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This paper reviews the fundamental concepts and basic theory of
polarization mode dispersion (PMD) in optical fibers. It introduces
a unified notation and methodology to link the various views and
concepts in Jones space and Stokes space. The discussion includes
the relation between Jones vectors and Stokes vectors, rotation
matrices, the definition and representation of PMD vectors, the
laws of infinitesimal rotation, and the rules for PMD vector con-
catenation.

1. Introduction

In the more than 15 years since the introduction of the early
concepts (1, 2), the fundamentals of polarization mode dis-

persion (PMD) in optical fibers have become an important body
of knowledge basic for the design of high-capacity optical
communication systems. PMD effects are linear electromagnetic
propagation phenomena occurring in so-called ‘‘single-mode’’
fibers. Despite their name, these fibers support two modes of
propagation distinguished by their polarization. Because of
optical birefringence in the fiber, the two modes travel with
different group velocities, and the random change of this bire-
fringence along the fiber length results in random coupling
between the modes. With current practical transmission tech-
nology the resulting PMD phenomena lead to pulse distortion
and system impairments that limit the transmission capacity of
the fiber. Excellent reviews are available (3, 4), covering the
practical aspects and applications of PMD concepts to fiber
transmission systems and the effects of PMD on nonlinear fiber
transmission (5). In this review we aim to complement these
surveys and to collect and synthesize the fundamental concepts
and theory of PMD, interweaving and linking the principal laws
and key formulas that appear scattered in various places in the
literature. We will explore the connection between frequency-
domain and time-domain analyses and the isomorphic relation
between the three-dimensional (3-D) view using real-valued 3-D
Stokes vectors and the two-dimensional (2-D) view using com-
plex-valued 2-D Jones vectors. Isomorphic pairings of operators
such as these have been widely used elsewhere in physics such as
in mechanics (6), in quantum mechanics (7), and even in the
unification of quantum theory and general relativity (8). We
borrow this methodology for our purposes.

As a preparation, we will first examine the description of
polarization of light in the 3-D space of Stokes vectors (Stokes
space) and the 2-D space of Jones vectors (Jones space, defined
by the transverse coordinates x and y in the laboratory). Pauli
spin matrices and spin vectors are the key to connect these two
spaces and will be discussed in Appendix A, together with the
necessary spin vector algebra. Because propagation through the
fiber rotates the Stokes vectors of the light, we devote the
following section to the rotation matrices in both Stokes and
Jones space—i.e., the Lie groups SU(2) and SO(3) (9). Next, we
examine the PMD vectors and principal states of polarization
(PSPs) used to describe light propagation in randomly birefrin-

gent fibers and the associated differential group delay (DGD).
We do this for a variety of representations and establish their
connections. Several laws of infinitesimal rotation have been
very valuable for visualizing PMD effects in Stokes space. Their
connection to PMD vectors will be discussed. Finally, we review
the various rules for PMD vector concatenation valuable for
analyzing PMD of concatenated pieces of fiber. These rules
appear in sum, integral, and differential form.

2. Notation
The unified view to which we aspire requires a unified notation.
We attempt to keep our notation simple and transparent while
linking to the notation already established as much as possible.
The following is an abbreviated listing of our notation:

x, y, z: fiber coordinates; z is the direction of propaga-
tion; x and y are the transverse coordinates—i.e.,
those of Jones space.

ej(v0t2bz): continuous wave traveling in the z direction; j is
the imaginary unit, v0 the angular carrier fre-
quency, t time, and b the propagation constant.

E, Ẽ: electric field vectors; Ẽ(v) is the Fourier trans-
form of the complex transverse (x, y) electric
field vector E(t) and has a complex amplitude e
such that

Ẽ 5 eus&. [2.1]

The vector of the real electric field is Re(Eejv0t).

v: deviation from the angular carrier frequency v0
of the light. The optical frequency is (v0 1 v).

us&: 2-D complex Jones (column) ket vector, us& 5
(sy

sx). The bra ^su indicates the corresponding
complex conjugate row vector—i.e., ^su 5 (s*x,
s*y). The bra–ket notation is used to distinguish
Jones vectors from Stokes vectors. Our Jones
vectors are all of unit magnitude—i.e., ^sus& 5 s*xsx 1
s*ysy 5 1.

ŝ: 3-D Stokes vector of unit length indicating the
polarization of the field, and corresponding
to us&. The component of ŝ are the Stokes
parameters.

Abbreviations: PMD, polarization mode dispersion; 3-D and 2-D, three- and two-
dimensional; PSP, principal state of polarization; DGD, differential group delay.
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s1 5 sxs*x 2 sys*y

s2 5 sxs*y 1 s*xsy [2.2]

s3 5 j~sxs*y 2 s*xsy!.

By this definition, s3 5 1 for right-circular po-
larized light (sy 5 jsx) conforming with the
traditional optics definition (10). However, left-
circular definitions are also used in the literature
(11). We always use the same letter symbols for
corresponding Jones and Stokes vectors. Note
that a common phase shift of both components
of us& does not change ŝ.

I: 232 or 333 identity matrix. The distinction
should be clear from context.

T: 232 unitary transmission matrix in Jones space.
Relates output to input via

ut& 5 Tus&. [2.3]

We use the symbols s and t when necessary for
clarity to designate respective input and output
quantities, as illustrated in Scheme 1.

U: 232 Jones matrix, with det(U) 5 1. Related to T by

T 5 e2jf0U, [2.4]

where f0 is the common phase.

R: 333 rotation matrix in Stokes space isomorphic
to U. Relates output to input via

t̂ 5 Rŝ . [2.5]

s1, s2, s3: 232 Pauli spin matrices, for our purposes de-
fined as

s1 5 S1 0

0 21D , s2 5 S0 1

1 0D , s3 5 S0 2j

j 0 D . [2.6]

sW : Pauli spin vector in Stokes space, sW 5 (s1, s2, s3).

bW zsW : 232 matrix in Jones space, bW zsW 5 b1s1 1 b2s2 1 b3s3.

bW : 3-D birefringence vector in Stokes space describ-
ing local fiber properties.

tW: our output PMD vector in Stokes space. Its length
t is the DGD, and its direction is that of the Stokes
vector of the slow principal state. In a commonly
used notation introduced by Poole (2, 3), the
output PMD vector is labeled VW ; its length, also the
DGD, is labeled Dt. The two PMD vectors tW and VW
are related by inversion through the s3 axis, for
reasons discussed in Appendix B in the supplemen-
tal data at www.pnas.org.

p̂, q̂, r̂: unit Stokes vectors; p̂ and q̂ are sometimes used
to describe the polarization of the slow and fast

principal states, respectively, while r̂ is used for a
rotation axis.

