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Mouse mast cell protease 4 (mMCP-4), the mouse
counterpart of human mast cell chymase, is thought
to have proinflammatory effects in innate or adaptive
immune responses associated with mast cell activa-
tion. However, human chymase can degrade the pro-
inflammatory cytokine TNF, a mediator that can be
produced by mast cells and many other cell types. We
found that mMCP-4 can reduce levels of mouse mast
cell-derived TNF in vitro through degradation of
transmembrane and soluble TNF. We assessed the ef-
fects of interactions between mMCP-4 and TNF in vivo
by analyzing the features of a classic model of poly-
microbial sepsis, cecal ligation and puncture (CLP), in
C57BL/6J-mMCP-4-deficient mice versus C57BL/6J
wild-type mice, and in C57BL/6J-KitW-sh/W-sh mice
containing adoptively transferred mast cells that were
either wild type or lacked mMCP-4, TNF, or both me-
diators. The mMCP-4-deficient mice exhibited increased
levels of intraperitoneal TNF, higher numbers of peri-
toneal neutrophils, and increased acute kidney injury
after CLP, and also had significantly higher mortality
after this procedure. Our findings support the conclu-
sion that mMCP-4 can enhance survival after CLP at least
in part by limiting detrimental effects of TNF, and sug-

gest that mast cell chymase may represent an important
negative regulator of TNF in vivo. (Am J Pathol 2012, 181:

875–886; http://dx.doi.org/10.1016/j.ajpath.2012.05.013)

Sepsis is a complex and often fatal disorder that is con-
sidered to represent a dysregulated host response to
infection.1,2 There are approximately 750,000 cases of
sepsis per year in the United States, with mortality rang-
ing from 20% to 50%,3 but the factors responsible for the
pathology and fatal outcome of sepsis are not yet fully
understood. Accordingly, there is much interest in iden-
tifying additional molecules that promote or restrain the
excessive inflammatory response and other pathology
observed in this disorder.4

Mast cells are derived from hematopoietic progenitor
cells and are widely distributed in tissues. Mast cells are
best known for their roles in anaphylaxis, atopic asthma,
and other IgE-associated allergic disorders.5,6 In addition to
such detrimental roles, mast cells have been shown to have
a variety of beneficial functions in the host, including pro-
moting host resistance in certain models of bacterial or
parasite infection5,6 and enhancing resistance to certain
animal venoms.7–10 However, mast cell functions in such
settings may depend, in part, on the strain background of
the mice studied,11 and strain background can also influ-
ence the mast cell content of particular mediators, including
cytoplasmic granule-associated proteases.12,13

Mouse strain background also can importantly influ-
ence the outcome of cecal ligation and puncture
(CLP),14,15 a well-established and extensively used
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model of sepsis.16 For example, we found that C57BL/6
mice subjected to a severe model of CLP exhibited in-
creased intraperitoneal TNF levels and neutrophil num-
bers, and significantly reduced survival rates, compared
with (WB � C57BL/6)F1 mice (hereafter referred to as
WBB6F1 mice).15 These observations are consistent with
the hypothesis that the intense inflammatory response
that develops after CLP in C57BL/6 mice can contribute
to the increased mortality in this model of sepsis.

Individual mast cell-associated proteases have been
shown to contribute to effective host responses to bacterial
infections,17,18 either through the recruitment of inflamma-
tory cells19 or via the degradation of toxic mediators gen-
erated by the host in response to the infection.7,20 However,
the potential role of the mouse counterpart of human chy-
mase, mouse mast cell protease-4 (mMCP-4), during sep-
sis has not previously been investigated. Here, we report
evidence for a previously unsuspected role for mMCP-4 as
an anti-inflammatory protease that can contribute to re-
duced levels of TNF, diminished inflammation, and im-
proved survival after CLP.

Materials and Methods

Mice

C57BL/6-KitW-sh/� mice (KitW-sh/� mice)21 were a gener-
ous gift from Peter Besmer (Molecular Biology Program,
Memorial Sloan-Kettering Cancer Center and Cornell Uni-
versity Graduate School of Medical Sciences). We back-
crossed KitW-sh/� mice with C57BL/6J (B6J) mice for 11
generations to produce B6J-KitW-sh/� mice and inter-
crossed B6J-KitW-sh/� mice to produce mast cell-deficient
B6J-KitW-sh/W-sh mice. mMCP-4-deficient (Mcpt4�/�),22

TNF-deficient (Tnf�/�),23 and mMCP-4-deficient and TNF-
deficient (Mcpt4�/�Tnf�/�) mice on the C57BL/6J back-
ground were bred and maintained at the Stanford University
Research Animal Facility. C57BL/6J mice were purchased
from the Jackson Laboratory (Sacramento, CA). Unless
specified otherwise, all experiments were performed using
male mice that were 12 weeks old at the beginning of the
experiment. All animal care and experimentation was con-
ducted in accord with current National Institutes of Health
guidelines and with the approval of the Stanford University
and the Seattle Children’s Research Institute Institutional
Animal Care and Use Committee.

Mast Cell Engraftment of Mast Cell-Deficient
Mice

Some B6J-KitW-sh/W-sh mice (4 to 6 weeks old) were re-
paired of their mast cell deficiency selectively and locally
by the intraperitoneal injection of growth factor-depen-
dent, congenic bone marrow derived-cultured mast cells
(BMCMCs). Briefly, femoral bone marrow cells from B6J
wild-type (WT), Mcpt4�/�, Tnf�/� or Mcpt4�/�Tnf�/�

mice were maintained in vitro for approximately 4 weeks
in IL-3-containing medium until mast cells represented
�95% of the total cells as indicated by May-Grünwald-

Giemsa staining. BMCMCs (1.5 � 106 in 200 �L of PBS)
were injected intraperitoneally (with a 27-gauge needle),
and the mice were used for experiments, together with
strain-, sex-, and age-matched mast cell-deficient mice,
4 to 6 weeks after adoptive transfer of BMCMCs. The
numbers of peritoneal mast cells (PMCs) were similar in
B6J-KitW-sh/W-sh mice that had been engrafted with B6J WT
(2.4 � 1.2% of total cells in the peritoneal lavage fluid),
mMCP-4-deficient (1.9 � 0.8%), TNF-deficient (2.1 �
0.8%), or both mMCP-4-deficient and TNF-deficient mast
cells (2.4 � 0.1%); the distribution and numbers of mast
cells in the mesentery (ie, mesenteric windows) of these four
groups of mice were also similar (2.3 � 0.9, 2.3 � 0.8,
2.5 � 0.4, and 2.0 � 0.4 mast cells/mm2, respectively).

