Table 2.
Machine-learning approaches
Machine | Reference |
---|---|
Single machines | |
Artificial neural networks (ANN) | Arminger and Enache (1996); Sarle (1994); Zou et al. (2008) |
Diagonal linear discriminant analysis (DLDA) | Guo et al. (2007); McLachlan (2004) |
k-nearest neighbors (kNN) | Steinbach and Tan (2009) |
Linear discriminant analysis (LDA) | Guo et al. (2007); McLachlan (2004) |
Logic regression | Chen et al. (2011); Schwender and Ruczinski (2010) |
Logistic regression (logReg) | Hilbe (2009); Kleinbaum and Klein (2010) |
Naïve Bayes | Hand (2009) |
Quadratic discriminant analysis (QDA) | Guo et al. (2007); McLachlan (2004) |
Support vector machines (SVM) | König et al. (2008); Noble (2006); Schölkopf and Smola (2002) |
Tree-based methods: | Breiman et al. (1984) |
C4.5 | Ramakrishnan (2009) |
Classification trees | Steinberg (2009) |
Logistic regression tree with unbiased selection (LOTUS) | Chan and Loh (2004); Loh (2011) |
CRUISE, M5, QUEST | Loh (2011) |
Probability estimation trees (PETs) | Provost and Domingos (2003); Steinberg (2009) |
Regression trees | Steinberg (2009) |
Ensemble machines | |
Boosting | Hastie et al. (2009); König et al. (2008) |
Bootstrap aggregation (bagging) | Breiman (1996); König et al. (2008) |
Deterministic forest | Zhang et al. (2003) |
Random forest (RF) | Breiman (2001); König et al. (2008); Malley et al. (2012); Schwarz et al. (2010) |