Subscript v: indicates differentiation—i.e., dsydv 5 sv.

3. Jones and Stokes Vectors
This preparatory section deals with the representation of polar-
ization in Jones and Stokes spaces and the connection between
the two. Throughout this paper we assume that there is no fiber
nonlinearity and no polarization-dependent loss, and that the
usual loss term of the fiber has been factored out so that we can
deal with unitary transmission matrices, T and U, and 3-D
rotation matrices, R,

TT † 5 I; UU† 5 I; RR† 5 I, [3.1]

where the dagger denotes the Hermitian conjugate. Note that R
has real elements, hence R† is simply the transpose of R. The
input and output field components Ẽs(v) and Ẽt(v) at frequency
v are related by

Ẽt 5 T~v!Ẽs . [3.2]

After dropping the field magnitudes and using the unit Jones
vectors (12) to describe the state of polarization this becomes

ut& 5 Tus&, [3.3]

where us& and ut& include phase and polarization information.
The Pauli spin matrices allow us to write the components si of

the Stokes vector corresponding to us& in the compact form (11)

si 5 ^susius&. [3.4]

With the spin vector sW (9, 13) the Stokes vector is, simply,

ŝ 5 ^susW us&. [3.5]

In the following we discuss several useful connections between
the Jones and Stokes vectors, particularly the projection oper-
ator, dot products, and vector superpositions.

As a preparation, recall that the scalar product of two Jones
vectors up& and uq& is

^qup& 5 q*x px 1 q*y py , [3.6]

and that their dyadic operator is

up&^qu 5 Spx q*x px q*y
py q*x py q*y

D . [3.7]

From Eqs. 3.6 and 3.7 one can see that

Tr~up&^qu! 5 ^qup&, [3.8]

where Tr stands for the trace operator.

Projection Operator. As shown in Appendix A, any complex 232
matrix can be expanded in terms of the unit matrix I and the
three spin matrices (7, 11). For Hermitian matrices, the coeffi-
cients are real. We will have several occasions to use this
technique, perhaps the most useful being an examination of the
projector us&^su of a Jones vector us&. The result of such an
expansion is the surprisingly simple relation

us&^su 5
1
2

~I 1 ŝ zsW !, [3.9]

where ŝ is the Stokes vector corresponding to us& and where we
use Eqs. A.8, A.9, and 3.8 in the form Tr(sius&^su) 5 ^susius& 5 si.
After multiplication with us&, Eq. 3.9 becomes

us& 5 ŝ zsW us&. [3.10]

Scheme 1. Block diagram of optical fiber under test.
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Eq. 3.10 shows another important connection between Jones and
Stokes vectors: the Jones vector us& is an eigenvector of ŝzsW with
unit eigenvalue.

Dot Products. An immediate application of the projector rule 3.9
is the establishment of a connection between the dot (scalar)
products of two Jones vectors up& and uq& and of their associated
Stokes vectors p̂ and q̂. We use 3.9 with s 5 p and multiply by
uq& from the right and ^qu from the left, obtaining

^qup&^puq& 5
1
2

~1 1 p̂zq̂!. [3.11]

A well-known special case of this connection is a pair of
orthogonal Jones vectors with ^qup& 5 0. Their Stokes vectors are
antiparallel—i.e., q̂ 5 2p̂. In the following we will label such
pairs of orthogonal Jones vectors, with antiparallel Stokes vec-
tors, as up& and up2&, for example. Any such pair forms a complete
orthogonal set in Jones space, since we have

^p2up& 5 0 and up&^pu 1 up2&^p2u 5 I, [3.12]

where the second (completeness) relation follows from 3.9.
Let us now look at a pair of input Jones vectors ups&, uqs& and

the transmitted vectors upt&, uqt& at the fiber output. They are
related by Eq. 3.3. Using Eqs. 3.1 and 3.3, it is easy to show that
the input and output dot products are preserved—i.e.,

^ptuqt& 5 ^psuqs&. [3.13]

When 3.13 is inserted in 3.11, we see that the magnitude of
Stokes dot products is also preserved on transmission: i.e.,
transmission through the fiber is represented by a rotation of the
Stokes vectors. This rotation property is, of course, a direct
consequence of the orthogonality 3.1 of the matrix R.

Vector Superposition. Here we consider a Jones vector us& repre-
sented as a superposition

us& 5 aup& 1 bup2& [3.14]

of any two orthogonal vectors up& and up2&. How is this super-
position mirrored in Stokes space? For the complex constants a
and b, using Eqs. 3.12 and 3.14, we have

a 5 ^pus&; b 5 ^p2us&; ^sus& 5 1 5 aa* 1 bb*. [3.15]

The Stokes vectors of us&, up&, and up2&, are ŝ, p̂, and 2p̂. Inserting
3.14 into 3.5, one gets

ŝ 5 ~aa* 2 bb*!p̂ 1 ab*^p2usW up& 1 a*b^pusW up2&. [3.16]

Combining the eigenvector relation 3.10 and the spin vector rela-
tion A.3, we find that ^p2usW up& 5 ^p2usW(p̂zsW)up& 5 jp̂ 3 ^p2usW up& can
be expressed by two real-valued Stokes vectors p̂2 and p̂3 in the form
^p2usW up& 5 p̂2 1 jp̂3, where p̂, p̂2, and p̂3 are a right-handed
orthogonal set in Stokes space. Thus Eq. 3.16 becomes

ŝ 5 ~aa* 2 bb*!p̂ 1 ~ab* 1 a*b!p̂2 1 j~ab* 2 a*b!p̂3 , [3.17]

representing a 3-D superposition in Stokes space. Note the
similarity to Eq. 2.2: The two Jones vectors corresponding to
polarization along the x and y axes form just such an orthogonal
pair. In general, the vector p̂ defines an axis on the Poincaré
sphere. Jones vectors with equal power split aa*ybb* between
up& and up2& appear on a circle perpendicular to this axis. The
phase difference between the superposition coefficients a and b
determines the azimuth on that circle.

4. Rotational Matrix Expressions
We have noted above that the change of the polarization of light
on transmission through a fiber can be described as the rotation
of its Stokes vector. There are matrix forms that highlight these
rotational properties—i.e. the rotation axis r̂ and the rotation
angle w. These matrices are basic for an understanding of PMD
fundamentals, and they have been used for the measurement of
PMD vectors in the laboratory (14). We devote this section to a
discussion of several expressions for such matrices in both Jones
and Stokes space. First we establish a general connection
between the matrices U and R of the two spaces, corresponding
to the special unitary and special orthogonal Lie groups SU(2)
and SO(3) (9).