Cecal Ligation and Puncture

CLP was performed as described previously,15 to induce
a moderately severe model of CLP in which 20% to 50%
of the WT mice die within 4 days after CLP. Briefly, mice
were deeply anesthetized by an intramuscular injection of
100 mg/kg ketamine and 20 mg/kg xylazine, and the
cecum was exposed by a 1- to 2-cm midline incision on
the anterior abdomen and subjected to ligation of the
distal half of the cecum and single puncture (with a 22-
gauge needle) of the ligated segment, The cecum was
then replaced into the abdomen, 1 mL of sterile saline
(pyrogen-free 0.9% NaCl) was administrated into the
peritoneal cavity, and the incision was closed using
9-mm steel wound clips. Mice were observed for mortality
at least four times daily. Mice that were clearly moribund
were euthanized by CO2 inhalation.

Assessment of Acute Kidney Injury

Acute kidney injury (AKI), defined as tubules lined by
vacuolated degenerating to necrotic epithelium with vari-
able intraluminal sloughed cells, was scored as de-
scribed by Wang et al,24 with modifications. Briefly, H&E-
stained coronal sections of each kidney from the mice
were scanned at �200 magnification for AKI within the
cortex and outer stripe of the outer zone of the medulla. It
is well established clinically that severe kidney dysfunc-
tion may be associated with only subtle and perhaps
patchy morphological changes.25 Because of the multi-
focal distribution of the lesions in mice subjected to CLP,
one section from each kidney was scanned in its entirety,
and the region in each kidney section (1� sections per
kidney) that was the most severely affected with AKI was
scored (some regions scored from sections of kidneys
from Mcpt4�/� mice exhibited no evidence of AKI).24

Similar scores for AKI were obtained when a single ob-
server repeatedly scored the same slides, and when the
slides were scored independently by a second observer
(data not shown). The top score, obtained in the most
severely affected individual section, was 4 (Mcpt4�/�

after CLP), with 46% to 75% of tubules affected within the
field (�200 magnification); the lowest score obtained was
0 (Mcpt4�/� at baseline). PAS-stained sections were ex-
amined to confirm changes noted on H&E and to assess
the integrity of the brush border. Images were captured

with Nikon Eclipse 80i microscope equipped with CFI
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Plan Apo objectives and a Nikon Digital Sight DS-Fi1
12-megapixel camera and Nikon Basic Elements soft-
ware version 3.0 (Melville, NY). Raw images were edited
for brightness in Adobe Photoshop Elements version 8.0
(San Jose, CA).

Blood Urea Nitrogen Measurements

Blood urea nitrogen (BUN) levels were assessed using
a commercially available kit (Teco Diagnostics, Ana-
heim, CA).

Evaluation of Mast Cells in the Peritoneal Cavity
and Mesenteric Windows

To harvest peritoneal cells, 2 mL of Hank’s buffered sa-
line solution buffer containing 10 U/mL heparin and 1%
fetal calf serum were injected into the peritoneal cavity,
and the abdomen was massaged gently for 30 seconds.
Fluid containing peritoneal cells was aspirated, and the
cells were cytocentrifuged onto glass slides and stained
with May-Grünwald-Giemsa to identify and quantify the
percentages of various cell populations. To evaluate
mast cells in the mesenteric windows, approximately four
to five mesenteric windows from approximately the same
locations in each mouse were arranged on slides and
fixed for 1 hour in Carnoy’s solution (3:2:1 v/v/v of ethanol,
chloroform, and acetic acid). Tissues were stained with
Csaba stain, which contains both safranin (red, thought
to identify mature mast cells) and alcian blue (thought to
identify less mature mast cells), which bind to mast cell
granules. Cytocentrifuge preparations were evaluated for
mast cell percentage, and slides of mesenteric windows
were examined by an observer not aware of the identity of
the individual mice, to assess presence, numbers, and
distribution of mast cells in the mesentery.

PMC Purification

Peritoneal cells were layered onto 1.5 mL of 23% Histo-
denz (Sigma-Aldrich, St. Louis, MO) in Hank’s buffered
saline solution containing 10 U/mL heparin and 1% fetal
calf serum and were centrifuged at 1350 rpm (469 � g)
for 15 minutes at room temperature. After a washing, cells
were stained with Toluidine Blue. PMCs represented 85%
to 90% of the cells recovered.

Generation of Peritoneal Cell-Derived Mast Cells

To generate peritoneal cell-derived mast cells (PCMCs),
peritoneal cells from Mcpt4�/� and Mcpt4�/� mice were
maintained in vitro for 2 weeks in medium containing IL-3
(10 ng/mL) and stem cell factor (SCF; 50 ng/mL) until
mast cells represented �95% of the total nonadherent
cells, as indicated by May-Grünwald-Giemsa staining.26

Quantification of Leukocytes

Neutrophils (Gr-1high/F4/80� cells) and macrophages

(Gr-1�/F4/80� cells) in the peritoneal fluid were analyzed
by flow cytometry. Briefly, red blood cells were lysed with
ACK lysis buffer for 5 minutes, and total cell numbers
were counted using a hemocytometer. Cells were
blocked with unconjugated anti-CD16/CD32 on ice for 5
minutes and then were stained with a combination of
fluorescein isothiocyanate-labeled anti-Gr-1 (RB6-8C5,
2.5 �g/mL) and APC-labeled anti-F4/80 (BM8, 4 �g/mL)
antibodies (eBioscience, San Diego, CA) on ice for 15
minutes for the detection of neutrophils and macro-
phages. The expression of cell surface markers was ana-
lyzed on a FACSCalibur system (BD Biosciences, San Jose,
CA) using FlowJo software version 8.8.6 (Tree Star, Ash-
land, OR). Gates for subpopulations of cells were based on
unstained cells, as well as cells stained with a single color to
determine compensation and nonspecific fluorescence.
Propidium iodide was used to detect dead cells. Only cells
negative for propidium iodide were used for analysis.

