our literature review showed that machine-

learning algorithms have so far been underutilized. More-

over, when applied, their specific value with regard to

classification and probability estimation has usually not

been exhausted.

In line with this, we make a plea for clearer definitions

of the terms and study aims. Specifically, association,

Table 4 Sensitivity and specificity for all scores in the training and test data

SNP selection Score Sens train (95 % CI) Spec train (95 % CI) Sens test (95 % CI) Spec test (95 % CI)

0.012 % Allele count 0.8256 (0.7890; 0.8571) 0.8255 (0.7892; 0.8566) 0.7532 (0.6938; 0.8044) 0.8167 (0.7642; 0.8597)

(63 SNPs) LogOR 0.8025 (0.7644; 0.8358) 0.8029 (0.7652; 0.8358) 0.7489 (0.6892; 0.8005) 0.8247 (0.7729; 0.8667)

LogReg 0.8655 (0.8320; 0.8933) 0.8645 (0.8312; 0.8920) 0.7489 (0.6892; 0.8005) 0.7928 (0.7385; 0.8384)

Lasso 0.8676 (0.8342; 0.8952) 0.8686 (0.8357; 0.8957) 0.7403 (0.6801; 0.7925) 0.8008 (0.7470; 0.8455)

RJ-Class 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.7706 (0.7122; 0.8201) 0.8207 (0.7685; 0.8632)

0.025 % Allele count 0.8130 (0.7755; 0.8455) 0.8070 (0.7696; 0.8396) 0.7489 (0.6892; 0.8005) 0.8088 (0.7556; 0.8526)

(125 SNPs) LogOR 0.7689 (0.7290; 0.8045) 0.7700 (0.7306; 0.8052) 0.7143 (0.6529; 0.7687) 0.7610 (0.7045; 0.8095)

Lasso 0.8866 (0.8549; 0.9120) 0.8871 (0.8559; 0.9122) 0.7576 (0.6984; 0.8083) 0.8088 (0.7556; 0.8526)

RJ-Class 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.7662 (0.7076; 0.8162) 0.8207 (0.7685; 0.8632)

0.049 % Allele count 0.8529 (0.8183; 0.8819) 0.8583 (0.8245; 0.8865) 0.7532 (0.6938; 0.8044) 0.7968 (0.7427; 0.8419)

(249 SNPs) LogOR 0.7773 (0.7378; 0.8124) 0.7782 (0.7392; 0.8129) 0.7273 (0.6665; 0.7806) 0.7610 (0.7045; 0.8095)

Lasso 0.9328 (0.9066; 0.9520) 0.9322 (0.9064; 0.9513) 0.7532 (0.6938; 0.8044) 0.7968 (0.7427; 0.8419)

RJ-Class 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.7922 (0.7353; 0.8395) 0.8088 (0.7556; 0.8526)

0.098 % Allele count 0.8782 (0.8457; 0.9045) 0.8665 (0.8334; 0.8939) 0.7359 (0.6756; 0.7886) 0.8207 (0.7685; 0.8632)

(496 SNPs) LogOR 0.7983 (0.7599; 0.8319) 0.7967 (0.7587; 0.8301) 0.7316 (0.6710; 0.7846) 0.7649 (0.7087; 0.8132)

Lasso 0.9622 (0.9410; 0.9759) 0.9671 (0.9473; 0.9797) 0.7056 (0.6439; 0.7607) 0.8207 (0.7685; 0.8632)

RJ-Class 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.8009 (0.7446; 0.8473) 0.8048 (0.7513; 0.8491)

0.196 % Allele count 0.9223 (0.8947; 0.9431) 0.9138 (0.8855; 0.9356) 0.7143 (0.6529; 0.7687) 0.7849 (0.7299; 0.8312)

(991 SNPs) LogOR 0.8256 (0.7890; 0.8571) 0.8255 (0.7892; 0.8566) 0.7316 (0.6710; 0.7846) 0.7849 (0.7299; 0.8312)

Lasso 0.9790 (0.9618; 0.9885) 0.9795 (0.9626; 0.9888) 0.7056 (0.6439; 0.7607) 0.8406 (0.7903; 0.8807)

RJ-Class 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.7965 (0.7400; 0.8434) 0.7809 (0.7257; 0.8276)