Connection Between U and R. To derive this connection we use Eqs.
2.3, 2.4, 2.5, and 3.5 to write two expressions for the output
Stokes vector t̂

t̂ 5 Rŝ 5 ^suRsW us&; t̂ 5 ^tusW ut& 5 ^suU†sW Uus&. [4.1]

Since both expressions are valid for any input state us&, we can
extract from Eq. 4.1 the equation

RsW 5 U†sW U, [4.2]

which is the desired connection between the matrix R of Stokes
space and the Jones matrix U. Note that, even though det(U) 5
1, Eq. 4.2 does not determine the algebraic sign of U, which
causes some difficulty in the determination of U from experi-
mental results. The direct parallel of this sign uncertainty is the
double-valued spinor representation of SO(3) in quantum me-
chanics (9).

Rotational Forms of the Jones Matrix. An input Stokes vector ŝ that
is collinear with the rotation axis r̂ of R will not be rotated upon
transmission through the fiber. The Jones vectors corresponding
to r̂ and 2r̂ are ur& and ur2&, which must therefore be the
eigenvectors of the corresponding U. Since ur& and ur2& constitute
a complete orthogonal set of Jones vectors, we can express U in
the form U 5 l1ur&^ru 1 l2ur2&^r2u, where l1 and l2 are its
eigenvalues. Since UU† 5 I and det(U) 5 1, the eigenvalues of
U must be of unit magnitude and their product must be unity.
Thus, we can write the Jones matrix U in the rotational form

U 5 e2jw/2ur&^ru 1 ejw/2ur2&^r2u. [4.3]

Using Eq. 3.9, with r replacing s, we can express Eq. 4.3 in the
alternate form

U 5 I cos~wy2! 2 j r̂ zsW sin~w/2!, [4.4]

where w is the rotation angle in Stokes space, as we shall see
below. This U also has the concise form

U 5 e2j~w/2! r̂ zsW [4.5]

(see Eq. A.12). To get from 4.5 to 4.4 entails the power series
expansion of the exponential in 4.5 followed by the use of
(r̂zsW )2 5 I to reduce the result to 4.4. Recall that ur& and ur2& are
the eigenstates of r̂zsW , with eigenvalues 1 and 21. Warning: the
reader should not confuse the eigenstates discussed here with
the principal states of PMD to be discussed in the next section.
Eigenstates of U have the same polarization at input and output.
Only for very special cases, such as phase plates, are these
eigenstates the same as the principal states.

Rotational Forms in Stokes Space. Here we use the relation 4.2 to
convert the rotational form 4.4 of the Jones matrix U into the
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isomorphic form for the matrix R in Stokes space. We insert 4.4
into the right-hand side of 4.2 and obtain

U†sW U 5 ~cos w!sW 1 ~1 2 cos w! r̂ ~ r̂ zsW ! 1 ~sin w! r̂ 3 sW , [4.6]

having made use of the spin vector rules A.3, A.4, A.7, and A.13
to simplify the resulting expressions. Comparison of 4.6 with 4.2
yields the rotational form of R

R 5 ~cos w!I 1 ~1 2 cos w! r̂ r̂ 1 ~sin w! r̂ 3,

5 r̂ r̂ 1 ~sin w! r̂ 3 2 ~cos w!~ r̂ 3!~ r̂ 3!, [4.7]

where the 3-D dyadic r̂ r̂ is the projection operator and r̂3 is the
crossproduct operator

r̂ r̂ 5 1
r1r1 r1r2 r1r3

r2r1 r2r2 r2r3

r3r1 r3r2 r3r3
2 ; r̂ 3 5 1

0 2r3 r2

r3 0 2r1

2r2 r1 0
2 . [4.8]

One can see from 4.7 that for any Stokes vector ŝ, Rŝ represents
a right-handed rotation of ŝ through an angle w about the
direction r̂. The Muller Matrix method for measuring PMD
vectors uses this form for extracting rotation axis and angle from
measured data for R (14).

The elegant compact expression for U given in Eq. 4.5 has an
isomorphic counterpart in Stokes space (15) in

R 5 ew~ r̂3!. [4.9]

Here the argument of the exponential is a 333 matrix operator.
To prove the equivalence of this form with 4.7 one uses the power
series expansion of the exponential, and the identities

~ r̂3!~ r̂3! 5 2I 1 r̂ r̂; ~ r̂3!~ r̂3!~ r̂3! 5 2 r̂3 [4.10]

to collect the terms appearing in this expansion.

Elementary Rotations. Elementary rotations (6) in Stokes space
are those that rotate the Stokes vectors around the 1, 2, and 3
axes of the Poincaré sphere. The matrices describing those are
special cases of 4.4 and 4.7. We call them U1, U2, U3 and R1, R2,
R3. In 4.4, r̂zsW reduces to si, yielding

Ui 5 I cos w/2 2 jsisin w/2, i 5 1, 2, 3, [4.11]

while in 4.7 only ri 5 1 is different from zero. The elements of
Ui and Ri are listed in Table 1.

Note that U1 and R1 describe the rotation caused by a
birefringent phase plate with the slow principal axis aligned with
the x-axis in Jones space. U2 and R2 correspond to a phase plate

set at 45° angle in Jones space. U3 and R3 describe a rotation by
wy2 around the z-axis.

5. PMD Vectors
PMD phenomena in optical fibers typically used for communi-
cations occur because of the presence of birefringence in the
fiber. This birefringence changes randomly along the fiber length
(3, 4). It stems from asymmetries in the fiber stress and geom-
etry, such as elliptical cross sections, microbends, or microtwists.
Often such a fiber is visualized or modeled as a sequence of
random birefringent sections whose birefringence axes and
magnitude change randomly with z (along the fiber). There are
different manifestations of PMD depending on the view taken.
In the frequency domain view one sees, for a fixed input
polarization, a change with frequency v of the output polariza-
tion. In the time domain one observes a mean time delay of a
pulse traversing the fiber which is a function of the polarization
of the input pulse. The two phenomena are intimately connected.

There exist special orthogonal pairs of polarization at the
input and the output of the fiber called the PSPs. Light launched
in a PSP does not change polarization at the output to first order
in v. These PSPs have group delays, tg, which are the maximum
and minimum mean time delays of the time domain view. The
difference between these two delays is called the DGD. Typical
mean values of the DGD are 1 to 50 ps for a 500-km long fiber,
depending on fiber type. The PMD vector tW describes both the
PSPs and the DGD in the fiber. It is a Stokes vector pointing in
the direction of the slow PSP with a length equal to the DGD.