Quantification of Bacterial CFUs

Dilutions of peritoneal fluids or blood were performed and
samples were plated on LB agar for peritoneal fluids or
tryptose blood agar (BD Biosciences) for blood. Colonies
were counted after overnight incubation at 37°C.

�-Hexosaminidase Release Assay

BMCMCs were sensitized with 2 �g/mL of anti-dinitro-
phenyl (anti-DNP) IgE monoclonal antibody (mAb) (H1-
�-26)27 by overnight incubation at 37°C. The cells were
then washed with Tyrode’s buffer [10 mmol/L HEPES pH
7.4, 130 mmol/L NaCl, 5 mmol/L KCl, 1.4 mmol/L CaCl2,
1 mmol/L MgCl2, 0.1% glucose, and 0.1% bovine serum
albumin (fraction V; Sigma-Aldrich)] and resuspended at
8 � 106 cells/mL. Next, 25 �L of a 2� concentration of
stimulus [to achieve final concentrations of: 0, 10, and
100 ng/mL dinitrophenylated human serum albumin
(DNP-HSA; Sigma-Aldrich)] was added to the wells of a
96-well V-bottom plate (Costar; Corning Life Sciences,
Lowell, MA), and then 25 �L of 8 � 106 cells/mL IgE-
sensitized BMCMCs was added and incubated at 37°C for
1 hour. After centrifugation, supernatants were collected. The
supernatants from nonstimulated IgE-sensitized BMCMCs
treated with 50 �L of 0.5% (v/v) Triton X-100 (Sigma-Aldrich)
were used to measure the maximal (100%) cellular �-hexo-
saminidase content, to which the experimental samples
were normalized. �-Hexosaminidase release was quantified
by enzyme immunoassay with p-nitrophenyl-N-acetyl-�-D-
glucosamine (Sigma-Aldrich) substrate, as follows: 10 �L of
culture supernatant was added to the wells of a 96-well
flat-bottom plate; 50 �L of 1.3 mg/mL p-nitrophenyl-N-
acetyl-�-D-glucosamine solution in 100 mmol/L sodium ci-
trate, pH 4.5, was added, and the plate was incubated at
room temperature for 15 to 30 minutes. Next, 140 �L of 200
mmol/L glycine, pH 7, was added to stop the reaction, and
the optical density (OD405) was determined.

Cytokine Release Assays

BMCMCs (1 � 105/100 �L) were sensitized with IgE mAb

to DNP (H1-�-26)27 (2 �g/mL) overnight at 37°C and then
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were challenged with DNP-HSA (10 ng/mL) for 18 hours
at 37°C. Cell supernatants were then collected for cyto-
kine measurements.

Cytokine Measurements

TNF, IL-6, and IFN-� levels were measured by enzyme-
linked immunosorbent assay (BD OptEIA ELISA; BD Bio-
sciences). The assay detection limits were 15 pg/mL.

Angiotensin II Measurements

Plasma angiotensin II levels were measured by ELISA
(Cayman Chemical, Ann Arbor, MI). The detection limit
for this assay was 1.5 pg/mL. Angiotensin II-forming ac-
tivity associated with the mouse aorta was measured as
described previously.28 Briefly, aortic tissue was homog-
enized in 2 mL of 50 mmol/L NaH2PO4 buffer, pH 7.4,
using a homogenizer (PRO Scientific, Oxford, CT) and
centrifuged at 30,000 � g for 20 minutes. Pellets were
resuspended in 0.5 mL of buffer, and 3.84 �L of 130
ng/mL angiotensin I was added. Next, 5 �L of this solu-
tion was added to 35 �L of assay buffer (20 mmol/L
Tris-HCl, pH 8.0, containing 0.5 mol/L KCl and 0.01%
Triton X-100) and incubated at 37°C for 40 minutes. The
reaction was terminated with the addition of 300 �L of eth-
anol. Precipitated proteins were removed by centrifugation,
and the supernatants were dried and then resuspended in
ELISA buffer for quantification of angiotensin II.

Intracellular Staining of TNF

BMCMCs (1 � 105/100 �L) were sensitized with IgE mAb
to DNP (H1-�026)27 (2 �g/mL) overnight at 37°C and then
were washed and challenged with DNP-HSA (10 ng/mL)
in the presence of 2 �mol/L monensin for 6, 12, or 18
hours, respectively. Cells were blocked with unconju-
gated anti-CD16/CD32 on ice for 5 minutes, then incu-
bated on ice for 30 minutes with a combination of fluo-
rescein isothiocyanate-labeled anti-Fc�RI� (MAR-1, 2.5
�g/mL; eBioscience) and phycoerythrin-labeled anti-c-
Kit (2B8; 1 �g/mL) (BD Biosciences) antibodies for mast
cell detection. The cells were washed, fixed in PBS con-
taining 4% paraformaldehyde for 20 minutes at room tem-
perature, washed with a permeabilization buffer [0.1% sa-
ponin (Sigma-Aldrich) in the staining buffer], and incubated
with Alexa Fluor 647-labeled-anti-mouse TNF (MP6-XT22; 2
�g/mL) (eBioscience). The expression of cell surface mark-
ers and TNF was analyzed by fluorescence-activated cell
sorting. The expression of cell surface markers was ana-
lyzed on a FACSCalibur system (BD Biosciences) using
FlowJo software version 8.8.6 (Tree Star).