0.782 % Allele count 0.9370 (0.9115; 0.9555) 0.9363 (0.9111; 0.9548) 0.6061 (0.5418; 0.6668) 0.7092 (0.6502; 0.7619)

(3,960 SNPs) LogOR 0.8971 (0.8665; 0.9213) 0.8973 (0.8672; 0.9213) 0.7143 (0.6529; 0.7687) 0.8127 (0.7599; 0.8562)

Lasso 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.6926 (0.6304; 0.7486) 0.8327 (0.7816; 0.8738)

RJ-Class 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.7792 (0.7214; 0.8279) 0.7610 (0.7045; 0.8095)

3.125 % Allele count 0.9685 (0.9487; 0.9808) 0.9671 (0.9473; 0.9797) 0.5455 (0.4810; 6084) 0.6175 (0.5561; 0.6755)

(15,835 SNPs) LogOR 0.9832 (0.9672; 0.9915) 0.9836 (0.9679; 0.9917) 0.7576 (0.6984; 0.8083) 0.7689 (0.7130; 0.8168)

Lasso 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.7792 (0.7214; 0.8279) 0.7928 (0.7385; 0.8384)

RJ-Class 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.7532 (0.6938; 0.8044) 0.7649 (0.7087; 0.8132)

12.5 % LogOR 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.6883 (0.6259; 0.7446) 0.7490 (0.6919; 0.7986)

(63,334 SNPs) RJ-Class 1.0000 (0.9920; 1.0000) 1.0000 (0.9922; 1.0000) 0.7446 (0.6847; 0.7965) 0.7769 (0.7214; 0.8240)

Sens sensitivity, CI confidence interval, spec specificity, Lasso least absolute shrinkage and selection operator, RJ-Class Random Jungle

classification

Allele count: score constructed based on number of risk alleles

Log OR: score constructed by weighting variants with respective log odds ratio from single marker analyses

LogReg: score constructed from logistic regression

Hum Genet (2012) 131:1639–1654 1649

123



classification and probability estimation can be different

aims of studies, require different methods, and result in

different interpretations.
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Appendix

Classification and regression trees, probability

estimation trees, and random forests for classification

and probability estimation

The overall goal of CART is to generate a decision tree that

classifies individuals correctly (Breiman et al. 1984). The

objective in the partitioning thus is to identify subgroups of

individuals who are increasingly homogeneous with

respect to their outcome. The overall goal of PET is sim-

ilar, but a decision tree is generated for estimating the

response probabilities.

Beginning at the root node with the entire sample of

patients, one follows the stem to its branches. At each node

of the tree, the sample is split, until, in the last branches,

the subset of patients is relatively homogeneous. Details of

the CART algorithm are described, e.g., in König et al.

(2008) or Steinberg (2009), and the PET procedure is

almost identical. Here, we sketch the CART procedure.

Beginning with the entire data as the first node, the

feature space is partitioned into two branches. These in turn

become the nodes for the next partitioning. Trees are

grown to their maximal size and no stopping rule is

applied. Tree growing thus stops when no further splits are

possible because of lack of data. The maximal tree is then

pruned back to the root using the split with the least con-

tribution to the overall performance of the tree for pruning.

In the final step, the optimal tree is selected.

The final size of the trees is an important parameter in

the tree-growing process. The larger the tree, the more

difficult the results are to interpret. Smaller trees are easier

to understand, but they might not adequately reflect com-

plex data structures. Thus, larger trees exploit more of the

available information for accurate classifications, but tend

to overfit the data. Subsequently, there is loss in

generalization to new data. For PETs, the situation is worse

and the node probability estimates form a single tree can be

very misleading, irrespective of the tree size (Provost and

Domingos 2003; Steinberg 2009).

For the analysis of high-dimensional data, tree growing

to purity with subsequent pruning and tree selection is not

computer efficient. Algorithms not growing the tree to

purity, not using pruning and optimal tree selection would

be preferable. For computational speed-up, the growing

process might therefore be stopped when (Carayol et al.

2010; Malley et al. 2012):

1. only cases with the same outcome remain in every

child node,

2. all cases within every child node have identical

predictor variables,

3. an external limit on the depth or the complexity of the

tree has been reached,

4. the node size is just above or below a pre-defined

threshold, such as 5 or 10 % of all samples.

Two additional aspects of the tree-growing process are

important for the following considerations.