Some insight into the PMD problem can be had simply by
contemplating a piece of polarization-maintaining fiber. Its PSPs
are the polarizations along the principal axes of birefringence of
the fiber. In this case the two axes can be treated separately, and
in general have different phase shifts f and different group
delays dfydv. One can see that the different values of f(v) will
also produce changes in the output state of polarization as a
function of frequency unless the input is launched in one of the
PSPs. It may seem surprising that PSPs occur in a fiber exhibiting
random birefringence as a function of z. However, they do, as
discovered by Poole and Wagner (2). The DGD grows roughly
as the square root of the length of fiber, as is characteristic of a
random walk problem. This section is devoted to the discussion
of the PMD vectors.

We will discuss four mathematical expressions for the PMD
vector, one based on Jones matrix eigenanalysis, one on s-ex-
pansion, one on time domain moments, and one on Müller
matrices. These expressions correspond to four different yet
closely related views of PMD and form the basis for different
experimental approaches, such as time-domain and frequency-
domain PMD measurements.

Jones Matrix Eigenvector Analysis. The analysis of Poole and
Wagner (2) is based on the Jones matrix U and the frequency-
domain view, identifying the group delay of a narrow-band pulse
propagating through the fiber with the frequency derivative of
the phase of the field. As is the case for polarization-maintaining
fiber, they found two output polarization states t̂ that do not
change to first order in frequency. These states have different
group delays, and also exhibit the maximum and minimum mean
time delays for narrow-band pulses of arbitrary input polariza-
tion. Note that our PMD vector tW is defined for right-circular
Stokes space, while the widely used PMD vector VW of Poole et
al. (2, 3) is defined for left-circular Stokes space. The connection
between tW and VW is detailed in Appendix B in the supplemental
data at www.pnas.org. We have chosen the symbol tW as appro-
priate for a quantity with the dimension of time.

According to Eqs. 2.3 and 3.3 we have a transmission equation

ut& 5 e2jf0Uus&, [5.1]

Table 1. Elementary rotations

Rotation
axis Jones matrix Stokes space rotation

1 U1 5 Se2jwy2 0
0 e jwy2D R1 5 S1 0 0

0 cos w 2 sin w
0 sin w cosw

D
2 U2 5 S cos wy2 2 jsin wy2

2 jsin wy2 cos wy2 D R2 5 S cos w 0 sin w
0 1 0

2 sin w 0 cos w
D

3 U3 5 Scos wy2 2 sin wy2
sin wy2 cos wy2 D R3 5 Scos w 2 sin w 0

sin w cos w 0
0 0 1

D
4544 u www.pnas.org Gordon and Kogelnik



relating the input and output Jones vectors us& and ut&. As pulses
are described by wave packets with a finite frequency band, we
need to consider the frequency dependence of ut&. We assume
fixed input polarization and phase—i.e., us&v 5 0 (hence ŝv 5 0),
as is appropriate for a simple pulse entering the fiber at time
zero. By differentiating 5.1 and eliminating us&, we obtain for the
change of the output Jones vector

ut&v 5 2j~df0ydv 1 jUvU†!ut&. [5.2]

Eq. 5.2 tells us that for most input polarizations, the output
polarization will change with frequency in first order. The
frequency derivative of the common phase f0 identifies a mean
group delay t0 common to all polarizations

t0 5 df0/dv. [5.3]

Poole et al. (2, 3), in effect, noted that if ut& is either of the two
orthogonal eigenstates of the operator jUvU†, then t̂v 5 0, and
so ut&v should be expressible in the form

ut&v 5 2j~df/dv!ut&, [5.4]

where f is the phase of ut&. We show below that the operator
jUvU† is Hermitian and that its trace is zero. Thus its eigenvalues
are real and add to zero. We designate them t/2 and 2t/2.
Comparing 5.2 with 5.4, identifying df/dv in 5.4 with a group
delay tg, and using 5.3, we get the two values of group delay

tg 5 t0 6 t/2. [5.5]

The eigenstate of jUvU† associated with the larger value of group
delay we designate up&, so that the orthogonal eigenstate having
the smaller value of group delay becomes up2&. The slow PSP, up&,
thus satisfies the Jones matrix eigenvector equation

1
2

tup& 5 jUvU†up&. [5.6]

According to 5.5 the DGD is t. Since the determinant of a
Hermitian matrix is the product of its eigenvalues, we have
det(jUvU†) 5 2t2/4. From this, noting that det(U) 5 1, we can
extract an expression for t, namely

t 5 2Îdet Uv. [5.7]

The PMD vector tW is the Stokes vector of up& multiplied with the
DGD

tW 5 tp̂. [5.8]

Pauli Spin Matrix Expansion. We now pause to examine the
operator jUvU†. Differentiation of the unitary condition 3.1
yields the relation

jUvU† 5 2jUUv
† . [5.9]

Since the Hermitian conjugate of the product of two operators
is the product of the Hermitian conjugates of the individual
operators taken in the opposite order, we see that the matrix
product jUvU† is Hermitian. We also have det(U) 5 1. Consider
the expansion

U~v 1 dv! 5 U 1 dvUv 5 ~I 1 dvUvU†!U. [5.10]

Since the determinant of the product of two matrices is the
product of their determinants, and det(U) 5 1, one can see that
det(U(v 1 dv)) 5 1 also only if the trace of UvU† is zero. This
is the argument necessary to arrive at 5.5. Given these properties
of jUvU†, and its eigenvalues 6t/2, it follows that it can be
written in the form

jUvU† 5
1
2 S t1 t2 2 jt3

t2 1 jt3 2t1
D 5

1
2

tW zsW , [5.11]

where the last expression is in the spin vector form. To show that
5.11 and 5.8 identify the same vector tW, we substitute 5.11 into the
eigenvalue equation 5.6, yielding

~tW zsW !up& 5 tup&. [5.12]

In view of 3.10, we observe that tW 5 tp̂, as in 5.8, is the solution
of 5.12. The s-expansion of the Jones matrix product of 5.11 is,
thus, a very practical tool, because it yields the PMD Stokes
vector components as the coefficients of the expansion.