Analysis of Chymotryptic Activity

Peritoneal lavage cells containing 5 � 104 PMCs were sol-
ubilized in 200 �L lysis buffer (PBS/2 mol/L NaCl, 0.5%
Triton X-100), and 10 �L of the peritoneal lavage cell lysates
was mixed with 90 �L H2O, followed by the addition of 20

�L of 1.8 mmol/L solution (in H2O) of chromogenic sub-
strate for chymotrypsin-like proteases (Chromogenix
S-2586; DiaPharma, West Chester, OH). The absorbance at
405 nm was monitored with a SpectraMax 190 spectropho-
tometer (Molecular Devices, Sunnyvale, CA).

Analysis of Cathepsin G Activity

Freshly harvested mouse femoral bone marrow cells (1 �
107 cells) and PCMCs (1 � 106 cells) were solubilized in
100 �L lysis buffer (1% Nonidet P-40 in PBS). Cathepsin
G activity was measured using 100 �L of cell lysates with
1 �L of 1.5 mmol/L of fluorogenic substrate for cathepsin
G (ABZ-TPFSGQ-EDDnp) in a total volume of 200 �L.
ABZ-TPFSGQ-EDDnp hydrolysis was monitored by mea-
suring fluorescence at �ex � 320 nm and �em � 420 nm
using a microplate fluorescence reader (SpectraMax
Gemini; Molecular Devices).

Degradation of sTNF and proTNF

We incubated 1 �g of mouse recombinant soluble TNF
(sTNF; PeproTech, Rocky Hill, NJ) or 500 ng human re-
combinant proTNF (R&D Systems, Minneapolis, MN) in
the presence or absence of TAPI-1 (10 �g/mL), with PMC
lysates obtained from Mcpt4�/� or Mcpt4�/� mice [2 �
105 cells/100 �L of lysis buffer (PBS/2 mol/L NaCl, 0.5%
Triton X-100)] for 1.5 hours at 37°C. Cleaved fragments
were visualized by SDS-PAGE.

RT-PCR

RNA (50 ng) was isolated from cells with an RNeasy mini
kit (Qiagen, Valencia, CA) and converted to first-strand
cDNA with oligo(dT) primers (Ambion; Life Technologies-
Applied Biosystems, Foster City, CA) and Sensiscript
Reverse Transcriptase (Qiagen), Ambion RETROscript
(Life Technologies-Applied Biosystems), or iScript cDNA
Synthesis Kit (Bio-Rad Laboratories, Hercules, CA). Taq
DNA polymerase (Life Technologies-Invitrogen, Carls-
bad, CA) and the following primer pairs were used for
amplification of mMCP-4: 5=-GACAGAATCCACACAG-
CAGAAG-3= (forward) and 5=-CCTCCAGAGTCTCCCTT-
GTATG-3= (reverse). The resulting PCR products were
resolved on 1.5% agarose gels.

Quantitative PCR

BMCMCs (1 � 105/100 �L) were sensitized with IgE mAb
to DNP (H1-�-26)27 (2 �g/mL) overnight at 37°C and then
were washed and challenged with DNP-HSA (10 ng/mL)
for 0.5, 2, or 6 hours. cDNA was analyzed for quantitative
expression levels of TNF with Fast SYBR Green master
mix on a 7500 Fast real-time PCR system (Life Technol-
ogies-Applied Biosystems) with the following primers: 5=-
AAATGGCCTCCCTCTCATCAG-3= (forward) and 5=-
GCTTGTCACTCGAATTTTGAGAAG-3= (reverse). Results
were analyzed using the �CT method normalized to

GAPDH.
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Western Blot Analysis

The cell sTNF or proTNF degradation products were de-
natured by boiling for 1 minute with sample buffer (2.5%
SDS 10% glycerol and 5% mercaptoethanol). Lysates
were separated by SDS/PAGE [10% bis-tris gel with 2-(N-
morpholino)ethanesulfonic acid running buffer; Life Tech-
nologies-Invitrogen], electroblotted onto Invitrolon polyvi-
nylidene difluoride membranes (Life Technologies-
Invitrogen), and then probed with antibodies against TNF
(Cell Signaling Technology, Danvers, MA), cathepsin G
(Abnova, Taipei, Taiwan; Walnut, CA), and mMCP-4 and
GAPDH (Research Diagnostics, Concord, MA).

Statistical Analysis

We assessed differences in the survival rates after CLP
using the Mantel-Haenszel log-rank test. All other data
were analyzed for statistical significance using the Mann-
Whitney U-test. P � 0.05 was considered statistically
significant. Unless otherwise specified, all data are pre-
sented as means � SEM.

Results

Higher Expression and Activity of mMCP-4 in
WBB6F1 than in C57BL/6J Mast Cells

Mast cells of WBB6F1 mice have been reported to ex-
press higher levels of mRNA for mMCP-4, compared with
mast cells of B6J mice.12,13 We confirmed that WBB6F1

BMCMCs express higher levels of mMCP-4 mRNA than
B6J BMCMCs; we also found that levels of mMCP-4 pro-
tein were higher in WBB6F1 than in B6J BMCMCs (see
Supplemental Figure S1, A and B, at http://ajp.amjpathol.
org). Moreover, peritoneal lavage cells of WBB6F1 mice
exhibited higher levels of chymotryptic activity than did
B6J peritoneal lavage cells (see Supplemental Figure
S1C at http://ajp.amjpathol.org). These data suggested to
us that there may be an association between levels of
mMCP-4 expression and the outcome of CLP. B6J mice
exhibit low survival rates after severe CLP,15 and their
mast cells express low levels of mMCP-4 (see Supplemen-
tal Figure S1 at http://ajp.amjpathol.org), whereas WBB6F1

mice exhibited high survival rates after severe CLP,15 and
their mast cells express high levels of mMCP-4 (see Sup-
plemental Figure S1 at http://ajp.amjpathol.org). We there-
fore decided to assess the role of mMCP-4 in CLP.