First, CART aims at maximizing the average purity of

the two child nodes in the partitioning step. Different

measures of purity, i.e., splitting criteria can be applied.

While the mean square error is generally used as splitting

criterion for regression trees, the misclassification error or

the Gini index is typically used. For classification trees, we

generally prefer the Gini index because of its functional

relation to the variance (Carayol et al. 2010), and for

probability estimation we use the mean square error

(Malley et al. 2012) as in regression trees.

Second, both CART and PET can be done using a single

tree. A new subject is dropped down the tree to its terminal

node, also termed leaf node. For classification, the new subject

is assigned the status of the majority of the subjects residing in

the terminal node. For example, if six cases and two controls

are in the terminal node of the new subject, the majority vote

says that the new subject gets a case assignment. For proba-

bility estimation, the proportion of cases divided by the total

sample size is determined and used as estimate. In the

example, the new subject is a case with a probability of

6/8 = 75 %. This approach traces back to Breiman et al.

(1984, Sect. 5.4), but PETs generally produce poor estimates

of class probabilities (Provost and Domingos 2003).

Although the procedure of growing trees is intuitive,

there are some disadvantages to CART and PET, and these

include the problem that the resulting trees have a high

variance. This means that small changes in the data can

result in extremely different trees, thus different interpre-

tations, distinct predictions for individual cases and widely

varying error fractions. Furthermore, PETs yield biased

probability estimates.
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The use of an ensemble of trees by creating a forest

generally leads to both improved classifications and prob-

ability estimates (Bauer and Kohavi 1999; Breiman 2001;

Buntine 1992; Provost and Domingos 2003; Provost et al.

1998). In fact, it can be shown that probabilities can be

estimated consistently from RF if some tree-building rules

are met (Biau et al. 2008; Malley et al. 2012); see

‘‘Machine-learning approaches for classification and

probability estimation’’.

We now describe the basic RF algorithm. As in Breiman

(2001), consider a training data set drawn from a sample of

independently identically distributed random variables,

where each subject i is a pair of a feature vector xi and a

dichotomous outcome yi. A test subject is dropped down

the tree in the usual RF manner and soon resides in a

terminal node. Under classification in RF (RF-Class), a

classification is made in each tree by taking a majority vote

in this terminal node of the tree. Under regression in RF

(RF-Reg), an estimate of the probability of y given the

features x is obtained. This is done by averaging the esti-

mated proportion of case observations in the training data

set over all trees in the forest. We stress that the terms RF-

Class and RF-Reg are not related to the split criteria used

for generating the RF, although the split criterion might

affect the performance of the RF. The general RF-Reg

procedure takes the following steps (Malley et al. 2012):

1. Consider a training data set of size n.

2. A bootstrap sample b consisting of n samples drawn

with replacement is drawn from the original training

data set. The samples left out due to the bootstrapping

process are called ‘out-of-bag’ (OOB) data.

3. A PET is grown using the bootstrap data set. For

splitting data, all splits of a random subset of features

are considered.

4. The PET is grown to the greatest extent possible but

requiring a minimum nodesize of k % of the sample. In

our applications, we tune the proportion of samples in the

terminal node (unpublished). No pruning is performed.

5. The proportion of cases in each terminal node of the

PET is determined.

6. Steps 2–5 are repeated to grow a specific number of trees,

ntree.

7. To estimate the probability of a new subject, it is

dropped down a tree until its final node. The propor-

tion of cases in this final node is determined. The

probability estimate is the proportion of cases averaged

over all ntree trees.

For RF-class, only steps 3 and 5 in the algorithm are

altered. Specifically, in 3 a dichotomous purity measure,

such as the Gini index is used instead of the MSE (Schwarz

et al. 2010). In step 5, the majority vote is taken in a

terminal node. Step 4 of the algorithm is not standard

because tree growing is stopped in some implementations

when C5 observations are left in the terminal node,

regardless of sample size, or they are grown to purity.

Several options are available with RFs, such as the

estimation of variable importance measures (Nicodemus

et al. 2010), the estimation of the most representative tree

(Banerjee et al. 2012) or the calculation of proximities

between subjects. For this, every subject is dropped down

each tree, and each pair of subjects is compared with regard

to the final stopping point. If they are classified into the

same final node in a single tree of the forest, the proximity

between them is increased by one. The resulting values can

be used to replace missing data and to identify outliers.
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