In Section 4 we derived the spin vector expansion of a Jones
matrix U in terms of the rotational variables r̂ and w. By
substituting 4.4 into 5.11 we can gain an expression for tW in terms
of these variables and their frequency derivatives. The result,
using the spin vector rules A.5 and A.6 to reduce the intermediate
factors, and the identity r̂vzr̂ 5 0, is

tW 5 wv r̂ 1 sin w r̂ v 2 ~1 2 cos w! r̂ v 3 r̂ . [5.13]

When U is given in the Caley/Klein form

U 5 S a b
2b* a*D [5.14]

we obtain the DGD from 5.7 as (2)

t 5 2Îava*v 1 bvb*v, [5.15]

and for the components ti

t1 5 2j~ava* 1 bvb*!
[5.16]

t2 5 2 Im~avb 2 bva!

t3 5 2 Re~avb 2 bva!.

Input and Output PMD Vectors. The above discussion has focused
on expressions for the PMD vector at the fiber output. There are
practical cases where the corresponding PMD vector at the input
is needed. This can be obtained by a simple transformation. We
distinguish input and output quantities by the subscripts s and t
(see Fig. 1). The relation between the PSPs ups& and upt& is
governed by 3.3, which transforms the Jones vectors of the PSPs
in the form

upt& 5 Tups&. [5.17]

Matrices Ms operating on vectors at the input transform to
output matrix operators Mt 5 TMsT†. Applying this transfor-
mation to the matrix tW zsW gives

tWszsW 5 U†tW tzsW U 5 2jU†Uv , [5.18]

where we have used 5.11 and T 5 e2jf0U. Thus, the components
of the input PMD vector tWs are the coefficients of the s-expan-
sion of the matrix product U†Uv. As the PMD vectors are Stokes
vectors they are transformed by the Müller rotation matrix R
isomorphic to U (see Eq. 4.2) as

tW t 5 RtWs . [5.19]

Moments and Mean Signal Delay. Moments are widely used to
characterize pulse transmission, and they have also been applied
to PMD phenomena (15–18). Here we describe their use for
determining and defining PMD vectors. One should note that
moments are very appropriate for the description of signal delays
in systems involving two (or more) modes of propagation such as
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those involving PMD effects, whereas concepts such as group
velocity and group delay have a strict definition for an individual
mode only. The PMD phenomenon can split an input pulse into
two or more pulses at the fiber output, leading to polarization-
dependent pulse shapes. To maintain our awareness of this
complexity we use the word ‘‘signal’’ for the output rather than
‘‘pulse.’’

To prepare for the discussion of moments we represent a
signal at fiber position z by the complex field vector E(z, t) in the
time domain and by its Fourier transform Ẽ(z, v) in the fre-
quency domain. The tilde distinguishes between them.

E 5
1

Î2p
EdvẼejvt; Ẽ 5

1
Î2p

EdtEe2jvt, [5.20]

where all integrals extend from 2` to 1`. Let the fields be
normalized so that the energy in the pulse is

W 5 EdtE†E 5 EdvẼ†Ẽ, [5.21]

where the right equation is Parseval’s theorem.
The mean time tg(z) at which a signal passes location z is

defined by its center of gravity or first moment W1

tg 5 W1~z!yW. [5.22]

Using the convolution theorem, the first moment can be written
in either the time domain or the frequency domain

W1 5 EdtztzE†E 5 jEdvẼ†Ẽv . [5.23]

We now use the transmission and Jones matrices to express the
output field Ẽt in terms of the input Ẽs, Ẽt 5 T Ẽs, and use the
derivatives,

Ẽtv 5 TvẼs 1 TẼsv , [5.24]

Tv 5 ~2jt0U 1 Uv!e2jf0 5 2jU~t0I 1
1
2

tWszsW !e2jf0, [5.25]

to substitute in 5.22 and 5.23. Defining the mean signal delay tg

as the difference between the mean arrival times at output (t)
and input (s), one gets

tg 5 tgt 2 tgs 5 @W1t 2 W1s#yW 5
1
W E dvẼs

†~t0 1 jU†Uv!Ẽs ,

[5.26]

where t0 5 df0ydv as before. Substituting the s-expansion 5.18
for jU†Uv 5 1

2
tWszsW , the mean signal delay can be written in the

form

tg 5
1
W E dvẼs

†~t0 1
1
2

tWszsW !Ẽs . [5.27]

We proceed by representing the input field Ẽs by its complex
amplitude e, its unit Jones vector us&, and the corresponding
Stokes vector ŝ (see Eq. 3.5),

Ẽs 5 e~v!us&; ŝ ~v! 5 ^susW us&, [5.28]

where the signal energy becomes W 5 *dve*e. Inserting this
above, we obtain (15, 18) for the mean signal delay

tg 5
1
W E dve~v!e*~v!~t0 1

1
2

tWsz ŝ ! 5 ^t0~v!& 1
1
2

^tWs~v!z ŝ ~v!&.

[5.29]

where tWs is the input PMD vector as before. This expresses tg as
the spectral mean (denoted by the ^ & bracket) of the spectral
density e*e weighing t0(v) and the dot product between input
PMD vector tWs(v) and the input Stokes vector. This expression
for the mean signal delay is valid for any input pulse shape and
spectral variation of its polarization.

Specializing to frequency-independent input polarization ŝ
and a narrow pulse spectrum such that t0 and tWs can be regarded
constant over the signal band, 5.29 simplifies to (16)

tg 5 t0 1
1
2

tWsz ŝ . [5.30]

This agrees with 5.5, which was derived for the special case of
input polarizations aligned with the PSPs. Eq. 5.30 gives the
mean signal delay for any input polarization. Inputs at the PSPs
are seen to lead to the maximum and minimum delays tg. In fact,
the mean signal delay tg can be simply interpreted as the
power-weighted average of the two PSP delays. To see this,
consider the representation of the input polarization as the
superposition 3.14, us& 5 aup& 1 bup2&, of the PSPs. These delays
are (t0 6 ty2) and the power-weighted average delay is

tg 5 aa*~t0 1 ty2! 1 bb*~t0 2 ty2!. [5.31]

We can now use the dot-product rule 3.11 to show the equiva-
lence of 5.31 and 5.30. The simple form of 5.30 allows a
determination of the PMD vector tWs in the time domain (19).