mMCP-4-Deficient Mice Exhibit Reduced
Survival after CLP

To assess whether mMCP-4 can influence the outcome of
sepsis, we compared responses to CLP in WT
(Mcpt4�/�) and in mMCP-4-deficient (Mcpt4�/�) mice on
the B6J background. Deletion of mMCP-4 in Mcpt4�/�

mice does not influence the activities of other mast cell
proteases analyzed, such as tryptase or mast cell car-
boxypeptidase A (MC-CPA).22 We also searched for ca-

thepsin G protein and enzymatic activity in PCMCs and,
as a control, in freshly isolated femoral bone marrow
cells, which contain neutrophils that express cathepsin
G29. We readily detected cathepsin G protein and enzy-
matic activity in the bone marrow cells of both Mcpt4�/�

and Mcpt4�/� mice (see Supplemental Figure S2 at
http://ajp.amjpathol.org). By contrast, when we tested
similar amounts of protein derived from PCMCs, we de-
tected neither cathepsin G protein nor enzymatic activity
in mast cells derived from either Mcpt4�/� or Mcpt4�/�

mice (see Supplemental Figure S2 at http://ajp.amjpathol.
org). Mcpt4�/� mice resemble WT mice in general ap-
pearance, gross anatomy, body weight, reproduction,
and overt behavior.22 Moreover, we observed that base-
line blood levels of alanine aminotransferase (60.3 � 13.9
versus 77.3 � 13.0 U/L), BUN (30.8 � 2.1 versus 30.9 �
5.1 mg/dL), and CO2 (21.8 � 1.1 versus 18.5 � 0.3
mmol/L) were similar in Mcpt4�/� and Mcpt4�/� mice,
which provides evidence that liver, kidney, and lung func-
tions are not grossly affected by the lack of chymase
under normal conditions. We also verified that the num-
bers of PMCs were similar in Mcpt4�/� and Mcpt4�/�

mice (3.8 � 0.5% and 3.9 � 0.3% of total peritoneal cells,
respectively; P � 0.96, n � 9 or 10 mice per group), as
was the distribution of mast cells in the mesentery (ie,
mesenteric windows) of these mice (4.2 � 0.8 and 5.5 �
1.2 mast cells/mm2, respectively; P � 0.56, n � 7 or 8
mice per group).

Nonetheless, Mcpt4�/� mice exhibited markedly re-
duced survival in a protocol of moderate CLP, compared
with Mcpt4�/� mice (7% versus 71% survival at 1 week
after CLP; P � 0.0001) (Figure 1A). Sepsis and septic
shock are the most important causes of acute renal fail-
ure (ARF) in critically ill patients, and account for more
than 50% of cases of ARF in the ICU.30 We found that
Mcpt4�/� mice were more susceptible to ARF after CLP,
compared with Mcpt4�/� mice (Figure 1, B–D). Lesions
of acute kidney injury (AKI) in mice subjected to CLP
were increased in kidney sections from Mcpt4�/�, com-
pared with Mctp4�/� mice or compared with kidney sec-
tions from mice not subjected to CLP. Characteristic le-
sions seen in the CLP group included mild proximal renal
tubular swelling and apical blebbing with loss of PAS�

brush border, some vacuolation, and PAS� intracytoplas-
mic hyaline droplets (Figure 1B), consistent with degen-
eration. In some tubules, epithelial damage progressed
to necrosis and/or apoptosis, with intraluminal sloughing
of hyalinized necrotic cells, and a mild increase in neu-
trophils within renal vasculature (Figure 1B). The average
severity of kidney injury in mice subjected to CLP (scored
as 0 to 4, with 4 � most severe) was 3.2 in the Mcpt4�/�

mice, compared with 1.2 in Mcpt4�/� mice (Figure 1C).
The histological findings are consistent with BUN levels,
which were markedly increased in Mcpt4�/� mice, rela-
tive to those of Mcpt4�/� mice, at 18 to 24 hours after
CLP (Figure 1D). In contrast, at baseline Mcpt4�/� mice
had some histological lesions within the proximal renal
tubular epithelium (scored minimally at 0.5); however,
there was no detectable increase in BUN levels, suggest-
ing that this histological lesion does not affect renal func-
tion and may represent transient and reversible meta-

bolic changes to the individual affected tubules that were
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not widespread enough to change overall renal function.
Together, the histological and BUN levels support the
conclusion that Mcpt4�/� mice develop more severe re-
nal dysfunction after CLP than do Mcpt4�/�mice.

These observations indicate that chymase has direct
or indirect effects that can significantly increase survival
in mice after CLP of moderate severity and can have a
protective role in the kidneys of mice subjected to this
procedure.

mMCP-4-Deficient Mice Have Increased
Neutrophil Accumulation after CLP

In sepsis, both the efficiency of bacterial clearance and
the magnitude of the inflammatory response contribute to
the host’s outcome. Although neutrophils are essential for
bacterial defense and clearance, excessive amounts of
activated neutrophils can exacerbate tissue damage af-
ter infection.31 We therefore investigated whether chy-
mase might influence numbers of neutrophils at the site of
infection.

We found significantly increased numbers of neutro-
phils in the peritoneal cavity of Mcpt4�/� mice at 6, 18 to
24, and 48 hours after CLP, compared with the values for
Mcpt4�/� mice at the same time points (Figure 2A). By
contrast, the numbers of macrophages in the peritoneum
did not differ significantly between Mcpt4�/� and
Mcpt4�/� mice at the same time points (Figure 2B).

It has recently been reported that another mast cell chy-
mase, mMCP-2, has antibacterial activity.32 In the present
study, however, there was a trend toward lower levels of
bacterial CFUs in the peritoneal cavities of Mcpt4�/� mice
than in those of Mcpt4�/� mice at 18 to 24 hours after CLP
(34,363 � 17,789 CFU versus 108,309 � 56,064 CFU,
respectively) and at 48 hours after CLP (133,177 � 131,766
versus 411,200 � 247,481 CFU, respectively). With the
caveat that not all of the potentially pathogenic cecal bac-
teria present would be expected to grow under the condi-

Figure 1. mMCP-4 can enhance mouse survival after CLP. A: Survival after
CLP (50% ligation; single puncture with a 22-gauge needle) in Mcpt4�/� mice
(n � 14) and Mcpt4�/� mice (n � 15). *P � 0.0001 versus Mcpt4�/� mice.
B: Representative images of kidneys at baseline and at 18 to 24 hours after
CLP in Mcpt4�/� and Mcpt4�/� mice. At baseline, the Mcpt4�/� kidneys
have minimal tubular lesions with intratubular apical laminated hyaline ma-
terial as indicated by H&E staining (arrow) and mildly irregular PAS staining
of the brush border (arrow), whereas corresponding sections from
Mcpt4�/� kidneys appear normal. At 18 to 24 hours after CLP, the sections of
Mcpt4�/� kidney exhibit mild proximal renal tubular swelling and apical
blebbing under H&E staining (arrow) with some vacuolation (not shown),
as well as mild irregular PAS staining and ectasia of affected tubules (arrow).
In Mcpt-4�/� kidney, CLP resulted in moderate multifocal acute renal tubular
necrosis with intraluminal sloughing of hyalinized necrotic debris as indi-
cated by H&E staining (arrow), occasional apoptotic cells (not shown), and
a mild increase in neutrophils within renal vasculature as indicated by both
H&E and PAS staining (arrowheads). Degenerate epithelial cells contain
numerous PAS� cytoplasmic droplets (arrow). Insets are digitally magnified
portions of the same section, corresponding to the boxed region. C: Scoring
of acute kidney injury in H&E-stained sections at baseline and at 18 to 24
hours after CLP in Mcpt4�/� mice (n � 3 or 4 per group) and Mcpt4�/� mice
(n � 3 to 10 per group). D: Blood urea nitrogen (BUN) levels at baseline and
at 18 to 24 hours in Mcpt4�/� mice (n � 9 or 10 per group) and Mcpt4�/�

mice (n � 9 or 10 per group). Data were pooled from three independent
experiments, each of which gave similar results. In C and D, *P � 0.05, **P �

0.01, ***P � 0.005, ****P � 0.0001. n.s., not significant (P � 0.05). Scale
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tions we used for quantifying bacterial CFUs,33 the present
findings do not support the hypothesis that mMCP-4 is
required for effective bacterial clearance after CLP. Taken
together, our observations suggest that an excessive in-
flammatory response, but not defective bacterial clear-
ance, may contribute to the decreased survival of
Mcpt4�/� versus Mcpt4�/� mice after CLP. A similar
dissociation between effects on mouse survival and bac-
terial CFU levels after CLP was observed in the dipeptidyl
peptidase I (DPP-I)-deficient mouse, in which mMCP-4
and certain other enzymes remain in their inactive form.34

In that study, however, the DPP-I-deficient mice had both
improved survival and higher levels of bacterial CFUs
after CLP, compared with the corresponding WT mice.34

mMCP-4-Deficient Mice Have Elevated Levels
of TNF after CLP

High levels of TNF are associated with a poor outcome in
both mouse and human sepsis.35,36 We found that the
accumulation of neutrophils in Mcpt4�/� mice subjected
to CLP was associated with increased intraperitoneal lev-
els of TNF at 6 hours after CLP (Figure 3A). Mediators that
are generated at later stages of the septic process, such
as IL-6 (which can enhance survival in the CLP model33)
and IFN-�, were slightly but not significantly increased in
Mcpt4�/� mice at 6, 18 to 24, or 48 hours after CLP
(Figure 3, B and C). These observations indicate that
mMCP-4 can have direct or indirect effects that result in
lower levels of TNF at the initial stages of the bacterial
infection caused by CLP.
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Data were pooled from three independent experiments, each of which gave similar
mMCP-4 Can Down-Regulate TNF Generation
by Mast Cells through Degradation of Soluble
and Membrane TNF

In vitro studies using mouse recombinant proteases34 or
analyzing the effects of nonspecific protease inhibitors on
human mast cells37,38 indicate that mast cell proteases
may function to reduce the levels of certain cytokines and
chemokines produced by mast cells. Using BMCMCs
from Mcpt4�/� and Mcpt4�/� mice, we assessed the
potential influence of mouse chymase on the generation
of TNF. After immunological stimulation with IgE and spe-
cific antigen, supernatants from Mcpt4�/� BMCMCs had
higher amounts of TNF than those from Mctp4�/� BMC-
MCs (Figure 4A). By contrast, such supernatants exhib-
ited no significant differences in the amounts of IL-6 (see
Supplemental Figure S3A at http://ajp.amjpathol.org) or in
the percentage release of the preformed mediator,
�-hexosaminidase (see Supplemental Figure S3B at
http://ajp.amjpathol.org). These findings indicate either
that the absence of mMCP-4 permits mast cells to release
larger amounts of TNF and/or that the TNF released by
mMCP-4-deficient mast cells persists longer once out-
side the cells.

Analysis of IgE/DNP-HSA-activated BMCMCs ob-
tained from Mcpt4�/� or Mcpt4�/� mice indicates that
chymase does not substantially influence TNF produc-
tion at the levels of transcription (see Supplemental
Figure S4A at http://ajp.amjpathol.org) or translation
(see Supplemental Figure S4B at http://ajp.amjpathol.
org). However, as noted above, prior studies using
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Figure 2. mMCP-4-deficient mice have increased
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mouse recombinant mast cell proteases and nonspe-
cific protease inhibitors suggested to us that mast cell
proteases might be able to degrade certain mast cell-
derived cytokines and chemokines.34,37,38 Based on
the reported substrate specificity of chymase, the
amino acid sequence of TNF includes potential cleav-
age sites for mMCP-4.39 We therefore hypothesized
that mMCP-4 can degrade TNF secreted by mast
cells.