The higher moments Wn 5 *dt tnE†E can be used to determine
further detail on the properties of transmitted pulses. The
second moment

W2~z! 5 Edt t2E†E~z! 5 EdvẼv
† Ev [5.32]

provides information about rms pulse spreading. Proceeding
along similar lines as above and the substitution of 5.24, we
obtain

W2t 2 W2s 5 Edv$Ẽs
†Tv

† TvẼs 1 ~Ẽs
†Tv

† TẼsv 1 cc!%. [5.33]

From 5.25 it follows that

Tv
† Tv 5 ~t0I 1

1
2

tWszsW !2 5 t0
2 I 1 t0tWszsW 1

1
4

ts
2 I, [5.34]

where we have used spin-vector rule A.8. To simplify 5.33 further
we use 5.28, assume frequency-independent input polarization
us&, and characterize the complex input amplitude e(v) by its real
amplitude a(v) and phase d(v)

e 5 aze2jd. [5.35]

The result is

W2t 2 W2s 5Edve*e$~t0ŝ 1
1
2

tWs!
2 1 2dv~t0 1

1
2

tWszŝ!%. [5.36]

For the special case of dv 5 0, this form agrees with the result
of Karlsson (15). This special case assumes freedom from
frequency chirp in the optical pulse and a symmetric pulse shape,
or, more precisely, that E*(2t) 5 E(t).
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Müller Matrix Expression for t¢. A fourth way of determining the
PMD vector uses Stokes space and the Müller (rotation) matrix
R isomorphic to U. The background for this will be given in
Section 6. For completeness we show the result here. It is

tW3 5 RvR†, [5.37]

where 3 denotes the cross-product operator as in 4.8.
This method relies on the determination of the rotation matrix

R and its derivative in the frequency domain.

6. Laws of Infinitesimal Rotation
The laws of rotation assume a particularly simple form when the
rotations are infinitesimally small—e.g., for a small change in
fiber length or frequency. These are well known in mechanics (6)
and are widely used in the related phenomena of PMD, coupled
modes of propagation, and two-waveguide systems (3, 20–24).
Here these laws allow simple geometrical interpretations in
Stokes space (on the Poincaré sphere). We shall discuss infini-
tesimal laws for the birefringence vector, the PMD vector, and
the dynamical PMD equation.

Birefringence Vector. Consider the change of the polarization
us&(z) of light at fiber location z due to a small length addition dz
of fiber. This change is influenced by the fiber’s local birefrin-
gence characterized by its effective relative dielectric tensor
«(z)—i.e., a cross-sectional average of the fiber characteristics
for the fiber mode of interest. The change is governed by the
wave equation for a spectral component of the effective trans-
verse field vector Ẽ(z) of the mode,

d2Ẽ
dz2 1 «k0

2 Ẽ 5 0, [6.1]

where k0 5 2pyl0 is the propagation constant of free space, and
l0 is the free-space wavelength. To proceed, we use a s-expan-
sion of the «-tensor of the form

«k0
2 5 b0

2I 1 b0bW zsW 5 b0
2 I 1 b0S b1 b2 2 jb3

b2 1 jb3 2b1
D , [6.2]

where b0 is the common propagation constant. The coefficients
bi of the expansion are the components of the local birefringence
vector bW (z) in Stokes space. This vector has the character of a
propagation constant and has been a useful tool in describing
birefringence in PMD phenomena (3, 22, 25) (see Appendix B in
supplemental data at www.pnas.org for the connection of bW to
the vector WW used in part of the literature). In addition to this
expansion we use an adiabatic approximation assuming that the
polarization, us&(z), and «(z) all vary slowly with z, and by setting

Ẽ 5 e2jb0zus&, [6.3]

where us& includes a slowly varying phase. We continue by
inserting 6.2 and 6.3 into 6.1. We drop the d2us&/dz2 term in
accordance with the adiabatic assumption and find the adiabatic
wave equation for the Jones vector us&(z),

dus&

dz
1

1
2

jbW zsW us& 5 0. [6.4]

The right-hand side of 6.2 shows the form of the fiber’s
dielectric tensor as expressed by the components bi of the
birefringence vector bW . It is apparent that optical activity (cir-
cular birefringence) is included in this description. For the
special case of linear birefringence aligned with the fiber’s x-axis
we have b2 5 b3 5 0 and b1 5 Dnk0, where Dn is the differential
refractive index. The corresponding ordinary and extraordinary

indices are

n 5 n0 6 Dny2. [6.5]

There is a close relationship between the birefringence vector
bW and the concept of a local normal mode used in the theory of
optical waveguides for the analysis of guides whose character-
istics change with length z, such as our «(z). At a given location
z0, the local normal modes are defined as the modes of a uniform
guide with the characteristics of location z0—i.e., a guide with
uniform «(z) 5 «(z0) in our case. Inserting this assumption into
6.1, we obtain the field of the two local normal modes Ẽ(z) 5
e2jbMzusM& whose polarization usM& does not change along the
length. Because of 3.10 we know that usM& must be an eigenvector
of bW zsW . The polarization of the local normal modes is, thus,
described by the Stokes vectors 6bW . The propagation constant
bM of the modes depends on their polarization in the form

bM 5 b0 1
1
2

bW z ŝ M 5 b0 6 b, [6.6]

assuming that b0 .. b.
We now return to the case of interest where bW (z) changes

along the fiber length z. To describe the change of polarization
with z we differentiate the Stokes vector ŝ 5 ^susW us& and obtain

d ŝ
dz

5
d^su
dz

sW us& 1 ^susW
dus&

dz
. [6.7]

Finally, we combine 6.4 and 6.7, use the spin vector rules A.6, A.7,
and A.13, and obtain the law of infinitesimal rotation for
birefringence

d ŝ
dz

5 bW 3 ŝ . [6.8]

Integration of 6.8 yields a formal expression for the Müller
matrix R of the fiber as in 2.5.

PMD Vector t¢. Here we consider the change of polarization at the
fiber output due to a small change in frequency v. The polar-
ization at the input is held constant. We start with Eq. 5.2 written
as

us&v 5 2j~t0 1 jUvU†!us& [6.9]

for the change of the output polarization us&v, where the sub-
script v indicates differentiation. The differential of the corre-
sponding Stokes vector is

ŝ v 5 ^suvsW us& 1 ^susW ~us&!v . [6.10]

Finally, we combine 6.9 and 6.10, using the s-expansion 5.11 for
the product UvU†, apply spin vector rule A.6, A.7, and obtain the
law of infinitesimal rotation

ŝ v 5 tW3 ŝ . [6.11]

The geometrical interpretation of this simple law is a rotation
of the output Stokes vector on the Poincaré sphere as v
changes. The rotation axis is the PSP p̂ and the rotation rate
is the DGD t.

The infinitesimal rotation law 6.11 allows us to express the
PMD vector in terms of the rotation (Müller) matrix R that
relates the input and output Stokes vectors ŝ(0) and ŝ(z) by
ŝ(z) 5 Rŝ(0). We differentiate this relation [while keeping the
input ŝ(0) fixed] and obtain

ŝ v~z! 5 Rv ŝ ~0! 5 RvR† ŝ ~z!. [6.12]
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Comparison of 6.11 and 6.12 yields the operator relationship

tW3 5 RvR†, [6.13]

which we have already listed in 5.37.