By Western blot analysis, we found that lysates of
PMCs from Mcpt4�/� mice caused more extensive deg-
radation of sTNF than did lysates of Mcpt4�/� PMCs,
indicating that mMCP-4 can degrade sTNF (Figure 4B).
TNF is synthesized as a transmembrane protein (proTNF;
26 kDa) and then is cleaved to its soluble form (sTNF; 17
kDa). The TNF-�-converting enzyme (TACE; also known
as ADAM17),40 a member of the ADAM (disintegrin and
metalloprotease domain-containing) family of metallopro-
tease-disintegrins,41 can catalyze the conversion of
proTNF to sTNF. This function was markedly reduced in
the presence of the TACE inhibitor TAPI-1 (Figure 4C).
Lysates of PMCs from Mcpt4�/� mice were impaired in
their ability to degrade proTNF, and similar results were
obtained in the presence or absence of TAPI-1 (Figure
4C). These findings indicate that Mcpt4�/� and
Mcpt4�/� PMC lysates can convert proTNF to sTNF in the
absence of TACE activity, but that Mcpt4�/� PMC lysates
can do this, and can degrade sTNF, more efficiently than
lysates of Mcpt4�/� PMCs (Figure 4C). These findings
indicate that mMCP-4 can down-regulate the levels of
TNF detected in mouse mast cell supernatants by deg-
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The Increased Mortality after CLP Associated
with a Lack of mMCP-4 Is Reduced in Mice
Whose Mast Cells Lack TNF

Mast cell granules contain preformed, bioactive TNF that
is available for rapid release in response to a triggering
event,42 which makes mast cells a potentially important
early source of TNF in sepsis. Galli and colleagues,13

using a mast cell knock-in approach,43 found that a ben-
eficial role of mast cells in CLP of moderate severity can
occur independently of mast cell-derived TNF; moreover,
their data suggested that production of large amounts of
mast cell-derived TNF can impair survival after severe
CLP by promoting a dysregulated inflammatory response
associated with increased numbers of intraperitoneal
neutrophils.

To investigate possible interactions between mast cell-
derived TNF and mast cell mMCP-4 in CLP, we engrafted
various mast cell populations into genetically mast cell-
deficient C57BL/6-KitW-sh/W-sh (KitW-sh/W-sh) mice. Specif-
ically, we prepared mast cell-engrafted KitW-sh/W-sh mice
whose PMCs were either WT (Mcpt4�/�) or lacked the
ability to produce mMCP-4 (Mcpt4�/�), or TNF (Tnf�/�),
or both mMCP-4 and TNF (Mcpt4�/�Tnf�/�). Survival
after CLP was significantly improved in KitW-sh/W-sh mice
that had been selectively engrafted intraperitoneally with
Mcpt4�/�Tnf�/� BMCMCs than in KitW-sh/W-sh mice that
had been engrafted intraperitoneally with Mcpt4�/� BMCMCs
(33% versus 8% survival at day 7 after CLP, respectively;
P � 0.005) (Figure 5A). Moreover, survival after CLP was also
improved in Mcpt4�/� BMCMCs¡KitW-sh/W-sh mice, com-
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versus 8% survival at day 7 after CLP) (P � 0.0005). How-
ever, survival in Mcpt4�/� BMCMCs¡KitW-sh/W-sh mice
(45% at day 7 after CLP) did not differ significantly different
from that in Mcpt4�/�Tnf�/� BMCMCs¡KitW-sh/W-sh mice
(33% at day 7 after CLP) (P � 0.97) or in Tnf�/� BMCMCs¡
KitW-sh/W-sh mice (40% at day 7 after CLP) (P � 0.38).

We also assessed features of inflammation in these
groups of mice at 18 to 24 hours after CLP. We chose this
time point because Mcpt4�/� BMCMCs¡KitW-sh/W-sh

mice exhibited a significant drop in body temperature 18
to 24 hours after CLP, compared with the other groups of
mice (Figure 5B), which correlated with the increased
mortality of Mcpt4�/� BMCMCs¡KitW-sh/W-sh mice (Fig-
ure 5A). At 18 to 24 hours after CLP, the three groups with
the best survival after CLP (ie, KitW-sh/W-sh mice engrafted
with Mcpt4�/�, Tnf�/�, or Mcpt4�/�Tnf�/� BMCMCs)
(Figure 5A) exhibited significantly lower amounts of TNF
(Figure 5C) and numbers of neutrophils (Figure 5D) in the
peritoneal cavity, compared with KitW-sh/W-sh mice en-
grafted with Mcpt4�/� BMCMCs. Moreover, when the
engrafted mast cells contained mMCP-4, the presence or
absence of mast cell-derived TNF made no significant
difference in intraperitoneal levels of TNF or in neutrophil
numbers in mast cell-engrafted KitW-sh/W-sh mice (Figure
5, C and D). This finding suggests that mast cell-derived
TNF does not represent a major contributor to the TNF
levels measured in this model of CLP at 18 to 24 hours
after the procedure in mice with normal levels of mast cell
mMCP-4.

Discussion

Of the various chymases expressed by mouse mast cells,
mMCP-4, which has been recognized as the functional
homolog of human chymase, is the major source of chy-
motrypsin-like activity in the mouse peritoneal cavity,22

the site where bacterial infection is initiated during CLP.
Our studies of mMCP-4-deficient mice indicate that
mMCP-4 can help to reduce or prevent the development
of ARF, as well as markedly improve survival, in mice
subjected to CLP (Figure 1). Notably, mMCP-4 is not
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detected in total kidney tissue, likely reflecting a general
paucity of mast cells in the kidney.44 Indeed, Toluidine
Blue staining of kidney sections from Mcpt4�/� and
Mcpt4�/� mice subjected to CLP revealed no mast cells.
These observations indicate that the chymase-depen-
dent preservation of kidney function after CLP does not
require that mMCP-4 be generated within the kidney, but
instead appears to reflect effects of mast cell activation
and release of mMCP-4 outside of the kidney.