The Dynamical PMD Equation. The dynamical PMD equation
results from a combination of the infinitesimal rotation laws for
PMD and birefringence (22). It is the basis for the statistical
theory of PMD (23). Poole’s derivation starts by differentiation
of 6.8 with respect to v and of 6.11 with respect to z. The results
are combined by eliminating ­2ŝ/­z­v, and simplified by the
relation aW3(bW3cW) 5 bW(aW zcW) 2 cW(aW zbW), yielding

­tW

­z
3 ŝ 5 bW v3 ŝ 1 ~bW 3tW!3 ŝ . [6.14]

As this is valid for any ŝ, we can extract the included equation

­tW

­z
5

­bW

­v
1 bW 3tW . [6.15]

This is the dynamical PMD equation describing the evolution of
the PMD vector with distance. In the next section we shall see
that it is intimately connected to the powerful PMD concate-
nation rules.

7. PMD Vector Concatenation Rules
The PMD vector concatenation rules (13, 16, 22, 23, 26) are a
powerful set of simple tools that allow the determination of the
PMD vector of an assembly of concatenated fiber sections when
the PMD vectors of the individual sections are known. Among
their uses is the analysis of the evolution of the PMD vector with
fiber length (26), statistical PMD modeling (23), PMD simula-
tion, and the design of multisection PMD compensators. They
appear in a variety of related forms, including the sum, differ-
ential, and integral formulations for both the first-order and
second-order PMD vectors. As a preparation for the discussion
of these formulations, we shall first review the relations between
the output and input PMD vectors of a single fiber section.

Transformation of PMD Vectors. Consider a fiber section with
rotation matrix R and input and output Stokes vectors ŝ and t̂ as
shown in Scheme 2. The corresponding PMD vectors at input

and output are tWs and tW. They are related by

tW 5 RtWs , [7.1]

as discussed earlier (5.19). The expression for the output vector
tW in terms of R was already given in 6.13; it is

tW3 5 RvR†. [7.2]

As cross-product operators transform like matrices from output
to input we obtain the expression for the input PMD vector as

tWs3 5 R†~tW3!R 5 R†Rv . [7.3]

When higher-order PMD effects are considered, tW is usually
called the ‘‘first-order’’ PMD vector, its frequency derivative tWv

is the ‘‘second-order’’ PMD vector, the second derivative tWvv is
the ‘‘third-order’’ PMD vector, etc. The input/output transfor-
mation for the second-order PMD vectors tWsv and tWv is derived
by differentiating 7.1 and substituting 7.2, giving

tWv 5 RvtWs 1 RtWsv 5 RvR†tW 1 RtWsv 5 tW3tW 1 RtWsv ,

with the result

tWv 5 RtWsv . [7.4]

This shows that the input and output second-order PMD vectors
transform the same way as the first-order vectors of the section.
For the third-order PMD vectors one gets the somewhat more
complicated relationship

tWvv 5 RtWsvv 1 tW3tWv . [7.5]

PMD of Two Concatenated Sections. Here, we consider two con-
catenated fiber sections with rotation matrices R1 and R2 as
shown in Scheme 3. The output PMD vectors of each of the
individual sections are tW1 and tW2.

Our goal is to determine the output PMD vector of the combined
assembly. The rotation matrix R of the two-section assembly is
the matrix product

R 5 R2R1 . [7.6]

Combining this with 7.2, we find for the PMD vector tW of the
assembly that

tW3 5 RvR† 5 R2vR1R1
† R2

† 1 R2R1vR1
† R2

† . [7.7]

Now we recall that R1R1
† 5 I, apply 7.2 for the individual sections

as well as a transformation of matrix operators as in 5.18

~R2tW1!3 5 R2~tW13!R2
† [7.8]

to simplify 7.7 into the form

tW 5 tW2 1 R2tW1 . [7.9]

This is the basic concatenation rule. It can be generalized to
multiple sections as well as differentially small sections. It can
also be transformed to the input of the fiber, or, for that matter
to any desired fiber cross section. The rule is very similar to that
for impedances of a transmission line: to get the PMD vector of
an assembly, transform the PMD vectors of each individual
section to a common reference cross section and take the sum
of all those vectors.

The concatenation rule for the second-order PMD vector tWv

follows from 7.9 by differentiation and substitutions similar to
those above. One obtains

tWv 5 tW2v 1 R2tW1v 1 tW23tW . [7.10]

Scheme 2.

Scheme 3.
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The Differential Concatenation Rule. Here, we apply the two-section
concatenation rule to a long piece of fiber with output PMD
vector tW and a differentially small fiber addition of length Dz as
shown in Scheme 4.

We want to answer the question: How does tW(z) change due to
the differential addition of length Dz? The answer to this
question is already provided by the dynamical PMD equation
6.15. Our discussion will show that the latter is identical to the
differential form of the concatenation rule. It will establish a link
between this rule and the laws of infinitesimal rotation treated
in Section 6. For this purpose we need to determine the rotation
matrix RD and the PMD vector tWD of the differential addition Dz.
We use the local birefringence vector bW of the addition and the
law of infinitesimal rotation (6.8) and get for the change Dŝ of
the Stokes vector ŝ entering the element

D ŝ 5 DzbW 3 ŝ . [7.11]

In terms of RD, the output Stokes vector ŝ 1 Dŝ can be
expressed as

ŝ 1 D ŝ 5 RD ŝ . [7.12]

Comparison of 7.11 and 7.12 yields the desired expression for the
rotation matrix of the differential addition

RD 5 I 1 DzzbW 3. [7.13]

To obtain its PMD vector tWD we differentiate 7.13, apply 7.2, and
drop terms of second order in Dz with the result

tWD 5 DzzbW v . [7.14]

The PMD concatenation rule 7.9 for the addition of the differ-
ential fiber element is

tW 1 DtW 5 tWD 1 RDtW . [7.15]

Now we can insert 7.13 and 7.14, divide by Dz, and get

DtWyDz 5 bW v 1 bW 3tW , [7.16]

which is the dynamical PMD equation 6.15 on transition to
infinitesimal Dz.

The differential concatenation rule for the second-order
PMD vector is obtained along similar lines or by differentia-
tion of 7.16. It is

dtWvydz 5 bW vv 1 bW 3tWv 1 bW v3tW . [7.17]

Concatenation Rules for Many Sections. Consider now a fiber
consisting of m individual sections, which is sketched in Scheme 5.

The rotation matrices Rn and the output PMD vectors tWn of each
section are considered known. The PMD vectors tW and tWv of the
combined assembly can be determined by repeated application
of the two-section rules 7.9 and 7.10. The resulting expressions
simplify if we define the rotation matrix of the last m 2 n 1 1
sections as

R~m, n! 5 RmRm21 · · · Rn , [7.18]

where R(m, m) 5 Rm and R(m, m 1 1) 5 I, and the output
PMD vector of the first n sections as tW(n).

Using these definitions, the sum rules for the first- and
second-order PMD vectors of the assembly are

tW 5 O
n51

m

R~m, n 1 1!tWn , [7.19]

and

tWv 5 O
n51

m

R~m, n 1 1!$tWnv 1 tWn3tW~n!%. [7.20]

Integral Form of the Concatenation Rule. The above sums turn into
integrals when one makes the transition to infinitesimal sections
of length dz and uses the birefringence vector bW (z) to express the
PMD vector tW(z) of an infinitesimal section

tW~z! 5 DzbW v~z! [7.21]

as in 7.14. For a fiber of length L, we express the rotation from
z to L as R(L, z) corresponding to 7.18 and get the integral
formulations of the output PMD vectors at L as

tW~L! 5 E
0

L

dzR~L, z!bW v~z! [7.22]

and

tWv~L! 5 E
0

L

dzR~L, z!z$bW vv 1 bW v3tW~z, 0!%, [7.23]

where tW(z, 0) is the PMD vector for the piece of the fiber
extending from 0 to z.

Appendix A: Pauli Spin Matrices and Spin Vectors
In this section we give a brief review of the properties of the Pauli
spin matrices defined in Section 2 and of some key formulas for
the spin vectors sW which will be used in the main body of the
paper (9). The spin vector notation provides a convenient way of
dealing with the complex 232 matrices that occur in the Jones
matrix analysis of lightwave transmission. In addition it simplifies
the connection between the complex 2-D Jones vectors and their
corresponding real 3-D Stokes vectors. The spin matrices are
Hermitian and unitary—i.e.,

si 5 si
† and si

† 5 si
21 [A.1]

and have zero trace, Tr si 5 0. They obey the well-known
multiplication rules

si
2 5 I; sisj 5 2sjsi 5 jsk , [A.2]

where the indices (i, j, k) can be any cyclic permutation of (1, 2,
3). The spin vector notation consists of treating the three spin
matrices of Jones space as the three components of a vector in

Scheme 4.

Scheme 5.
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Stokes space. For example, the dot product aW zsW 5 a1s1 1 a2s2 1
a3s3 is a 232 matrix in Jones space. Thus, the spin vector sW
contains elements of both spaces, and is useful in examining their
connection. By using rule A.2, any function of the s matrices that
can be expanded in a power series can be reduced to an
expression linear in the s matrices and the unit matrix I. Useful
examples of such reductions, expressed in spin vector notation,
are

sW ~aW zsW ! 5 aW I 1 jaW3sW , [A.3]

~aW zsW !sW 5 aW I 2 jaW3sW , [A.4]

~aW zsW !~aW zsW ! 5 a2I, [A.5]

~aW zsW !~bW zsW ! 5 ~aW zbW !I 1 j~aW3bW !zsW , [A.6]

~aW zsW !sW ~aW zsW ! 5 2aW ~aW zsW ! 2 a2sW , [A.7]

where I is the 232 unit matrix and aW and bW are any vectors in
Stokes space, and a is the length of the vector aW . Although limited
space does not permit us to write out the detailed derivations for
the above, note that A.4 is the complex conjugate of A.3 and that
A.5 is a special case of A.6. Note also that aW zsW does not commute
with bW zsW unless aW3bW 5 0.

In general, any 232 matrix M may be expanded in the form

M 5 S a0 1 a1 a2 2 ja3

a2 1 ja3 a0 2 a1
D

5 a0I 1 a1s1 1 a2s2 1 a3s3

5 a0I 1 aW zsW [A.8]

with coefficients ai given by

a0 5
1
2

Tr~M!; ai 5
1
2
Tr~siM!, [A.9]

where to show A.9 we use A.2 along with Tr(I) 5 2 and Tr(si) 5
0. In A.8 we have used the spin vector sW to write the expansion
in compact notation. An illustrative example of A.8 is

S0 a
0 0D 5

a

2
~s2 1 js3!, [A.10]

which is intended to demonstrate its universality. Note that
the right-hand sides of A.3 through A.7 are matrices of the form
of A.8.

If M is Hermitian (M† 5 M), then the a coefficients in the
expansion A.8 are real. If M is unitary (M† 5 M21), then it can
be expressed in the form

M 5 exp~2jH! 5 I 1 ~2jH! 1 ~1y2!~2jH!2 1 · · · [A.11]

where H is a 232 Hermitian matrix, and the right-hand side is
the usual power series expansion of the exponent function (12).
If we express the matrix H of A.11 in the form A.8 with real
coefficients, we get for the unitary matrix

M 5 exp~2ja0!exp~2jaW zsW !

5 exp~2ja0!@I cos~a! 2 jâzsW sin~a!#, [A.12]

where aâ 5 aW . In A.12 the first form results because the unit
matrix I commutes with the others, and the last form results from
expanding exp(2jaW zsW ) in a power series and using A.5 to reduce
the result to a form linear in I and the Pauli matrices. It is easy
to show directly that if M has the form A.12, then M†M 5 I. Note
that if the trace of any matrix M is zero, then the coefficient of
I must be zero. Also, it is not difficult to show from A.12 that if
a unitary matrix M, such as U in the text, satisfies det(M) 5 1,
then the coefficient exp(2ja0) is restricted to the values 1 or 21.

A great practical value of the spin vector notation is that sW can
be converted into any Stokes vector (ŝ) by forming a quadratic
form as in 3.5. This simplicity carries to more complex expres-
sions such as in

^suaW zsW us& 5 aW z^susW us& 5 aW z ŝ
[A.13]

^suaW3sW us& 5 aW3^susW us& 5 aW3 ŝ , or

^suRsW us& 5 R^susW us& 5 Rŝ ,

where R is a 333 matrix. In the sense of A.13 it is often
appropriate to regard sW as an arbitrary vector in Stokes space.
For example, in the text we often use the fact that if aW zsW 5 bW zsW ,
it follows that aW 5 bW . This result also follows from A.8 and A.9,
since the vector components ai can be recovered from the dot
product aW zsW .
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