Notably, although the CLP model used in the present
study was associated with ARF, it induced only patchy
morphological evidence of kidney injury. It is well known
in clinical medicine that assays of renal function (ie, se-
rum levels of electrolytes, BUN, creatinine) may detect
profound renal dysfunction that cannot be appreciated
under light microscopy.45 In this respect, CLP-associ-
ated ARF may represent a form of AKI in mice that is more
subtle (at least from the standpoint of kidney histopathol-
ogy), and therefore more similar to clinical AKI in humans,
than that associated with other models.46,47

We do not know the mechanism by which a lack of
mMCP-4 contributes to kidney dysfunction in CLP. How-
ever, it is known that the development of ARF in sepsis is
associated with increased amounts of plasma angioten-
sin II,48 and we found substantially increased levels of
plasma angiotensin II after CLP in Mcpt4�/� mice, com-
pared with Mcpt4�/� mice (see Supplemental Figure S5
at http://ajp.amjpathol.org). In vitro studies indicate that
mouse chymase can enhance both the formation and
degradation of angiotensin II.28,49 We found that, com-
pared with the corresponding WT mice, naïve Mcpt4�/�

mice (like naïve genetically mast cell-deficient WBB6F1-
KitW/W-v mice28) exhibited reduced formation of angiotensin
II in aortic tissues: 9.4 � 3.5 pg/mL of angiotensin II/mg of
protein contained in aortic tissues from Mcpt4�/�, com-
pared with �1.5 pg/mL for Mcpt4�/� mice (P � 0.06, n �
3 per group). It is possible, therefore, that the increased
plasma levels of angiotensin II in septic Mcpt4�/� mice
reflect either reduced degradation of angiotensin II in the
absence of mMCP-4 and/or the robust activation of the
renin-angiotensin-aldosterone system as part of an intrin-
sic response to sepsis-associated circulatory failure in
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Overall, our evidence supports the hypothesis that
mMCP-4 exerts a novel protective effect in mice sub-
jected to CLP by restraining the development of an ex-
cessive inflammatory response that contributes to kidney
dysfunction and mortality in the septic mice. In contrast to
Mcpt4�/� mice, DPP-I knockout mice (Ctsc�/�) that ex-
press an inactive form of chymase (and certain other
proteases), exhibited better survival rates after CLP than
did WT mice.34 The discrepancy between our findings
with Mcpt4�/� mice and those reported for DPP-I knock-
out mice may be related to two potentially important dif-
ferences between the two studies. First, in addition to
being required for the activation of chymase, DPP-I is
also required for the activation of several other serine
proteases,34 some of which might have negative effects
on survival in sepsis that counteract the positive effects of
chymase. Second, the DPP-I knockout mice were sub-
jected to a more severe model of CLP than we used for
analyses of the Mcpt4�/� versus Mcpt4�/� mice, in that
nearly 80% of the WT mice died by 48 hours after CLP in
the study of DPP-I knockout versus WT mice, as opposed
to only 29% of the WT mice in the present study. CLP
models of different severities could result in the genera-
tion of different profiles and/or amounts of substrates
available for proteases, contributing to different out-
comes during sepsis.

We found that mMCP-4 can limit the magnitude of the
neutrophil response triggered by CLP (Figure 2A). The
reduction in neutrophil numbers in WT mice, compared
with mMCP-4-deficient mice, was associated with lower
levels of TNF in the peritoneal cavity during CLP in the WT
mice (Figures 3A and 5C). Neutrophils can produce TNF
and can contribute to mortality in the lipopolysaccharide-
induced model of sepsis.51 It is possible, therefore, that
mMCP-4 can down-regulate TNF levels indirectly,
through effects that result in limiting the number of TNF-
producing neutrophils recruited to the peritoneal cavity
during sepsis. However, our in vitro data indicate that
mMCP-4 can also degrade both proTNF and sTNF (Fig-
ure 4, B and C), and these findings are consistent with the
possibility that degradation of proTNF and sTNF by
mMCP-4 may limit the levels and biological effects of TNF
in vivo. In fact, our in vivo data comparing the features of
CLP in mice whose adoptively transferred mast cells
have TNF but do or do not contain mMCP-4 indicate that
mast cell-derived TNF can impair survival and can pro-
mote inflammation in this model of CLP if the mast cells
lack chymase (Figure 5). Thus, it is possible that mMCP-4
can limit levels of TNF during CLP by two distinct mech-
anisms: degrading proTNF and sTNF from whatever
sources, and having direct or indirect effects that limit
neutrophil numbers in this setting and that therefore limit
levels of neutrophil-derived TNF.

In the present study, we focused on interactions be-
tween mMCP-4 and TNF. However, based on the sub-
strate specificity of chymase, many other mediators gen-
erated during sepsis may represent additional potential
substrates of mMCP-4. For example, potential chymase
cleavage sites are present in mouse IL-6,39 but in vitro
studies indicate that mMCP-4 is unable to degrade this

cytokine.34 Moreover, we did not detect significant differ-
ences in the amounts of IL-6 and IFN-� generated in the
presence or absence of chymase after CLP (Figure 3B).
Unlike IL-6 and IFN-�, TNF is one of the earliest mediators
to be generated during the host response to CLP,52 sug-
gesting that TNF may be more available than IL-6 as a
substrate for chymase when the protease is rapidly re-
leased after mast cell activation early in the reaction to
CLP.53

It is important to point out that the newly identified
beneficial role for mMCP-4 as a negative regulator of
inflammation in the CLP model differs substantially from
the roles for this enzyme that have been discovered in
models of abdominal aortic aneurysm,54 glomerulone-
phritis,44 or arthritis,55 in which mMCP-4 seems to in-
crease inflammation. It was recently shown, however, that
mMCP-4 can reduce airway inflammation and airway hy-
perreactivity in a mouse model of allergic airway inflam-
mation, findings consistent with an anti-inflammatory role
for mMCP-4 in this setting.56 Such divergent roles for
mMCP-4 may reflect differences in the types and/or avail-
ability of endogenous chymase substrates in these con-
ditions, about which little is known as yet. Indeed, for
mMCP-4, as well as for other proteases, characterizing in
detail the profile of endogenous protease substrates
present in different physiological or pathological settings
will be essential to extend our understanding of the func-
tions of these proteases in such conditions.57
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